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Abstract 

Biochar has emerged as an environmentally sustainable material for addressing agri-environmental issues owing to its 
porous structure, versatile surface chemistry, and stability. While pristine biochars have demonstrated effectiveness 
in various applications, ranging from agricultural soil enhancement to contaminant immobilization, their performance 
is often constrained by insufficient reactivity and limited selectivity. This review begins by outlining the biochar 
production process, emphasizing how key factors influence its physicochemical properties and overall performance. 
A major barrier to practical deployment is the difficulty of recovering fine biochar particles from treated media, often 
requiring energy-intensive methods, which limits the scalability for agri-environmental applications. To overcome 
these constraints, the review explores various biochar modification methods, focusing on magnetization and mineral 
impregnation techniques. As such, magnetic biochars (MBCs) not only retain the adsorptive benefits of carbona‑
ceous materials but also enable facile recovery via external magnetic fields, addressing a major obstacle in post-
treatment separation. In addition, the mineral doping of MBCs further enhances surface functionality and reactivity, 
improving removal efficiencies for a wide spectrum of pollutants. This review critically explores the synthesis routes, 
structural characteristics, and functional performance of magnetized and mineral-enriched biochars, with an empha‑
sis on their applications in environmental remediation and soil enrichment. Mechanistic insights into adsorption 
pathways including pore-filling, electrostatic binding, and surface complexation are detailed, along with emerging 
approaches involving light-assisted degradation pathways. By synthesizing laboratory findings and field-scale obser‑
vations, this review identifies current improvements and limitations, and outlines key directions for future research 
toward the practical and scalable use of engineered biochars for more sustainable agri-environmental applications.
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Graphical Abstract

1  Introduction
In recent decades, escalating concerns over persistent 
global agri-environmental issues such as soil degradation, 
reduced agricultural productivity, and the widespread 
contamination of land and water have driven an urgent 
global pursuit for sustainable approaches to restore the 
ecological balance (Grammenou et  al. 2023; Saxena 
2025). In a parallel context, the term ‘pollution’ or ‘con-
tamination’ commonly refers to the presence of different 
compounds in concentrations above baseline thresholds, 
resulting in direct degradation of the impacted medium 
and broader environmental consequences beyond the 
point of origin (Vieira et al. 2024).

As a dynamic and multifaceted issue, soil pollution 
stems from the intricate coupling of chemical reac-
tions, physical transformations, and biological activities, 
each governed by soil properties and shaped by external 
edapho-climatic factors. Therefore, accurate assessment 
of soil contaminants demands context-sensitive extrac-
tion and quantification methods that account for these 
variables (Vieira et al. 2024). To shed light on the magni-
tude of the problem, statistics worldwide speak clearly; an 
estimated one-third of global land resources is undergo-
ing degradation, placing nearly three billion individuals at 
heightened risk due to declining ecosystem richness and 

reduced agricultural productivity (Hossain et  al. 2020). 
As a result, lost agricultural productivity from land deg-
radation is estimated to ost the global economy around 
300 billion USD annually, with Sub-Saharan Africa shoul-
dering the greatest burden accounting for nearly one-fifth 
of global losses (Nkonya et  al. 2016). Moreover, reports 
show that 10 million hectares of fertile land are depleted 
annually, underscoring the critical toll of ongoing land 
degradation (Hampicke 2021). Other major contributors 
include industrial processes, waste treatment, and min-
ing activities (Koul and Taak 2018; Zhang et al. 2025a).

Soil and water pollution are closely linked, often form-
ing a self-perpetuating cycle of environmental degrada-
tion (Hillel et  al. 2008). In a cyclical pollution pathway, 
soil and water pollution go side by side. On one hand, 
irrigating with contaminated water accelerates land deg-
radation, while environmental events such as flooding 
and acid rain similarly deteriorate soil quality. On the 
other hand, processes like contaminant leaching, surface 
runoff, and soil erosion serve as major pathways for pol-
lutants to enter surface and underground water systems 
(Havugimana et  al. 2017; Pérez-Lucas et  al. 2018). In 
addition to inorganic contaminants such as heavy met-
als and excess nutrients, water and soil contamination 
with organic pollutants epitomizes a global dilemma that 
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presents a peril to both human well-being and the terres-
trial ecosystem (Ndour et al. 2025; Shaheen et al. 2025). 
The term “organic pollutants” entails a huge family of 
contaminants with different chemical structures, physical 
properties, and liabilities to interaction and/or degrada-
tion as well as the transformation into other pollutants 
(Ratnakar and Shankar 2016). This family comprises pol-
lutants such as organic agrochemicals (Zolgharnein et al. 
2011; Kanan et al. 2022; Rasool et al. 2022), pharmaceu-
ticals and personal care products (Chaturvedi et al. 2021; 
Gworek et al. 2021; Xu et al. 2021), dyes (Mudhoo et al. 
2020; Markandeya et al. 2022), and other industrial pol-
lutants (Liu et al. 2022a). Organic pollutants are generally 
characterized by their recalcitrance and hydrophobicity, 
which increase their environmental persistence and risks 
(Hamdi et al. 2012). As such, the development of effective 
remediation strategies remains a hot topic of investiga-
tion and a key research priority.

Growing concerns over environmental pollution have 
fueled ongoing efforts and a ‘continuous rally’ for inno-
vative materials for remediation applications. Among 
emerging soil amendments and water remediation 
agents, biochar has gained considerable attention for 
its multifunctional role in improving soil properties, 
enhancing nutrient retention, immobilizing contami-
nants, and contributing to carbon sequestration (Liu 
et al. 2022b; Das et al. 2023a; Rahim et al. 2023; Hou et al. 
2024). Accordingly, carbon sequestration is the process 
by which carbon is converted into a more stable form 
to prevent environmental risks related to greenhouse 
gas emissions (Mosa et  al. 2023; Zhang et  al. 2025b). 
This could occur via the production of biochar from the 
pyrolysis of abundant organic residues, where the carbon 
cycle is disrupted and a stable carbonaceous form that 
resists degradation is produced, therefore achieving a 
zero-waste solution (Hadroug et al. 2021; Safarian 2023; 
Nazim et al. 2025).

To enhance the physicochemical properties of pris-
tine biochars, magnetization has emerged as a promis-
ing modification process owing to the higher adsorption 
capacity as well as the reusability of the magnetic biochar 
(MBC). Simultaneously, the mineral doping of biochars 
has also been proposed to further improve their adsorp-
tion and/or fertilizing capacity for improved agri-envi-
ronmental applications. While numerous studies have 
explored biochar modification by magnetization and ele-
ment doping separately, a comprehensive evaluation of 
how magnetization and mineral doping jointly influence 
structural properties and agri-environmental applica-
tions remains, among other research pathways, lacking. 
Therefore, this comprehensive review addresses existing 
research gaps and emphasizes the role of modification in 
enhancing the quality of pristine biochars. As such, the 

current review discusses magnetization, the subsequent 
enhancement via mineral doping processes and summa-
rizes the major fields of application as well. In particular, 
studies on the agricultural potential of pure or doped 
MBC remain very scarce and mostly address the remedi-
ation of contaminated soils rather than direct agronomic 
benefits as a soil conditioner for croplands. This can draw 
attention to this unaddressed field of application whereby 
modified biochars can improve the soil physical proper-
ties and control nutrient retention/release to agricultural 
plants in a more effective way than pristine forms.

The current review is therefore organized to guide 
readers through: (i) the production and characteriza-
tion of pristine biochars; (ii) limitations of pristine bio-
char use; (iii) modification techniques with an emphasis 
on magnetization and mineral-enrichment methods; (iv) 
pollutant removal pathways and mechanistic insights, 
including adsorption and photocatalysis; and (v) MBC 
current applications and future perspectives for field-
scale implementation in sustainable agri-environmental 
management.

2 � Biochar production processes
The process of biochar production is a critical step in 
getting a “real” or in other words, a “stable” carbon sink. 
Controlling the production conditions starts with the 
choice of a suitable feedstock and the optimization of the 
processes that cause the thermal decomposition of bio-
mass (Osman et al. 2022; Upadhyay et al. 2024; Waheed 
et  al. 2025). Biochar is a stable carbon-rich solid prod-
uct that is produced from various organic waste sources, 
including crop residues (Hoang et al. 2022; El-Azazy et al. 
2023a; Patel and Panwar 2023), forestry by-products 
(Ghosh et al. 2025; Wang et al. 2021b), animal manures 
(Rathnayake et  al. 2023; Yang et  al. 2023), sludge and 
municipal solid wastes (Varjani et  al. 2019; Gan et  al. 
2022; Jellali et al. 2023; Li and Skelly 2023). As shown in 
Table  1, several methods have been reported in  the lit-
erature for the production of biochar, such as pyrolysis, 
hydrothermal carbonization, gasification, flash carboni-
zation, and torrefaction. Among these, pyrolysis has been 
the most widely used process. It involves the thermal 
decomposition of organic materials at temperatures vary-
ing between 250 °C and 900 °C in the absence of oxygen, 
which breaks down the biomass into bio-oil, gases, and 
charcoal (Zhu et al. 2019; Yaashikaa et al. 2020).

Hydrothermal carbonization is another efficient ther-
mochemical process that transforms organic solid waste 
into valuable hydrochar at relatively low temperatures 
(180–250 °C) and high pressures (2–10 MPa) through 
carbonization, polymerization, and dehydration reac-
tions (Shen 2020). Gasification, on the other hand, par-
tially oxidizes materials using air, oxygen, or steam, 
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producing a gas mixture composed of nitrogen, carbon 
monoxide, methane, carbon dioxide, and water. This gas 
can be used in turbines, combustion engines, or as a raw 
material for producing liquid fuels or hydrogen-rich gas 
(Zarei-Jelyani et al. 2024). Flash carbonization is a rapid 
heating process that produces high-carbon biochar in 
less than 30 min, typically at lower temperatures between 
300 and 600 °C (Meyer et al. 2011). Torrefaction, a low-
intensity pyrolysis method, heats biomass to around 300 
°C in an oxygen-free environment, removing moisture 
and volatile components to produce biochar (Yu et  al. 
2017). Each of these methods influences the physico-
chemical properties of the produced biochar, with differ-
ent types of pyrolysis being particularly suited for specific 
applications (Mosa et al. 2023).

3 � Physico‑chemical properties of pristine biochars
With a stable chemical structure, large specific surface 
area, high carbon content and cation exchange capacity, 
pristine biochars are considered versatile materials with 
applications in various fields (Wang and Wang 2019). 
The surface of biochar is typically rich in functional 
groups such as aldehyde (–CHO), carboxylate (–COOH), 
hydroxyl (–OH), amine and amide moieties, which posi-
tively contribute to its reactivity (El-Azazy et  al. 2023b; 
Hou et  al. 2022). Additionally, biochars contain high 
levels of organic and total carbon, along with essential 
micro- and macro elements like potassium, sodium, mag-
nesium, calcium, copper, zinc, and iron. These elements, 
combined with biochar’s high pH, extensive porosity, and 
abundance of surface functional groups, define its physic-
ochemical properties, making it an effective material for 
various agricultural, environmental, and industrial appli-
cations (Tomczyk et al. 2020).

However, several technical factors, such as the type of 
feedstock and pyrolysis conditions, play a critical role 
in shaping the properties of pristine biochars. These 
variables can lead to products with widely varying char-
acteristics, including pH, specific surface area, pore vol-
ume, cation exchange capacity (CEC), volatile matter, as 
well as ash and carbon content (Tomczyk et  al. 2020). 
Almutairi et  al. (2023) emphasized the importance of 
carefully considering both the feedstock type and the 

pyrolysis temperature during biochar production, as 
these variables have a significant impact on the biochar 
physicochemical properties and its short- and long-term 
behavior during applications. Therefore, selecting these 
parameters appropriately is crucial for optimizing bio-
char quality for specific uses and outcomes.

3.1 � Feedstock type
Biomass refers to diverse solid raw materials composed 
of biological, organic, or inorganic components that were 
once part of living organisms. Biomasses can be cat-
egorized into two main types: woody biomass and non-
woody biomass. Non-woody biomasses include solid 
waste from domestic, industrial and agricultural sources, 
as well as animal waste, while woody biomasses mainly 
consist of plants and plant-derived compounds (Cansado 
et  al. 2025). Woody biomasses are typically character-
ized by a higher carbon content, density, and calorific 
value but lower moisture and ash contents. In contrast, 
non-woody feedstocks such as animal manure tend to 
have higher moisture, debris, voidage, and mineral con-
tent but lower density and calorific value (Mukome 
et al. 2013; Yaashikaa et al. 2020). Moreover, Yang et al. 
(2022) demonstrated that animal waste-derived biochar 
differs greatly from plant-derived biochar in that it con-
tains higher levels of N and P as well as high alkalinity 
and many functional groups. Furthermore, Subedi et  al. 
(2016) found that the availability of SO4

2− and NO3
− in 

manure-derived biochar was greater compared to bio-
char of lignocellulosic origin. Table 2 compares the prop-
erties of biochars generated from animal manure and 
plant residues. For example, biochar from rabbit manure 
contains 2.1% nitrogen (Cárdenas-Aguiar et  al. 2022), 
while Japanese larch biochar contains only 0.09% nitro-
gen (Piash et al. 2021). This highlights the significant dif-
ference in nitrogen content between biochars made from 
animal manure and those made from woody material. 
For better management of the  carbon-to-nitrogen ratio 
(C/N) in biochars, mixing feedstocks or biochars derived 
from plant residues with animal manure has often been 
recommended (Qiu et al. 2023).

Table 1  Biochar production processes

Process Temperature (°C) Heating rate (°C s−1) Pressure Reference

Slow pyrolysis 300–700 0.1–1 – (Tan et al. 2021b)

Fast pyrolysis 500–1200 10–200 – (Danesh et al. 2023)

Flash pyrolysis > 900 > 1000 – (Li et al. 2023d)

Vacuum pyrolysis 300–700 0.1–1 0.01–0.20 MPa (Gabhane et al. 2020)

Hydro-pyrolysis 350–600 10–300 10–17 MPa (Oh et al. 2021)
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3.2 � Pyrolysis temperature
Variations in the structural and physicochemical prop-
erties of biochars are closely associated with the tem-
perature of pyrolysis. Both temperature and heating 
rate significantly influence the biochar yield during the 
pyrolysis process of biomass (Wijitkosum 2022). Optimal 
conditions for maximizing biochar yield involve a slow 
heating rate and temperatures below 450 °C, which favor 
biochar production and lead to higher yields. In contrast, 
as the heating rate and temperature increase, the gen-
eration of gas and ash by-products becomes more pro-
nounced, particularly in fast pyrolysis processes where 
rapid heat application results in elevated production 
of these by-products. Therefore, selecting appropriate 
pyrolysis conditions is crucial for achieving the desired 
biochar yield while minimizing gas and ash production 
(Gonzalez-Aguilar et  al. 2022). For instance, the yield 
of rice straw biochar is 42.11% at 400 °C with a heating 
rate of 10 °C min−1, but it drops to 37.98% when the tem-
perature rises to 500 °C, and further declines to 35.06% 
at 600 °C, indicating a consistent trend of reduced yield 
with increasing temperature (Sakhiya et al. 2023). On the 
other hand, Deng et al. (2022) demonstrated that higher 
pyrolysis temperatures led to increased pore volume, 
pore size, and surface area of Cyclocarya paliurus bio-
char, enhancing its potential for various adsorption appli-
cations. Specifically, at 300 °C, the specific surface area 
was 681.3 m2 g−1, with a pore size of 2.05 nm and a pore 
volume of 2.50 × 10⁻3 cm3 g−1. As the temperature was 
increased to 500°C, the pore volume rose to 0.0186 cm3 
g−1, the pore size expanded to 19.6 nm, and the surface 
area increased to 754.23 m2 g−1. At 700 °C, the surface 
area reached 784.6 m2 g−1, while the pore size and vol-
ume further increased to 54.85 nm and 0.0529 cm3 g−1, 
respectively (Deng et al. 2022).

4 � Major applications of pristine biochars
4.1 � Carbon capture
Biochar has significant potential for carbon capture, as 
its porous structure and high surface area enable strong 
adsorption of carbon dioxide. When incorporated into 
cementitious composites, biochar enhances their carbon 
sequestration capacity, making it a promising solution 
for reducing atmospheric CO₂ levels (Liu et  al. 2022c). 
For example, the addition of 1–3% peanut shell biochar 
increases the CO₂ absorption capacity of these com-
posites by 2–3% (Gupta 2021). Additionally, (Praneeth 
et al. 2020) found that a biochar made from maize stover 
improves CO₂ absorption and optimizes compressive 
strength at concentrations of 4–6%. Therefore, biochar 
can be an efficient carbon capture material that shows 
great promise for future applications.

4.2 � Soil remediation
Using biochar to remove organic pollutants and heavy 
metals is an innovative and promising approach to 
environmental remediation (Das et  al. 2023a). Biochar 
enhances the biodegradation of contaminants by micro-
organisms, acting as both an electron donor and accep-
tor, which promotes redox reactions and improves the 
breakdown of organic pollutants. By increasing the nega-
tive surface charge of variable charge soils, biochar also 
improves the capacity of soils to adsorb cationic nutrients 
and heavy metals (Das et  al. 2023b). These properties 
make biochar highly effective for soil remediation (Zhang 
et  al. 2025a). For instance, biochar has been shown to 
reduce the levels of copper and zinc in their soluble and 
bioavailable forms in contaminated soils (Graziano et al. 
2022). Moreover, Moradi et  al. (2019) found that bio-
char reduces the harmful effects of cadmium on saffron 
plants by raising soil pH, immobilizing cadmium, and 
decreasing its mobility. Therefore, biochar application 
to contaminated soils is a useful technique for environ-
mental cleanup because of its unique physicochemical 
properties.

Table 2  Effect of feedstock origin on biochar properties

Agricultural waste Pyrolysis temperature pH %C %H % N %O Ash content (%) Reference

Rabbit manure 300 °C 8.6 31.3 3.3 2.1 12.1 50.6 Cárdenas-Aguiar et al. 2022

Japanese larch 6.4 67.7 – 0.1 – 0.15 Piash et al. 2021

Cow manure 500 °C 10.7 51.2 2.5 1.8 8.6 35.5 Xu et al. 2023a

Corn straw 10.6 61.9 2.8 1.6 11.4 21.7

Swine 550 °C 9.1 62.3 – – – 32.2 Ayaz et al. 2022

Oil seed rape straw 9.8 68.8 1.8 1.6 8.9 19.5 Li et al. 2023c

Dairy cattle 400–550 °C 8.3 15 3.1 2.2 33.3 23 Atienza-Martínez et al. 2020

Corn cob 7.5 73 – 0.75 – 50.0 Apori et al. 2021
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4.3 � Water treatment
In the past decade, researchers have conducted multi-
ple studies on the application of biochar for the success-
ful removal of contaminants from aqueous solutions. As 
an emerging porous carbonaceous material with great 
potential, biochar has gained wide recognition as an 
effective adsorbent for removing organic contaminants, 
heavy metals, and excess nutrients from wastewater, 
making it a promising option for water treatment (Xiang 
et  al. 2020). Accordingly, several studies have demon-
strated the adaptability and efficiency of biochar in deal-
ing with different issues related to water contamination 
and treatment (Xiang et  al. 2020). For example, biochar 
showed great potential in removing crystal violet dye 
from aqueous environments, demonstrating its efficacy 
in purifying textile effluents (Wathukarage et  al. 2019). 
Roy and Bharadvaja (2021) also observed a greater Cd 
and Cr removal from wastewater when using a biochar 
made from Plumbago zeylanica shoots under specific 
experimental conditions.

4.4 � Agricultural soil conditioner
A key sustainable strategy for improving depleted soil 
quality is to increase its carbon content through the 
application of various materials, which enhances the soil’s 
capacity to retain water and nutrients (Mohawesh et  al. 
2018; Hechmi et al. 2023; Mabrouk et al. 2023). One such 
amendment could be biochar, which has been shown to 
improve the physical, chemical, and biological properties 
of soil, thereby boosting soil fertility and agricultural pro-
ductivity (Feng et al. 2023; Tsolis et al. 2023). For exam-
ple, the large volume of crop and animal residues could 
be converted into biochar and reused within the same 
agricultural system, thus achieving the concept of circu-
lar economy (Khedulkar et al. 2023). Biochar application 
improves the water-holding capacity of arid soils, which 
makes it very beneficial in agricultural regions with lim-
ited water supplies (Ayaz et al. 2021). In this regard, Feng 
et  al. (2023) showed that biochar addition at 30 t ha−1 
reduced soil evaporation, postponed moisture loss, and 
increased water usage efficiency under dry climate con-
ditions. Likewise, biochar has also been used to enhance 
the key properties of hydroponic substrates such as coco-
peat under protected cultivation conditions (Banitalebi 
et al. 2021; Simiele et al. 2022).

4.5 � Limitations of pristine biochars
A growing body of literature highlights several attempts 
to  adopt the use of biochar and biochar-based materi-
als for environmental remediation (Haider et  al. 2022; 
Ji et  al. 2022; Osman et  al. 2022; Xiang et  al. 2022). As 
previously detailed, these efforts commonly introduce 
biochar as a sustainable and cost-effective solution with 

minimal negative impact on ecosystems (Hadroug et  al. 
2021). Yet, the small particle size and the low density of 
pristine biochars have always limited these efforts (Zhang 
et al. 2020). In addition, the pristine biochar often lacks 
specific surface functionalities, and hence has a selective 
removal capacity. Moreover, it has a diminished pollut-
ant degradation capability due to insufficient catalytic 
centers. Therefore, pristine biochar has ordinarily been 
recognized as an excellent reactive material that ‘adsorbs’ 
the pollutants rather than ‘degrading’ them. Besides, the 
desorption of toxic compounds back into the medium 
from the pollutant-biochar matrix, if not properly stabi-
lized, remains a risk and a source of secondary pollution. 
Furthermore, one of the major challenges that is  com-
monly encountered with the use of pristine biochars is 
the inability to separate the adsorbent-adsorbate complex 
from the treated medium (Li et al. 2020a; Murtaza et al. 
2023; Dong et al. 2025).

As previously indicated, harnessing benefits of the 
biochar depends largely on the biochar quality, which is 
mainly related to feedstock type and pyrolysis conditions 
(Ibn Ferjani et al. 2020). In addition, the desirable phys-
icochemical properties of pristine biochar such as surface 
reactivity could be further improved if modified (Zhang 
et al. 2020; Bao et al. 2022). For example, Zoroufchi Benis 
et al. (2020) highlighted that unmodified biochars are less 
efficient in adsorbing certain toxic pollutants. This inef-
ficiency arises from the electrostatic repulsion between 
negatively charged anions and the negatively charged 
surface of the biochar. For instance, Elkhlifi et al. (2023) 
reported that non-engineered biochars have the tradi-
tional constraints of electric repulsion interactions with 
PO4

3− ions at various pH levels, leading to highly ineffi-
cient enrichment with these ions from aqueous solutions. 
Consequently, a modification step could further boost 
the biochar physicochemical traits by improving the sur-
face area, introducing active redox centers, and facili-
tating magnetic separation (Buss et  al. 2022). In other 
words, biochar modification can significantly enhance 
the adsorption/desorption properties of pristine biochars 
for a better performance during application (Jellali et al. 
2024a).

5 � Biochar modification
Recent efforts have focused on pristine biochar modifica-
tion to improve the intrinsic physicochemical properties 
and adsorption capabilities, thereby increasing its effi-
ciency and applicability (Pan et al. 2022). Various meth-
ods can be employed for modifying biochar, including 
chemical, biological, and physical techniques (Liu et  al. 
2022d). Modification can occur either during or after 
biochar production (Matsagar and Wu 2022). Factors 
such as the type of raw material (feedstock), pyrolysis 
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conditions, and the agents used for modification play 
crucial roles in determining the chemical and physical 
properties of the final product (Hafeez et  al. 2022). The 
aim of modifying biochar is either to increase its surface 
area, improve its surface characteristics, or create a plat-
form for incorporating other substances (Sizmur et  al. 
2017). Physical modifications, such as steam or gas acti-
vation and ball milling, occur after pyrolysis. For exam-
ple, steam treatment involves passing superheated steam 
through charcoal at temperatures ranging from 650 to 
950 °C, which increases the surface area and pore volume 
of pristine biochar, thereby enhancing its ability to adsorb 
specific chemicals (Zoroufchi Benis et al. 2020).

Chemical modification often entails adding functional 
groups and altering the surface porosity of raw biomass 
or biochar by combining it with various chemical agents 
(Zoroufchi Benis et al. 2020). This technique is one of the 
most used and includes the application of acids, alkalis, 
oxidizing agents, metal salts, and carbonaceous materi-
als (Wang and Wang 2019). Recently, metal impregnation 
has gained attention, where metal ions such as magne-
sium, aluminum, silver, zinc, copper, and iron are incor-
porated into the biochar’s surface and pores (Bushra and 
Remya 2024). Biological modification involves the use of 
microorganisms to enhance the characteristics and func-
tions of biochar. In this process, microbes colonize the 
carbonaceous material, leading to biofilm development 
and microbial adhesion onto the surface of biochar to 
increase its reactivity (Azad et al. 2022).

Among the different modification methods, physical 
modification is often viewed as the most practical for 
large-scale applications due to its ease of implementa-
tion. However, chemical modification is more complex 
but can better tailor the characteristics of the biochar’s 
surface for specific applications. Conversely, biological 
modifications, although scalable, generally necessitate 
longer processing times and specific conditions to effec-
tively alter the surface properties and structure (Liu et al. 
2022d). Most recently, several studies have added mag-
netite nanoparticles to pristine biochars, which provide 
magnetic properties to the surface. This process would 
be particularly useful for enhanced properties and the 
recovery of the materials post-sorption (Burbano et  al. 
2023).

6 � Magnetic biochars
6.1 � Magnetization process
The use of MBCs for decontamination can efficiently 
resolve the limitations of the pristine counterpart. The 
‘keyword’ for the effectiveness of MBCs as a  versatile 
solution for environmental decontamination is the ‘ease 
of magnetic separation after use’ (Alharbi et al. 2023). In 
other words, the separation of powdered pristine biochar 

from treatment media often necessitates the operation 
of complex techniques such as centrifugation and filtra-
tion, posing a significant barrier to its scalability (Zhang 
et al. 2021; Qu et al. 2022; Yi et al. 2020). Moreover, dur-
ing these operational phases, desorption of contaminants 
from the biochar matrix might occur, triggering second-
ary pollution, thereby undermining the remediation pro-
cess. Therefore, to fully harness the potential of pristine 
biochar in environmental remediation, it is imperative to 
resolve its inherent deficiencies. As such, MBCs combine 
the sorptive efficiency of biochar with magnetic respon-
siveness, offering a promising solution for contaminant 
removal (Qu et al. 2022; Feng et al. 2021; El-Shafie et al. 
2023a).

Although iron may be inherently present in some bio-
mass types, this alone has not been shown to yield mag-
netization. As a result, magnetic properties are typically 
conferred by treating the biomass with external iron 
precursors, making this step vital in MBC production 
(Kang et al. 2023). In general, MBC is prepared via infu-
sion of the pristine biochar matrix with magnetic mate-
rials to enhance its adsorption capacity and facilitate 
the recovery of chemicals from the treated media (Chen 
et al. 2022b). More precisely, the magnetization process 
consists of introducing transition metals and their oxides 
into the biochar matrix, creating easily separable MBCs 
after use (Yi et  al. 2020). Various pre- and post-pyroly-
sis techniques have been employed to produce MBCs, 
including impregnation-pyrolysis, chemical and reduc-
tive co-precipitation, and solvothermal processes (Feng 
et al. 2021). A schematic representation of the commonly 
used approaches is shown in Fig.  1. Besides, Table  3 
shows a brief comparison between the different magneti-
zation approaches in terms of cost, efficiency, and envi-
ronmental compatibility.

A highly efficient and widely employed technique 
for synthesizing MBC is the impregnation–pyrolysis 
approach (Alharbi et  al. 2023; Daffalla et  al. 2024). This 
method entails impregnating the raw feedstock with 
metal salts—typically iron-based or other metal pre-
cursors—followed by drying and  then pyrolysis under 
oxygen-deficient or inert conditions, enabling the one-
step fabrication of MBCs with exceptional operational 
simplicity (Yi et al. 2020; Katibi et al. 2024). With such a 
setup, the synchronization of impregnation and pyrolysis 
allows for fine-tuning of the structural and physicochem-
ical attributes of the resultant magnetic biochars. Moreo-
ver, the obtained MBC reveals other desirable attributes 
such as stability with minimal metal leaching.

Nonetheless, modulating the biochar to the magnetic 
precursor ratio and the pyrolysis variables (namely, 
temperature, inert gas, and residence time) allows 
for optimization of the adsorption capabilities of the 
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developed magnetic biochar (Hu et  al. 2017; Daffalla 
et  al. 2024). By and large, the pyrolysis temperature 
plays a key role in determining the nature of the mag-
netic material on the surface of the biochar and hence 
the magnetism. The phase conversion of hematite (300 
℃, low adsorption capacity and magnetism) to mag-
netite (450 ℃, better adsorption capacity and magnet-
ism) then to wüstite and zero-valent iron (600 ℃) was 
noted with raising the pyrolysis temperature from 300 
to 600 ℃. These phase transitions and the reduction of 
hematite were noted in the presence of the carbonate-
treated pinewood biomass and therefore were attrib-
uted to the gases generated during the pyrolysis process 
from both the biomass and the carbonate (Wang et al. 
2019a). In another observation, these authors revealed 
a gradual phase transition of iron species from mag-
netite to wüstite as the temperature was elevated from 
600 to 1000 ℃ causing more degradation of sulfamet-
hazine, suggesting that wüstite is more catalytically 
efficient in activating peroxydisulfate. Though efficient 
in degrading the target pollutant, the magnetization of 
the wüstite at 1000 ℃ was less compared to its 600 ℃ 

counterpart, inferring a possible difficulty in collection 
and separation from the treatment medium; a limita-
tion which was addressed by the authors employing an 
external magnetic field (Chen et al. 2019a, b).

On the other hand, the need for high pyrolysis temper-
atures (hitting 1000 °C) makes it an energy-intensive pro-
cess, posing significant economic drawbacks in terms of 
both operational costs and sustainability. While effective, 
the sequential progression from impregnation to pyroly-
sis is inherently time-intensive, which can hinder the 
practical applicability of this approach in time-sensitive 
scenarios and limit its feasibility in high-throughput or 
industrial-scale operations (Feng et  al. 2021). Moreover, 
an inadequate impregnation efficiency may compromise 
metal incorporation, resulting in the potential release 
of hazardous transition metal ions during application, 
which poses significant environmental and health con-
cerns (Katibi et al. 2024).

In contrast, the co-precipitation technique, one of the 
most frequently used magnetization approaches, does 
not require processing at high temperatures (Feng et al. 
2021). In this approach, the feedstock is mixed with the 

Fig. 1  Methods of preparation of magnetic biochar (denoted as MBC in the source Figure). Reproduced from Feng et al. 2021) with permission 
from Elsevier. License Number: 5965440787642
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solutions of iron (III) and iron (II) salts under nitrogen 
flow, and the pH is  adjusted to an alkaline  value, facili-
tating the formation of magnetite nanoparticles onto the 
biochar surface (Fatimah et  al. 2022). This streamlined 
approach is straightforward, fast, and yields a prod-
uct with high purity. While effective, the excessive use 
of alkaline reagents not only increases the cost but also 
requires careful handling due to their hazardous nature 
(Feng et al. 2021; Qu et al. 2022; Xiao et al. 2023).

In a comparison between MBCs prepared by impreg-
nation pyrolysis and chemical co-precipitation (also fol-
lowed by pyrolysis), Dong et  al. (2022) prepared MBCs 
from deforestation residues and tested their performance 
towards the removal of Pb(II). They found that the iron 
content of the MBC prepared via co-precipitation was 
higher than that prepared by the impregnation–pyroly-
sis route, indicating superior iron retention efficiency. 
This was corroborated by BET and SEM analyses, which 
revealed that iron was predominantly confined within the 
pore structure of the MBC prepared via the precipitation 
approach, resulting in reduced surface area and pore vol-
ume. Reflecting on the Pb(II) adsorption mechanism, the 
lack of NaOH in the impregnation process led to reduced 
MBC performance for Pb(II) adsorption, as electrostatic 
repulsion dominated and key mechanisms like precipita-
tion and ion exchange were minimally active—contrast-
ing with the NaOH-assisted precipitation route.

The reductive co-deposition process involves reacting 
the biochar with transition metals and reducing agents 
like potassium or sodium borohydrides to carry out mag-
netization with nanoparticles and mostly zero-valent iron 
(Yi et  al. 2020). This composition significantly enhances 
the material’s reducing qualities, greatly increasing its 
capacity to remove pollutants and/or adsorb desirable 
chemicals (Jellali et  al. 2024a). Beyond these desirable 
attributes, the resultant MBC is stable and has a control-
lable particle size. Yet, the generation of hydrogen gas as 
a byproduct during the synthetic procedure needs cer-
tain precautions because of safety concerns. Similarly, 
the use of reductants should be handled with caution (Yi 
et al. 2020; Feng et al. 2021; Qu et al. 2022).

Solvothermal synthesis, as a one-pot-based approach, 
has become a viable option for creating magnetic bio-
chars. The process involves autoclaving a mixture of 
biochar, a magnetic precursor, a reducing agent, a sur-
factant, and a stabilizer/alkali source at 100–300 °C for 
a duration of 6–12 h. Ethylene glycol has been used as 
a  reducing agent, while sodium acetate fulfills a dual 
role of a stabilizer, preventing particle aggregation, and 
an alkali source, which assists in the reduction of Fe(III) 
into magnetite. Surfactants, such as polyethylene gly-
col 4000, play a comparable role in preventing particle 
agglomeration as well (Fan et al. 2011; Liang et al. 2019; 

Tu et al. 2020; Feng et al. 2021; Hashemi et al. 2024). As 
a one-pot based approach, solvothermal synthesis is a 
facile route for synthesizing magnetic nanocomposites. 
The product is commonly well-dispersed and uniform-
sized magnetic nanoparticles. However, high-pressure 
synthesis, multiple reagents, and product stability 
remain concerns for this approach (Feng et  al. 2021; 
Hashemi et al. 2024).

Ball milling is another approach that has emerged as 
a potential cost-effective and solvent-free route to pro-
duce magnetic nanocomposites with prominent surface 
attributes (Li et al. 2020b; Amusat et al. 2021; Fang et al. 
2025). In the procedure detailed by Li et al. (2020b), the 
biochar and the activated carbon were prepared via 
ball milling. In a subsequent step, the magnetic coun-
terparts were prepared via ball-milling with magnet-
ite at a mass ration of 1:3. Following such a procedure 
helps introduce oxygen functionalities to the surface 
and hence facilitate pollutant scavenging. Moreover, 
ball-milling has been found to increase the surface area 
and porosity of the ball-milled biochar compared to the 
non-ball-milled counterparts in several investigations 
(Li et al. 2020b, 2024a; Rocha et al. 2020).

Hydrothermal carbonization is another method that 
produces a heterogeneous mixture by reacting bio-
mass with a metal ion solution at lower temperatures 
(between 100 and 300 °C) and under reaction-gen-
erated pressure (Yi et  al. 2020). The use of oxidative 
hydrolysis is a much less studied approach encoun-
tered in the literature. The procedure simply entails the 
oxidative hydrolysis of iron (II) into magnetite under 
alkaline conditions and relatively low temperature 
(~ 90 °C) to prevent the formation of other iron spe-
cies such as FexOy and Fex(OH)y (Reguyal et  al. 2017). 
Consequently, the reaction conditions, therefore, need 
careful management to avoid formation of a mixture of 
iron species. Formation of soluble salts as byproducts is 
another limitation of this approach (Rocha et al. 2020). 
Another rarely used process is cross-linking where the 
biochar is first mixed with magnetite nanoparticles at 
a  certain mass ratio and  then a cross-linker such as 
epichlorohydrin is added (Zhou et al. 2018).

One of the common magnetization approaches 
encompasses a slow pyrolysis to form iron-oxide nano-
particles, where iron powder is transformed into iron 
oxide and then applied onto the biochar surface (Das 
and Mondal 2023). Due to their cost-effectiveness and 
eco-friendly nature, one-step synthesis methods, such 
as chemical precipitation and impregnation, have 
been widely adopted for engineering applications in 
MBC production (Dong et  al. 2022). This expanding 
body of research underscores the potential of MBC 



Page 11 of 41Dalloul et al. Biochar            (2026) 8:22 	

as a  long-term and cost-effective solution for various 
applications.

6.2 � Magnetic biochar properties
Broadly speaking, the MBC closely mirrors the core ele-
mental signature of the parent biomass feedstock (mainly 
carbon, hydrogen, and oxygen), underscoring the influ-
ence of feedstock selection on the chemical properties of 
the resulting material (Hassan et al. 2020; Yi et al. 2020). 
Yet, variations in pyrolysis conditions and the magneti-
zation process affect the final elemental composition. In 
an interesting investigation, the source biomass iron con-
tent was found to impact the iron content in the resultant 
MBC and hence its structure and performance in captur-
ing Cr(IV) (Yi et  al. 2019). Mass balance data from the 
impregnation step indicated that various biomasses dif-
fered in their iron adsorption capabilities. As the uptake 
of metals is commonly related to the oxygen-containing 
functional groups, further exploration of the composi-
tion of these biomasses revealed different contents of cel-
lulose, lignin, and hemicellulose. In a direct correlation, 
Yi et al. (2019) found that the biomass cellulose content 
is directly related to the uptake of iron. Furthermore, the 
variations in iron content were investigated during the 
pyrolysis step and were largely attributed to yield differ-
ences driven by the ash content of the biomass.

Compared to the non-modified form, MBC exhibits a 
significantly higher specific surface area and a well-devel-
oped pore structure, along with abundant functional 
groups, enhanced stability, and superior adsorption 
capacity (Xiao et al. 2023). Xu et al. (2023b) explained the 
reason for the increased number of particle structures 
visible on the surface of modified MBCs by the devel-
opment of iron oxides during the modification process. 
Consequently, the magnetization process creates a more 
complex and textured surface compared to the unmodi-
fied biochar. El-Azazy et  al. (2021) reported that MBC 
derived from olive stones had a higher surface area (33.82 
m2 g−1) and pore volume (0.166 m2 g−1) compared to the 
pristine form (22.20 m2 g−1 and 0.086 m2 g−1, respec-
tively). Likewise, Li et al. (2024b) found that MBC made 
from sewage sludge showed a higher surface area (63.68 
m2 g−1) than the same untreated form (59.38 m2 g−1).

Several studies have demonstrated that MBCs can 
improve the adsorption capacity by up to three to four 
times that of pristine forms (Gabhane et  al. 2020). For 
example, the  Pb(II) adsorption capacity of an MBC 
made from wheat straw and hematite reached 196.9 mg 
g−1, which was 42% higher than that of the pristine form 
(Zhao et al. 2019). Furthermore, Dong et al. (2023) found 
that the magnetic treatment significantly enhanced Pb(II) 
adsorption by raising the pH, increasing the negative sur-
face charge, and improving the complexation behavior of 

the modified biochar. Another advantage of magnetiza-
tion is the ease of recovery of the MBC from solutions 
through an external magnetic field, facilitating efficient 
separation from samples after use (Ying et al. 2023). Sev-
eral research studies have shown that the majority of 
biochars possess a negative charge, which can alter in 
terms of surface charge or even pH upon magnetization 
(Yi et al. 2020). Additionally, MBCs have been shown to 
outperform conventional forms in both conductivity and 
capacitance, broadening their potential applications (An 
et  al. 2022). Magnetic nanocomposites in modified bio-
chars also feature a large surface area with notable oxy-
gen-containing functional groups, which enhance their 
interaction with pollutants if applied for decontamina-
tion purposes (Zhang et al. 2023b).

6.3 � Mineral‑enriched magnetic biochars
Magnetic modification has primarily been performed 
to enhance the adsorption capacity of biochars with 
respect to unmodified forms (Yi et  al. 2020). How-
ever, magnetization may reduce the specific surface 
area of biochar due to iron oxide buildup, which blocks 
its pores. This effect can limit the adsorption efficiency 
of MBCs and, in some cases, marginally improve con-
taminant removal with respect to the pristine form (Li 
et  al. 2023b). For instance, biochar magnetization has 
been found to lower Cd(II) adsorption capacities due to 
reduced roles of cation exchange and Cπ-coordination 
pathways. Moreover, MBCs made from rice straw and 
sewage sludge showed decreased contributions of 31.9% 
and 12.1% to cation exchange capacity, and 3.4% and 
31.1% to Cπ-coordination, respectively (Huang et  al. 
2021). Because of these limitations encountered in some 
cases, MBC modification has become valuable, espe-
cially in applications requiring high removal capacity of 
toxic metals for instance. Several modification methods 
have been reported in  the literature, which include (but 
are not limited to) acid and alkaline modification, oxida-
tion, surface modification, loading of nanoparticles, and 
doping with chemicals (Qu et  al. 2022). The modifica-
tion of MBC by element doping could be further clas-
sified into metal (examples include Fe, Mn, Zn, Cu, Al, 
etc.), non-metal doping (for instance using N, P, S, etc.) as 
well as co-doping which overlaps with the former doping 
approaches (Wang et al. 2023).

Several investigations have shown that metal ele-
ment doping can substantially change not only the sur-
face properties of the MBC and hence its adsorption 
efficiency, but also minimalize metal leaching assuming 
the proper choice of metal ratios (Xu et al. 2022a; Wang 
et  al. 2023). By and large, doping the MBC with a sec-
ond metal promotes an effective dispersion of the active 
sites on the MBC surface, increases the surface area, and 
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boosts adsorption efficiency. Wang et al. (2023) prepared 
a Cu-doped MBC via co-pyrolysis of cow manure with 
Cu(II), Fe(III) and Zn in the  presence of dicyandiamide 
(Wang et al. 2023). They reported enhanced catalytic per-
formance and rapid degradation kinetics of sulfameth-
oxazole following the doping with Cu(II). In another 
investigation, Wang et al. (2019a) noticed an increase in 
the specific surface area and point of zero charge after 
loading a MBC with Ce and La, resulting in a significant 
enhancement of phosphate adsorption capacity from 
aqueous solutions. Ca-based MBC showed great poten-
tial for improving soil health by significantly increasing 
both the size of bacterial populations and the diversity of 
microbial taxa. It effectively reduced As accumulation in 
rice plants while promoting growth, indicating its value 
as a soil amendment in rice paddies (Wu et  al. 2020). 
From their side, Lyu et al. (2024) reported that Ca–Mg–
Al layered double hydroxide supported by MBC could 
immobilize more than 85% of As and Cd in soil. There-
fore, surface functionalization can further improve the 
use efficiency of MBCs in various agri-environmental 
applications.

Remarkably, the method used to synthesize the metal-
doped MBC was found to shape the morphologies of 
the resultant materials and hence their performance. In 
that context and targeting an efficient removal of Sb(V), 
Wang et al. (2019b) compared the impact of co-precipita-
tion and solvothermal syntheses on the efficiency of Ce-
doped MBC. They documented that magnetic saturation 
was lower after doping with cerium, primarily due to the 
compromised crystallinity as confirmed by the XRD anal-
ysis. More importantly, the solvothermal synthesis with 
the reductive conditions resulted in MBC with higher 
magnetic saturation surpassing those obtained through 
co-precipitation synthesis. Yet, assembling the character-
ization findings together, the superior performance of the 
Ce-doped MBC via the co-precipitation route was attrib-
uted to the higher content of the M–OH sites, which in 
turn helped capturing Sb(V) via H-bonding, inner sphere 
complexation, and electrostatic interactions.

Non-metal element impregnation, on the other hand, 
entails the incorporation of non-metallic heteroatom 
(e.g., N, P, S, etc.) into the MBC structure (Chakma et al. 
2025). Such an approach has emerged as a sustainable 
solution to substitute the formerly mentioned metal dop-
ing (Wang et al. 2024a). Similar to the metal-doping, the 
existence of the non-metallic elements provides more 
active sites on the surface of the MBC, generates pores, 
improves the electron mobility, and hence facilitates and 
boosts the role of MBCs as adsorbents and photocata-
lysts (Diao et al. 2022a; Zhong et al. 2022). The literature 
shows several efforts on the use of N-doped MBC for 
the removal of sulfamethoxazole antibiotic (Diao et  al. 

2022a), sulfadiazine (Zhong et al. 2022), Cr(IV) (Ke et al. 
2022), N,S-co-doped MBC for the removal of tetracycline 
(Wu et al. 2023), and P-doped MBC for the degradation 
of pesticides (Liang et  al. 2024). For instance, Ma et  al. 
(2024a) employed a combination of advanced synthe-
sis techniques namely, hydrothermal nitrogen-doping, 
magnetic treatment, and ball milling, to engineer a co-
modified biochar from sludge for selective adsorption 
of sulfamethoxazole. Nitrogen-doping and magnetiza-
tion helped improve the functionalization of the biochar, 
while ball-milling further augmented the adsorptive per-
formance of the resultant material.

7 � Removal pathways of contaminants by magnetic 
biochars

The removal of pollutants by MBC is commonly facili-
tated through multiple processes, each involving one or 
more underlying mechanisms. These processes include 
adsorption (Li et al. 2020a; Yi et al 2020; Qu et al. 2022; 
Xiao et al. 2023), photocatalysis (Feng et al. 2021; Zhou 
et  al. 2021; Lu et  al. 2022; Rangarajan et  al. 2022), and 
redox reactions (Yuan et al. 2017). The underlying mech-
anisms often work in tandem, making MBC a multifunc-
tional and highly versatile material for environmental 
remediation and subsequent agricultural applications. 
The following sections will detail the common mecha-
nisms involved in the removal of the different types of 
pollutants.

7.1 � Adsorption mechanisms
Comprehending the adsorption mechanism as a path-
way for the removal of organic and inorganic pollutants 
by MBC is a crucial way for optimized application of the 
MBC in different environmental remediation contexts. In 
general, the physicochemical traits of the MBC as well as 
the specific treatment conditions, and the nature of the 
target pollutant favor one mechanism over the other. 
A literature survey shows that adsorption could proceed 
via one or more processes with electrostatic interactions, 
ion-exchange, precipitation, surface complexation, π‒π 
stacking, pore-filling, and H-bonding being the most 
commonly reported mechanisms (Xiao et  al. 2023; Yi 
et al. 2020; Qu et al. 2022; Li et al. 2020a). Figure 2 shows 
a schematic representation of these common adsorption 
mechanisms in the case of heavy metal removal using 
magnetic biochar (Li et al. 2020a).

7.1.1 � Surface functional groups‑based mechanism
Surface functionalities on biochar play an instrumen-
tal role in facilitating diverse removal pathways such as 
electrostatic interactions, H‒bonding, complexation with 
metal ions, and redox-driven donor–acceptor processes. 
Surface analysis of the biochar usually reveals that it 
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Fig. 2  Commonly reported mechanisms for the removal of heavy metals using magnetic biochar. Reproduced from Li et al. (2020a) 
with permission from Elsevier. License Number: 6058140394761
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hosts ionizable oxygen-rich functional groups—primar-
ily −OH and −COOH—that facilitate its interaction with 
the charged pollutants as shown in  Fig.  2f. Given their 
central role, surface functional groups on biochar will be 
examined in the context of each removal mechanism in 
the sections that follow.

7.1.2 � Ion‑exchange mechanism
Starting with ion-exchange as a commonly reported 
mechanism, as shown in Fig.  2a, the process simply 
entails an exchange of the surface ions of MBC with the 
pollutant ions (Li et al. 2020a; Xiao et al. 2023). The likeli-
hood of this mechanism occurring generally depends on 
the nature and the charge of the functionalities on the 
surface of the biochar, and the pollutant ion size (Abbas 
et  al. 2018). Investigations have shown that there is a 
direct relationship between the cation exchange capac-
ity (CEC) of the MBC and its capability to remove metal 
cations. The presence of cations such as Ca2+ and Mg2+ 
in the parent feedstock and then the Fe3+ ions in the 
MBC was found to enhance its CEC (Trakal et al. 2016; 
Abbas et  al. 2018; Zhao et  al. 2013). In a study carried 
out by Zhou et  al. (2024), a MBC prepared from maca-
damia nutshells via mechanochemical activation employ-
ing iron (III) chloride was efficient for the adsorption of 
Cu(II) and Pb(II), with cation-exchange being the pos-
sible mechanism as evidenced by the adsorption energy 
values (between 8 and 16 kJ  mol–1). In another study, 
MBC prepared from cow manure and straw biochars 
via co-precipitation was used for the removal of Cd(II) 
from aqueous solutions. FT-IR characterization of the 
prepared MBC prior to and following the adsorption of 
Cd(II) showed a shift in the absorption bands of –OH 
and Fe–O after adsorption, confirming the involvement 
of these functionalities in the removal of Cd(II) via ion-
exchange and complexation reaction. In a similar sce-
nario, MBCs prepared from either tea waste or rice husks 
were employed for the removal of the hexavalent chro-
mium ions, Cr (VI). FT-IR and XPS analyses showed the 
exchange of Cr(VI) with the –OH, C–H and –COO− 
functionalities as indicated by the changes in the posi-
tions of the spectral bands (Shakoor et al. 2024).

Though most of the reported studies have focused on 
ion-exchange as a mechanism for the removal of heavy 
metals by MBCs, relatively few have explored its poten-
tial role in the removal of emerging organic pollutants. 
In this regard, Jin et al. (2023) reported the competitive 
adsorptive removal of sulfamethoxazole and bisphenol A 
on MBC prepared from municipal sludge. They showed 
that the presence of Cl ions on the surface of the MBC 
(prepared via impregnation with iron (III) chloride) facil-
itated this adsorptive removal via ion-exchange. More 
precisely, the MBC showed a better buffering capacity 

compared to the pristine counterparts thanks to the 
exchange of the Cl ions  with the OH ions under alka-
line conditions. In the case of binary solutions, Jin et al. 
(2023) also highlighted the importance of ion-exchange 
of the Cl ions with the anions of both pollutants as a 
removal mechanism.

7.1.3 � Electrostatic interaction mechanism
Electrostatic interactions occur because of the attrac-
tions between ions bearing opposite charges as shown 
in Fig.  2b. Electrostatic attractions, therefore, serve as 
the principal  force for ionic bond formation, and forg-
ing a stable ionic structure facilitates the removal of the 
target pollutant. As the word ‘interactions’ could denote 
either attraction or repulsion, it could be inferred that the 
relationship between the pH of the pollutant solution and 
the MBC’s pHPZC plays a fundamental role in governing 
these electrostatic dynamics (Abbas et  al. 2018). From 
this perspective, several studies have been strategically 
tailored to engineer a charge contrast, thereby guarantee-
ing maximum adsorption of the target pollutant or selec-
tively favoring the uptake of one pollutant over the other 
from multiple pollutant solutions.

The strength of electrostatic interactions is usu-
ally determined by the amount of the positive/nega-
tive charges on the biochar’s surface (Tan et  al. 2021a). 
For instance, the presence  of the −OH groups on the 
surface of the biochar was found to be the main factor 
in imparting its surface negative charge, and hence its 
capability to fix soil Cd(II) ions (Tan et  al. 2020). Inter-
estingly, H-bonding and temperature increase were 
found to have a negative impact on the surface negative 
charge, in contrast to the impact of pH and polar func-
tionalities. In another study, the removal of Cd(II) from 
wastewater was performed using MBC of rice straw fol-
lowing a treatment with a mixture of Fe(II)/Fe(III) (Tan 
et  al. 2017). This MBC was rich not only in the oxygen 
containing moieties (carbonyl, carboxyl, hydroxyl), and 
the aromatic structures (C = C and ether) but also in iron 
oxides (FexOy), as evidenced by the corresponding peaks 
in the FTIR spectrum. FTIR analysis further indicated a 
weakening and shift of the Fe–O vibrational peak, sug-
gesting the formation of CdFe₂O₄. This inference was 
corroborated by XRD analysis, which confirmed the crys-
talline structure of CdFe₂O₄. As such, Tan et  al. (2017) 
suggested that Cd(II) adsorption could be attributed to a 
chelation mechanism involving oxygen-containing func-
tional groups, as well as isomorphic substitution within 
the Fe₂O₃ lattice.

Duan et al. (2025) developed an iron-doped MBC from 
sawdust for the removal of polystyrene microplastics with 
different functionalities. Measurements of zeta potential 
and analysis of surface functionalities on the surface of 
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the biochar helped interpret the removal mechanism(s). 
Analytical outcomes showed that the removal rate and 
capacity were the highest in the case of carboxyl-mod-
ified polystyrene, thanks to the favored electrostatic 
attraction between the negatively charged polystyrene 
and the positively charged MBC surface at pH = 6. Under 
alkaline conditions, the same authors reported unex-
pected behavior of the magnetic biochar. Despite the 
electrostatic repulsion typically observed under these 
conditions, the MBC was reported to maintain strong 
adsorption performance—an outcome considered atypi-
cal. This finding could therefore infer the involvement of 
other mechanisms such as complexation of the carboxyl 
groups on the polystyrene surface with the functionalities 
on the magnetic biochar. In the aforementioned study of 
Jin et al. (2023), the pHpzc of the MBC was 4.78, there-
fore, at neutral pH, the negatively charged sulfamethoxa-
zole molecule would suffer electrostatic repulsion while 
the neutral bisphenol A would not experience the same 
effect. This finding explains the favorability of bisphenol 
A adsorption from mixed solutions. In a similar context, 
the immobilization of metal cations in the soil during 
remediation applications could be facilitated by electro-
static interactions. More precisely, the alkaline nature 
of the MBC helps reduce soil acidity via the lime-effect 
and increase the negative charge on soil particles. Conse-
quently, this effect facilitates the electrostatic attraction 
with metal cations (Xiao et al. 2023; Li et al. 2024a, b).

7.1.4 � Surface complexation mechanism
Surface complexation could be simply described as the 
interaction of an electron donor with an electron accep-
tor to form a new arrangement—known as ‘the complex’ 
(Fig. 2c). The surface functionalities play a crucial role as 
key determinants in facilitating such a mechanism. Com-
plex formation is another mechanism that is commonly 
triggered by the presence of the oxygen-containing func-
tional moieties. The ability of oxygen-containing func-
tionalities to donate lone electron pairs facilitates the 
formation of coordination complexes with heavy metal 
ions, thereby stabilizing metal–ligand complexes (Li et al. 
2020a).

Several studies have addressed surface complexation 
as an adsorption mechanism by magnetic biochars. Zhu 
et al. (2018a) found that the removal of Eu(III) at acidic 
to neutral pH (2.0–7.0) is governed by the surface com-
plexation mechanism compared to electrostatic attrac-
tion at alkaline pH values. In another study, Ca-modified 
MBC was used to remediate As(III) and Cd(II) binary 
solutions (Wu et al. 2018). The outcomes showed that the 
adsorption of both metals from their individual solutions 
was pH dependent. At an acidic pH and as expected, 
electrostatic repulsion could be encountered due to the 

repulsion between the H+ on the surface of the MBC and 
the Cd(II). At pH values higher than 8, Cd(OH)2 was the 
prominent insoluble form species. For As(III), however, 
the weak adsorption at highly acidic pH was attributed 
to the presence of iron in the solution as a result of dis-
solution of iron oxide following equilibrium. The high 
buffer capacity of the MBC caused almost no change in 
the removal capacity between pH 3–9. The elevated pH 
values (where the oxygenated functionalities become 
deprotonated), therefore, favor the adsorption of Cd(II) 
compared to As(III) via electrostatic attractions. For the 
binary metal solutions, adsorption of both metals was 
lower compared to their individual solutions implying 
the occurrence of competition on sorption sites irre-
spective of the pH value. The formation of ternary type 
B surface complexes by As(III) explained the synergistic 
behavior observed for mixture solutions (Wu et al. 2018).

In another interesting study, Yin et al. (2018) produced 
three activated MBCs derived from rice straw at 300, 500, 
and 700 °C and subsequently tested them for their abil-
ity to remove 17β-estradiol and Cu(II) from single- and 
dual-contaminant solutions. For individual contaminant 
solutions, the pH played a major role in portraying the 
adsorption mechanism. In the case of Cu(II), the adsorp-
tion increased as pH was increased from 2.0 to 6.0 where 
at lower pH, repulsion of Cu(II) with the H3O+ could 
be encountered. In the case of 17β-estradiol, at low pH 
values (< pHPZC of the biochar and the pKa of the pollut-
ant) or pH = 10, both the biochar and the pollutant are 
similarly charged (negative  and  positive, respectively), 
therefore, electrostatic repulsion is anticipated. In the 
binary mixture, however, an interesting behavior was 
observed. At low concentrations of Cu(II), adsorption 
of 17β-estradiol was enhanced compared to the individ-
ual solutions, which was attributed to the formation of 
biochar-Cu(II)-17β-estradiol or biochar-17β-estradiol-
Cu(II) complexes. At higher concentrations of Cu(II), 
however, the competitive behavior between both pollut-
ants was observed. To explain Cu(II) adsorption from 
binary systems, the study highlighted the role of coordi-
nation bonding between the d-electrons of Cu(II) and the 
deprotonated oxygenated groups as well as the π-electron 
interactions between Cu(II) ions and the aromatic 
domains of biochar. In this regard, the activated MBC 
prepared at 300 °C—which was the richest in oxygenated 
functionalities, favored Cu(II) adsorption. In contrast, 
the activated MBC prepared at 700 ℃ was the best adsor-
bent of 17β-estradiol because of carboxylic function-
alities that acted as electron acceptors while the drug’s 
fused aromatic rings and hydroxyl groups were electron 
donors, facilitating surface complexation (Yin et al. 2018).
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7.1.5 � Precipitation mechanism
The formation of insoluble material on the surface of 
the biochar or in the solution is commonly viewed as a 
major mechanism for the immobilization of inorganic 
contaminants (Abbas et  al. 2018) (Fig.  2d). Chemical 
precipitation was reported as a plausible mechanism for 
the removal of Cu2+ and Pb2+ ions employing a Fe-mod-
ified MBC prepared from macadamia nutshells (Zhou 
et al. 2024). Co-precipitation was reported as one of the 
dominant mechanisms in the removal of Cd(II), Cu(II) 
and Pb(II) employing Fe/Mn oxide-modified biochar as 
well (Xiao et al. 2020). The latter authors confirmed the 
occurrence of such a mechanism using the FT-IR analysis 
where changes in the spectral bands were observed; and 
XRD analysis where changes of the diffraction patterns 
were noted in the case of Cd(II) and Pb(II). Such co-pre-
cipitation was instigated by confirming the presence   of 
PO4

3− and CO3
2− ions in the medium.

7.1.6 � Chemical bonding mechanism
The term ’chemical bonding’ encompasses the strong 
attractive forces that bind adjacent atoms or ions 
together, forming the basis of molecular and crystalline 
architectures (Fig. 2e). Examples could include metallic, 
covalent, and ionic bonding. Non-covalent interactions 
such as hydrogen bonding (H‒bonding), van der Waals 
forces, and π–π stacking may be less intense compared to 
the covalent bonds, for instance, but remain fundamen-
tally important (Li et al. 2020a).

In this regard, Gong et  al. (2025) prepared an MBC 
from a mixture of corn cob and red mud and then 
employed it for the removal of malachite green. The syn-
thesized MBC exhibited dual functionality, serving effec-
tively as both an adsorbent and a catalyst. Spectroscopic 
evidence from FTIR demonstrated shifts in the spectral 
bands corresponding to the ‒OH stretching vibration fol-
lowing the adsorption of malachite green and confirming 
the occurrence of H‒bonding. XPS analysis reflected the 
formation of covalent bonds between the amino moiety 
of the dye and the MBC’s surface moieties as evidenced 
by the appearance of a new C–N peak following the 
adsorption. Gong et al. (2025) attributed this peak to the 
primary amine functionality of the dye. Furthermore, a 
N-metal peak was attributed to the formation of bonds 
with the cations of Al or Fe(III). The  occurrence of the 
π–π stacking was inferred from XPS analysis, where the 
C–C peak exhibited minimal variation in intensity.

7.1.7 � Reduction‑based mechanism
Oxygenated functional groups, once again, have a critical 
function as electron ‘shuttles’, promoting redox reactions, 
and thereby contributing to both the immobilization 
of heavy metals and degradation of organic pollutants 

(Fig. 2 g) (Gao et al. 2023; Chen et al. 2024). By and large 
and according to Gao et  al. (2023), the term electron 
‘shuttles’ or ‘mediators’ is part of the general term ‘elec-
tron transfer’, which includes the direct and the indirect 
electron donation as well as electron acceptance.

As an example, Ke et  al. (2022) developed a novel 
N-doped magnetic biochar from peanut shells using a 
deep eutectic solvent system of iron(III) chloride and 
urea, demonstrating its effectiveness in eliminating hex-
avalent chromium from contaminated environments. 
Nitrogen doping helped to modify the surface chemis-
try of MBC, specifically its conjugated structure, charge 
profile, and basic character, and therefore, improved 
the remediation of metal cations. These authors attrib-
uted the elimination of Cr(VI) to multiple mechanisms, 
including ion exchange, cation bridging, pore filling, 
electrostatic attraction, surface complexation, and redox-
driven processes. As for the latter mechanism, the pres-
ence  of Fe(II) helped the reduction of Cr(IV) into Cr(III), 
while it was oxidized into FeIII). The resulting Cr(III) 
species can be further sequestered by the N-doped MBC 
via ion-exchange interactions, with Fe(III) and Fe(II) cati-
ons acting as active exchange sites. In addition, Fe(III) 
cations act as electrostatic mediators, bridging the nega-
tively charged biochar surface and Cr(VI) ions. Besides, 
Ke et al. (2022) demonstrated that at low pH values, the 
protonated oxygenated functional groups facilitated the 
capture of Cr(IV) oxyanions. Two mechanisms were sug-
gested, the direct reduction of Cr(IV) by the oxygen-con-
taining groups and the indirect reduction, where Fe(III) 
is reduced by the biochar into Fe(II), which in turn facili-
tated the reduction of Cr(IV). The heteroatom, nitrogen, 
also facilitated the uptake of Cr(IV) either via electro-
static interactions or via cation-bridging effect. There-
fore, as a summary, the upta of Cr(IV) by the N-doped 
MBC could be best described as ‘adsorption-reduction-
adsorption’ (Ke et al. 2022).

7.1.8 � Pore‑filling mechanism
In  the pore-filling mechanism, molecules of the adsorb-
ate, whether organic or inorganic, move into the porous 
channels of the adsorbent material and are subsequently 
captured within these pores (Fig.  2  h). The structural 
characteristics of biochar, particularly its microporous 
and mesoporous architecture, directly govern the viabil-
ity of the pore-filling mechanism for capturing organic 
pollutants (Abbas et al. 2018). Yet, and as previously indi-
cated, the integration of magnetic nanoparticles not only 
enhances separation efficiency but also preserves the 
porous architecture essential for effective contaminant 
capture (Qu et al. 2022).

Therefore, the porous structure of the MBC plays 
an important role in capturing the target pollutant (Yi 
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et al. 2020; Katibi et al. 2024; Liu et al. 2020a). Jin et al. 
(2023) reported that the size of bisphenol A is smaller 
than that of sulfamethoxazole, therefore, the former 
could fit better in the pores of the magnetic biochar. 
The study carried out by Zhang et  al. (2023d) showed 
that the removal of tetracyclines and fluoroquinolones 
was attributed to a similar pore-filling mechanism, ena-
bled by the mesoporous nature and high surface area of 
magnetite-enriched poplar biochar. More precisely, the 
biochar pores were sufficiently large to accommodate the 
3D size of the antibiotics under investigation. Besides, 
micropore-filling was one of the mechanisms reported 
for the removal of 17β-estradiol employing MBC from 
lotus seedpod (Katibi et al. 2024).

7.2 � Degradation of organic pollutants via photocatalysis
7.2.1 � Generalities
Magnetic biochars serve not only as adsorbents for 
various organic and inorganic contaminants but also as 
effective and economical catalysts (Majamo et al. 2023). 
By utilizing the MBC, pollutants can be more efficiently 
degraded through the activation of strong oxidizing 
agents, such as hydrogen peroxide or persulfate in a 
strategy commonly defined as “advanced oxidation pro-
cesses” (Wang et al. 2021a; Chen et al. 2022a; Tian et al. 
2022b; Song et al. 2023). The application of such a strat-
egy serves to transform the organic contaminants into 
non-hazardous inorganic by-products (Yang et al. 2020). 
Therefore, the use of MBCs offers a synergistic mecha-
nism for remediating pollutants by adsorption and pho-
tocatalytic degradation. The catalytic ability of MBCs is 
largely due to abundant oxygenated functional groups 
(OFGs), persistent free radicals (PFRs), magnetic prop-
erties, and graphite-like structure (Feng et al. 2021). For 
instance, MBC made from floc showed a strong poten-
tial to catalyze peroxydisulfate activation, significantly 
enhancing the breakdown of contaminants like tetracy-
cline (Zhuo et al. 2023).

Additionally, a research study carried out by Anak Eri-
son et  al. (2022) highlights impregnated MBC as a sus-
tainable catalyst in biodiesel synthesis, demonstrating 
improved reusability and reduced environmental impact 
when compared to conventional catalysts. This variety 
of catalytic uses highlights the adaptability and environ-
mental advantages of magnetic biochars. The following 
section details the performance of photocatalyst-loaded 
MBCs in degrading organic pollutants in different envi-
ronmental contexts with focus on catalytic mechanisms. 
A summary of the commonly adopted mechanisms is 
given in Fig.  3. In another context, MBC use increases 
the generation of methane by the selective enrichment 
of anaerobic bacteria on its surface. Magnetic biochar 
provides a workable way to stop methanogen loss in 

anaerobic digesters, guaranteeing more effective and 
long-lasting biomethanation   procedures (Qin et  al. 
2017). Magnetic biochar can also boost biogas produc-
tion during anaerobic digestion of organic waste by 
increasing the number of microorganisms involved in 
hydrolysis and methanogenesis. It also alters the micro-
bial population composition, potentially enhancing the 
overall efficiency of the digestion process (Zhang et  al. 
2023c). These benefits make MBC use a promising and 
sustainable solution for addressing solid waste manage-
ment and pollution challenges.

7.2.2 � Photocatalytic degradation mechanism
Overall, the photocatalytic degradation mechanism of 
organic pollutants proceeds via free radicals. One of the 
common mechanisms is the persulfate-based strategy. 
Nonetheless, the free radical of sulfate, SO·−

4
 shows bet-

ter criteria and hence superior performance compared to 
the hydroxyl free radical for example. Compared to the 
latter, the sulfate free radical possesses a longer half-life 
of 30–40 µs while that of the hydroxyl is only 20 ns. As 
such, the stability of sulfate is higher with better selectiv-
ity. Most importantly, the sulfate-based advanced oxida-
tion strategies can be operated at a wide pH range (2–8) 
opening the door for various applications. Additionally, 
the redox potential of the  sulfate free radical is higher 
compared to that of hydroxyl free radicals (Zhang et al. 
2015; Wang et al. 2017, 2021a; Yang et al. 2020; Feng et al. 
2021; Liu et al. 2022c; Tian et al. 2022b; Song et al. 2023). 
The use of photocatalyst-loaded pristine biochar for the 
degradation of organic pollutants has been a subject 
of many investigations employing several mechanisms 
(Bhattacharya et al. 2024; Fazal et al. 2020; Ouyang et al. 
2019; Yu et  al. 2021). Even so, the limited degradation 
competencies of the pristine biochar together with the 
complexities of recycling remain key challenges hinder-
ing its practical applicability (Liu et al. 2022c).

As already stated, magnetic biochars offer substantial 
advantages. On one hand, the use of biochar backbone 
serves to prevent the aggregation of the magnetic spe-
cies and hence improves their dispersion and degradation 
rate and efficiency, especially for persulfate-mediated 
mechanisms (Gao et  al. 2020; Liu et  al. 2022c). On the 
other hand, the presence of several functionalities on the 
surface of the porous biochar together with the structural 
defects and the PFRs, all contribute to activating the per-
sulfate and supporting its degradation capabilities (Dong 
et al. 2019; Fang et al. 2015; Huang et al. 2020; Luo et al. 
2022). In other words, the MBC structural defects facili-
tate the reduction of the persulfate O–O bond energy 
and hence its stability leading to persulfate activation and 
release of the free radical. The magnetic biochar also can 
prevent the leakage of the magnetic particles and hence 
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offer more sorptive sites (Feng et  al. 2021; Zhou et  al. 
2020). Figure  4a shows the persulfate activation path-
ways using the magnetic biochar (Liu et al. 2022c), while 
Fig. 4b is a scheme revealing the degradation of tetracy-
cline (antibiotic) on a Mn-doped MBC via a persulfate 
activation mechanism (Huang et al. 2020).

Another conventional approach for degrading organic 
pollutants in different environmental matrices is Fen-
ton oxidation. In this strategy, the iron (II) species react 
with hydrogen peroxide to generate the hydroxyl free 
radicals (•OH) (Fig. 3) (Feng et al. 2021; Jiang et al. 2023; 
Song et al. 2024). Generally, Fenton oxidation is simple, 
easy to operate, fast, ecofriendly with a good degrada-
tion efficacy, and does not require energy (Jain et  al. 
2018; Li et  al. 2022; Song et  al. 2024; Tian et  al. 2022b; 
Xu and Wang 2012). Nonetheless, in the traditional Fen-
ton processes, oxidation is restricted by the narrow pH 

range with a probability for metal leaching. The use of 
hydrogen peroxide requires careful storage and use (Tian 
et al. 2022b). Therefore, application of Fenton processes 
alone is likely to hurt the ecosystem, and the process 
costs could prevent its applicability. The use of biochar as 
a carbonaceous backbone could overcome these restric-
tions (Usman et al. 2023). The presence  of biochar allows 
for a better treatment efficacy while lowering the process 
cost and allowing for better performance at different pH 
values. The specific use of MBCs as a support in this case 
forms a heterogeneous Fenton-like system, facilitates 
recoverability, and hence reduces the chance for second-
ary pollution (Feng et  al. 2021; Tu et  al. 2020; Xu et  al. 
2022b).

On the other hand, the development of an efficient 
photocatalytic system is generally limited by the pos-
sibility of electron pair-hole recombination with a 

Fig. 3  A summary of the commonly adopted mechanisms for degrading organic pollutants using magnetic biochars. As defined by the authors: 
PS: Peroxydisulfate, PMS: Peroxymonosulfate, Reproduced from Feng et al. (2021) with permission from Elsevier. License Number: 5965440787642
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difficulty in recovery from the treatment matrix (Chen 
et al. 2019a, b; Meng and Zhang 2016). The use of bio-
char as an adsorptive support with good conductive 
features facilitates the separation of the electron pair-
hole and hence minimizes their recombination (Li et al. 
2019b; Pi et  al. 2015). Once again, the presence of the 

MBC not only minimizes the aggregation of the pho-
tocatalytic species and supports their dispersibility 
but also allows for a better recovery of the adsorbent-
photocatalyst material (Cai et al. 2025; Xu et al. 2024). 
Other MBC-mediated catalytic systems used for the 
degradation of organic pollutants are shown in Fig.  3. 
In conclusion, biochar modification aims to enhance 
its physico-chemical properties, which in turn activates 

Fig. 4  a Persulfate-based degradation of organic pollutants employing magnetic biochar, reproduced from Huang et al. (2020) with permission 
from Elsevier (License Number: 5971780599357)
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all the above-mentioned mechanisms for a better effi-
ciency of MBCs during various applications.

8 � Major agri‑environmental applications 
of magnetic biochars

8.1 � Water treatment
The presence of a high content of contaminants in waste-
water represents a serious threat to both the environ-
mental quality and human health (Moukadiri et al. 2024; 
Santhosh et al. 2024). The use of MBCs for the removal of 
heavy metals or the recovery of valuable nutrients from 
effluents has become the major field of research and sci-
entific publications to date (Silva et al. 2020; Yi et al. 2020; 
Singh and Jadeja 2025). This is justified by both their rela-
tively high adsorption effectiveness and their separation 
ease from aqueous solutions through magnets instead 
of centrifugation and filtration processes (Yi et al. 2020). 
Subsequently, these recovered metal-loaded MBCs can 
be regenerated and reused again for several consecu-
tive adsorption cycles (Chin et  al. 2022). As indicated 
in Table 4, the removal efficiency of contaminants from 
aqueous solutions by MBCs seems to be dependent on 
the material properties that vary according to the pyrol-
ysis process, surface modification, and the adsorption 
experimental conditions.

8.1.1 � Effect of pyrolysis temperature
It is worth mentioning that MBC properties are largely 
influenced by the pyrolysis conditions and particularly 
the temperature. Typically, higher pyrolysis temperatures 
(up to 800  °C) commonly result in a more developed 
porosity and a larger specific surface area. For example, 
increasing pyrolysis temperature from 300 to 700  °C 
increased the total surface area by more than 522%, and 
its pH of point zero charge (pHpzc) by more than 2.1 
units (from 6.72 to 8.85) (Gong and Chi 2022). The sur-
face area of micropores has also substantially increased 
from less than 1 m2 g−1 at 300 °C to more than 223 m2 g−1 
at 700 °C. Moreover, this operation increased the aroma-
ticity of the biochar that was confirmed by the increase 
of the C‒H peak intensity in the FTIR spectra. Alto-
gether, these factors resulted in a net increase of Pb(II) 
and Cd(II) adsorption capacities (Gong and Chi 2022). 
For instance, Pb(II) adsorption capacity increased from 
151.6 mg g−1 by 45.1% and 96.7%, respectively, when the 
pyrolysis temperature increased from 300  °C to 500  °C 
and then to 700 °C (Gong and Chi 2022). A similar find-
ing was reported by Khan et al. (2020) when investigat-
ing Cd(II) removal by a MBC derived from corn waste 
straws. They found that Cd(II) removal increased by 
more than 63.4% when the pyrolysis temperature varied 
from 600 to 800 °C. Moreover, Wu et al. (2021b) showed 

that increasing the pyrolysis temperature from 400 to 
500  °C improved Pb(II), Cu(II) and Zn(II) retention by 
6.7%, 16.0%, and 111.7%, respectively. This was mainly 
attributed to the enhancement of both the textural prop-
erties (increase in surface area by 12.4% and pore volume 
by 20%) and surface richness with various functional oxy-
genic groups.

Nevertheless, opposite results have also been reported 
by some studies. For instance, Yang et al. (2024a) reported 
that increasing the pyrolysis  temperature from 300 to 
500 °C of a MBC derived from corn straw decreased the 
adsorption capacities of Pb(II) and As(III) from 117.1 to 
73.6  mg  g−1, and from 10.8 to 7.8  mg  g−1, respectively. 
This finding was observed despite the increase of the BET 
(Brunauer–Emmett–Teller) surface area from 13.0 to 23.0 
m2  g−1. The higher removal efficiency at lower pyrolysis 
temperature was attributed to the more abundant dis-
solved organic matter contents in organic functional 
groups (especially C‒O and C‒C groups). Moreover, for 
magnetic microalgae-derived biochars, Tian et al. (2025) 
showed that the removal efficiency of Cd(II), Cu(II), and 
Zn(II) decreased when the temperature increased from 
200 to 400 °C. This finding emphasizes the complexity of 
the heavy metals’ adsorption process by magnetic bio-
chars that is dependent on various parameters including 
the nature of the feedstock, the type of modification, the 
pyrolysis temperature, and the heavy metal properties.

8.1.2 � Effect of modification methods
The structural, textural and surface chemistry properties 
of MBCs highly affect contaminant removal from aque-
ous solutions. Compared to raw MBCs, surface modifica-
tion usually enhances the adsorption capacity allowing a 
better removal efficiency (Jia et al. 2019; Lv et al. 2020; Hu 
et al. 2025). As previously mentioned, numerous modifi-
cation methods have been adopted. They encompass the 
use of acids (Chen et  al. 2023b; Cai et  al. 2024; Latifian 
et al. 2024), bases (Fan et al. 2023; Jiao et al. 2023; Zhang 
et  al. 2023a), metal salts (Jia et  al. 2019; Lv et  al. 2020; 
Maneechakr and Mongkollertlop 2020; Lyu et  al. 2022), 
other specific chemical mixtures (Li et al. 2019a; Truong 
et al. 2022; Singh et al. 2023), clays (Hu et al. 2025), and 
calcium carbonates (Wu et al. 2018). The thermal treat-
ment of MBCs through calcination at high temperatures 
was also tested to improve the surface properties (Olad-
ipo et al. 2019).

Typically, MBC activation with alkaline reagents (i.e., 
KOH) significantly improves the properties of the result-
ing material and its capacity for removing heavy met-
als. For instance, a KOH-modified walnut shell MBC 
exhibits a hierarchical honeycomb structure with excep-
tionally high BET surface area (914.0 m2  g−1) and pore 
volume (0.499 cm3  g−1), as well as a rich surface with 
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various functional groups including Fe–O, C–O–C, –
COOC–, C = C and C–N bands (Jiao et  al. 2023). This 
allowed a significant and  efficient removal of Cr(VI) 
(230.6  mg  g−1) that occurred through a combination of 
electrostatic attraction, ion exchange, complexation, 
and reduction into Cr(III). Similarly, a high BET sur-
face area (937.1 m2 g−1) and pore volume (0.562 cm g−1) 
were also observed for a KOH pre-treated magnetic 
biochar derived from the pyrolysis at 700  °C of Chinese 
aquatic herb residues (Zhang et  al. 2023a). These val-
ues are 62.0 and 5.9 times higher than those measured 
for the same magnetic biochar without pre-treatment 
with KOH. Moreover, Zhang et  al. (2023a) found that 
the KOH-modified MBC is rich in various oxygenic 
functional groups such as –OH, C–O, and Fe–O, which 
allows a high removal capacity of Cr(VI) (175.4 mg g−1). 
The involved mechanisms were explored through the use 
of several specific analyses (i.e., FTIR, XPS) on the mate-
rial before and after Cr(VI) adsorption. Results show that 
Cr(VI) removal was ensured through the combination of 
pore filling, complexation with –OH, Fe–O, and C=O, 
electrostatic attraction (with HCrO4

−) at low pH values, 
and reduction into Cr(III).

Modification with acidic solutions has also been used 
to improve the adsorption efficiency of MBCs in remov-
ing contaminants. For instance, Wu et al. (2022) showed 
that the modification with hydrochloric acid of a mag-
netic sludge biochar enhanced ammonium adsorption 
capacity by 10.7% as compared to the untreated magnetic 
form. They attributed this increase to the improvement of 
electrostatic attraction and ion exchange processes as the 
main adsorption mechanisms. Wang et  al. (2024b) syn-
thesized MBC from Chinese herb residues and modified 
it with a 2% acetic solution, chitosan and glutaraldehyde. 
They showed that the resultant material had modest tex-
tural properties with a BET surface area of 18.4 m2  g−1 
and a total pore volume of only 0.102 cm3 g−1. However, 
the removal capacities of this modified MBC for As(III), 
Cr(VI), and Pb(II) were relatively high (45.9, 52.2, and 
59.9  mg  g−1, respectively). This was imputed to its dis-
tinctive surface chemistry properties and composition 
allowing adsorption through the combination of various 
mechanisms including complexation with –COOH, –
OH, and –NH2, cation exchange with Na+, K+, and Mg2+, 
electrostatic attraction, and also reduction of Cr(VI) into 
Cr(III) and oxidation of As(III) into As(V). A compara-
ble Cr(VI) removal capacity of 55.5 mg g−1 was reported 
for a H3PO4-modified MBC from Typha leaves (Cai et al. 
2024). Moreover, high removal capacities of Pb(II) were 
reported for a H2SO4-modified magnetic biochar from 
poplar sawdust (114.9 mg g−1) (Latifian et al. 2024), and a 
calcined magnetic biochar from cow litter modified with 
acetic acid containing a phosphate rock (451.2  mg  g−1) 

(Chen et  al. 2023b). This significant removal rate was 
mainly attributed to the presence of the rock phosphate. 
Indeed, the use of mechanistic analysis showed that 
phosphates and carbonates on the surface of the modi-
fied MBC contribute to the removal of more than 54% 
of the overall Pb(II) through precipitation. Moreover, 
around 24% of Pb(II) adsorbed amount was exchanged 
with Ca(II) from the phosphate rock.

Magnetic biochar modification with metal salts can 
improve their adsorbing properties for toxic heavy met-
als as well. For instance, Maneechakr and Mongkollert-
lop (2020) showed that the treatment of MBC derived 
from palm kernel cake residues with KMnO4 signifi-
cantly enhances the properties of the resulting biochar. 
Indeed, MnO2 nanoparticles deposition onto the surface 
of the MBC contributed to achieving a relatively high 
BET surface area (89.4 m2  g−1). In addition, this MBC 
had also a rich surface with various oxygenic functional 
groups that allowed the removal of Pb(II), Cd(II), Cr(III), 
and Hg(II) at 49.6, 18.6, 19.9, and 13.7  mg  g−1, respec-
tively. In another study, Sun et al. (2019) showed that the 
post-modification with KMnO4 of an MBC made from 
rice husks improved Pb(II) and Cd(II) adsorption by 8.7 
and 7.9 times respectively, compared to the unmodified 
form. This significant performance was observed despite 
a decrease in BET surface area by 50.2% due to pore 
blockage with Mn nanoparticles. This was explained by 
the improvement of the surface chemistry of the modi-
fied magnetic biochar. Accordingly, the pHpzc increased 
from 6.78 to 8.51, which favored metal removal by pre-
cipitation. Moreover, heavy metals complexation was 
improved due to  the involvement of several oxygenic 
functional groups such as ‒OH, ‒COOH, and O-Mn. 
Likewise, a relatively high Sb(V) adsorption capacity of 
21.9 mg g−1 was also measured for a nano-cerium-doped 
MBC made from Phragmites australis biomass. This 
adsorption rate was much higher than that found for the 
non-doped biochar (1.7 mg g−1) (Table 4).

It is worth mentioning that MBCs decoration with lay-
ered double hydroxides (LDHs) through the simultane-
ous impregnation with bivalent (i.e., Ca, Mg, Ni, Zn, etc.) 
and trivalent cations (Al, Fe, Ga, etc.) was found to be an 
interesting method for an efficient removal of heavy met-
als from aqueous solutions. For example, Jia et al. (2019) 
synthesized a MBC from oil-tea camellia shells and then 
functionalized it with Mg/Fe-LDHs through impregna-
tion with a solution of Fe(NO3)3 and Mg(NO3)2. The suc-
cess of the functionalization step was confirmed with 
XRD, FTIR, and SEM/EDS analysis, which confirmed the 
formation of Mg6Fe2CO3(OH)16·4H2O precipitate at the 
surface of the biochar, the apparition of new CO3

2−-based 
functional groups, and the net increase of Mg and Fe 
peaks intensity. Moreover, this step enhanced the BET 
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surface area and the total pore volume by 129.6%, and 
197.8%, respectively, and decreased the average pore size 
from 20.1 to 7.0 nm. Consequently, this functionalization 
resulted in an increase of Pb(II) adsorption capacity from 
67.1 to 476.2  mg  g−1 (Jia et  al. 2019). In another study, 
the functionalization of a MBC derived from wheat straw 
at 600  °C with Mg/Al LDHs increased Cd(II) adsorp-
tion by 2.4 times. This same modified MBC was further 
doped with sodium carbonates, which increased Cd(II) 
removal by a factor of 3.7 due to carbonate anions inter-
calation within the Mg/Al LDHs. This amelioration was 
mainly attributed to CdCO3 precipitation, complexation 
with functional groups and cation exchange with Mg(II) 
(Lv et al. 2020). A similar trend was reported by Lyu et al. 
(2022) who investigated the simultaneous removal of 
As(III) and Cd(II) from aqueous solutions with a bam-
boo-derived MBC cross-linked with Ca/Mg/Al LDHs 
composite. Consequently, the modified MBC had much 
higher adsorption capacity for both As(III) (256.3 mg g−1) 
and Cd(II) (320.7 mg g−1) than the unloaded form.

Some other studies have used specific mixtures of 
chemicals to obtain MBCs with outstanding properties 
for contaminant removal. For instance, Li et  al. (2019a) 
modified a magnetic biochar generated from the pyroly-
sis of paulownia tree leaves at 550  °C with a mixture of 
cerium oxide (CeO2) and molybdenum disulfide (MoS2). 
They showed that after this treatment, the original BET 
surface area (89.4 m2  g−1) and total pore volume (0.032 
cm3  g−1) increased by more than 1.4, and 2.7 times, 
respectively. Moreover, the surface chemistry of this 
modified MBC was significantly enhanced through 
the enrichment with several functional groups such as 
Ce‒O, ‒OH, Mo‒S, O‒H, and C=C, which significantly 
enhanced Pb(II) removal. Moreover, this modified-mag-
netic biochar acquired a superparamagnetic state allow-
ing its easy separation from aqueous solutions after 
decontamination. Singh et al. (2023) post-modified MBC 
produced from pine needles at 500  °C with 3-amino-
propyl triethoxysilane to incorporate amine and silane 
groups onto the biochar surface. Eventually, the func-
tionalized form had rich surface with various functional 
groups involving Si‒C or Si‒O‒C, Si‒O‒Fe, ‒NH2, C‒O, 
O‒H, and C=O. This surface richness, especially in silane 
and amine groups allowed an efficient removal of both 
Pb(II) (142.9 mg g−1) and Cd(II) (125 mg g−1). A similar 
trend was observed when investigating Cu(II) removal by 
a microalgae-derived biochar modified with a solution 
containing FeCl3.6H2O, ethylenediamine, and sodium 
acetate trihydrate (Truong et al. 2022).

8.1.3 � Effect of experimental conditions
8.1.3.1  Contact time  The removal of heavy metals by 
MBCs usually occurs according to the three consecutive 

steps as follows: (i) a rapid removal due to the availability 
of numerous adsorption sites at the surface of the adsor-
bent, (ii) a much slower adsorption rate imputed to metal 
intraparticle diffusion, and (iii) an equilibrium state char-
acterized by constant adsorbed amounts, corresponding 
to a full saturation status (Jellali et al. 2021). The required 
time to reach this equilibrium depends not only on the 
MBC properties but also on the metal type. Related dura-
tions of 40 min, 1.5 h, 4 h, 8 h, and 60 h were observed 
respectively for thallium removal by a magnetic-illite bio-
char (Hu et al. 2025), Cu(II) removal by a magnetic maca-
damia nutshell-derived biochar, Pb removal by a magnetic 
corn straw-derived biochar (Yang et  al. 2024a), Cr(VI) 
removal by a magnetic Typha leaves (Cai et al. 2024), and 
Cr(VI) by a magnetic peanut hull-derived biochar. Lower 
contact times result in lower energy expenses and are usu-
ally preferred in case of full-scale applications (Jellali et al. 
2024b).

8.1.3.2  Initial aqueous pH  The pH of effluents is a key 
parameter that significantly affects contaminant removal 
by magnetic biochars. In fact, this parameter influences 
not only metal speciation but also the protonation degree 
of the functional groups and consequently the over-
all charge of the MBC particles. When the aqueous pH 
value is lower than the pHpzc, the MBC surface is mainly 
positively charged. This will result in a repulsion of the 
cationic metals and attraction of the negatively charged 
forms. For instance, Cr(VI) exists in different forms ver-
sus the aqueous pH: it is found as HCrO4− and Cr2O7− 
for pH values between 0.7 and 6.5 and as CrO4

2− for pH 
higher than 6.5 (Unceta et  al. 2010). Therefore, Cr(VI) 
removal is usually larger in acidic media where its anionic 
forms are attracted to positively charged MBC particles 
(Shang et  al. 2016; Zhang et  al. 2023a). However, when 
the effluent has a pH value higher than pHpzc, the MBC 
surface will be negatively charged and consequently will 
attract the positively charged heavy metals. For example, 
Maneechakr and Mongkollertlop, (2020) reported that 
increasing the aqueous pH from 3.0 to 9.0 increases Pb(II) 
adsorption by a palm kernel cake-derived MBC by around 
100%. Furthermore, the protonation degree of MBCs usu-
ally decreases with the increase of the effluent pH values, 
which allows the presence of adsorption sites with oxygen 
and nitrogen, and therefore improves removal perfor-
mance (Qu et al. 2022).

8.1.3.3  Contaminant and  biochar concentrations  Typi-
cally, the adsorption performance of MBCs rises with the 
increase of contaminant initial concentration (C0). This 
is due to the higher gradient concentration between the 
aqueous solution and the porosity of magnetic biochars. 
For instance, the presence of large amounts of heavy met-
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als will increase the probability of good contact with the 
active adsorption sites of the magnetic biochar (Khanzada 
et al. 2024). The adsorption of heavy metals may reach a 
quasi-plateau for high initial concentrations. The curve 
giving the adsorbed amount onto the MBC against the 
residual heavy metal concentration in the aqueous solu-
tion is usually used to predict the related adsorption 
capacities through theoretical models (i.e., Langmuir, 
Dubinin-Radushkevitch, etc.). Table 4 gives the calculated 
adsorption capacities for various heavy metals by numer-
ous MBCs at different initial concentration ranges. On the 
other hand, for a constant initial heavy metal concentra-
tion, the removal efficiency rises as the dose of the adsor-
bent increases until reaching a plateau corresponding to 
a saturation of the MBC adsorption sites. The required 
doses to reach this maximum efficiency depend on both 
the heavy metal properties and MBC adsorption ability. 
For example, this plateau was observed for 1.5 g L−1 of a 
magnetic-illite biochar used to remove thallium added at 
10 mg L−1 (Hu et al. 2025), and for 6 mg L−1 of MBC made 
from Conocarpus erectus leaves used to remove cobalt at 
10 mg L−1 as well (Qasim et al. 2023).

8.2 � Effect of competitive ions
Most studies regarding contaminant adsorption by MBCs 
have been carried out using synthetic solutions. Chen 
et al. (2023b) indicated that increasing the ionic strength 
of these solutions by adding foreign ions, especially at 
high concentrations, reduces the adsorption capacities of 
heavy metals. For example, the co-presence of HCO3

2− 
and PO4

3− ions highly affected the adsorption of the lat-
ter on MBC due to strong competition over adsorption 
sites (Wang et al. 2019c). Very few studies have validated 
the efficiency of raw/modified MBCs for mineral removal 
from actual wastewater. In this context, Li et  al. (2018) 
used an aminothiourea chitosan-strengthened mag-
netic biochar for the treatment of an actual mine water 
from an abandoned iron mine site having Al(III), Fe(III), 
Zn(II), Pb(II), Cd(II), Cu(II), and Mn(II) concentrations 
of 278.1, 301.3, 368.6, 1.8, 4.9, 0.3, and 28.2 mg L−1. They 
showed that for a contact time of 6 h, a relatively small 
dose of the modified biochar (1.25  g L−1) succeeded to 
remove around 100% of Cd(II), Pb(II), and Cu(II), 75.3% 
of Mn(II), 23.3% of Zn(II), 12.1% of Fe(III), and 7.6% 
Al(III). The loaded-modified MBC was then easily sepa-
rated from the treated wastewater using a magnet.

8.3 � Agricultural applications of magnetic biochars
In crop production systems, MBC has primarily been 
studied for its role in restoring croplands contaminated 
with heavy metals, due to its strong adsorption capacity. 
By immobilizing heavy metals and reducing their bio-
availability, MBC supports agricultural soil remediation, 

which in turn improves crop health and productivity 
(Alazzaz et al. 2023; Ma et al. 2024b). As such, its current 
use has largely been limited to soil remediation purposes 
rather than as a regular soil amendment for crop produc-
tion improvement (Xiao et al. 2023). This is supported by 
the much less published data that address MBC applica-
tion for specific agricultural purposes compared to the 
pristine form (Adebajo et al. 2022; Farid et al. 2022; Zhu 
et  al. 2023). As mentioned previously, MBC presents a 
compelling alternative to unmodified biochar due to its 
magnetic properties, which allow easier separation from 
the environment. This feature reduces the risk of second-
ary pollution, a common issue with conventional pow-
dered biochar that is difficult to recover once applied 
(Bowden-Green and Briens 2016).

8.3.1 � Agricultural soil remediation
Magnetic biochar offers promising solutions for improv-
ing soil quality and addressing environmental challenges 
through pollution control. By increasing the carbon con-
tent and elevating soil pH, magnetic biochar enhances 
metal immobilization in treated soils, as metals become 
less soluble in more alkaline environments (Diao et  al. 
2022b). Magnetic biochar also influences the soil micro-
bial community, promoting beneficial metal-stabilizing 
microorganisms such as Actinobacteriota, Pontibacter, 
and Alkaliphilus, while reducing the abundance of metal 
bioavailability-associated groups like Proteobacteria and 
Bacteroidota. These microbial shifts not only contribute 
to metal stabilization but also improve the overall sta-
bility and diversity of soil microorganisms (Diao et  al. 
2022b; Li et al. 2024b).

Among various approaches for addressing metal con-
tamination, immobilization/stabilization is a particularly 
effective method for reducing the bioavailability of toxic 
trace elements like As and Cd in soil (Lyu et  al. 2024). 
Magnetic biochar, in this context, serves as an effec-
tive amendment for contaminated soils, with removal 
efficiencies as high as 41.3% for Cr and a demonstrated 
ability to significantly reduce bioavailable forms of Cd 
and As in polluted environments (Liu et al. 2020b; Wan 
et al. 2020; Prangmoo et al. 2024). For instance, the func-
tional groups on magnetic biochar, such as C‒N, C‒H, 
and C=C, play a crucial role in binding heavy metals 
like Cr(VI), further enhancing its detoxification poten-
tial (Cui et al. 2022). With a recovery rate of 65% and the 
capacity to reduce substantial percentages of heavy met-
als from polluted soils within a day, MBC has become a 
pivotal tool in agri-environmental rehabilitation, com-
bining nutrient recycling with heavy metal stabilization 
to improve soil health and sustainability (Xiao et al. 2023; 
Ahmed Khan et al. 2024).
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Leveraging MBC as a soil amendment could open 
new pathways for sustainable crop production, improv-
ing soil quality while minimizing potential environmen-
tal impacts due to contaminated soils and/or the use 
of agrochemicals. Lu et  al. (2018) mentioned that mag-
netization-based surface alteration could significantly 
increase plant production and provide relative benefits 
for managing some damaged environments. For instance, 
this modified biochar has increasingly been recognized 
for its ability to extract and recycle excess nitrogen from 
soils, which not only mitigates nitrogen runoff but also 
enables nitrogen recovery for use as a slow-release ferti-
lizer, advancing a circular economy approach (Xin et al. 
2017; Ghassemi-Golezani and Rahimzadeh 2022; Zhuo 
et  al. 2023). Likewise, when incorporated into the com-
posting process, the MBC enhances the pore structure 
and functional groups at the compost interface, creating 
more accessible sites for microbial activity and nutrient 
interactions. Additionally, it improves nutrient manage-
ment by stabilizing nitrogen, promoting functional nitro-
gen gene expression, and enhancing nitrogen availability 
for plant uptake after soil application (You et  al. 2024). 
Table  5 summarizes the agricultural benefits related to 
MBC use under different experimental conditions.

8.3.1.1  Use of modified MBCs in agricultural systems  As 
previously mentioned, the modification of MBC using 
mineral doping improves its physicochemical properties 
needed for enhanced applications (Hu et al. 2025; Jia et al. 
2019; Lv et al. 2020). For example, Ca-doped MBC showed 
great potential for improving soil health by significantly 
increasing both the size of bacterial populations and the 
diversity of microbial taxa. It also effectively reduced As 
accumulation in rice plants while promoting growth, indi-
cating its value as a soil amendment in rice paddies (Wu 
et al. 2020). By stabilizing As in a less bioavailable form 
and enhancing plant development through proper appli-
cation rates, this Ca-doped MBC offers substantial ben-
efits for agricultural practices (Wu et al. 2020). In another 
study, Lyu et al. (2024) reported that Ca–Mg–Al layered 
double hydroxide supported by magnetic biochar had the 
ability to immobilize more than 85% of As and Cd in soil.

To advance research in the agricultural field, it is essen-
tial to study a wider range of minerals used to enhance 
magnetic biochars such as macro-elements, given their 
critical role in plant growth and soil condition-depend-
ing availability (Zhu et  al. 2018b). In this regard, litera-
ture describing the modification and direct agricultural 
application of nutrient-modified magnetic biochars is 
almost nonexistent. As we previously described, modifi-
cation with chemicals has mostly been directed towards 
environmental applications with subsequent agronomic 
benefits when applicable. For instance, Luo et al. (2023) 

used urea to prepare N-modified magnetic biochar-based 
persulfate for a successful removal of the antifungal drug 
metronidazole (99.6%) with respect to the non-doped 
catalyst (7.66%). Likewise, Liang et  al. (2024) showed 
that a P-doped magnetic biochar exhibited remark-
able catalytic activity for the degradation of common 
organic pesticides in an aqueous environment for water 
decontamination.

Recent studies have found that biochars modified with 
P could not only effectively immobilize soil metals, but 
also promote plant growth as a fertilizer by releasing 
more available phosphorus in soil (Bao et al. 2022; Bea-
trice et al. 2022). Accordingly, Liu et al. (2019) found that 
MgO-modified MBC exhibited high removal efficiency 
of phosphate, which could be later applied in agricul-
tural production systems as a slow-release fertilizer. Like-
wise, Zhu et al. (2023) prepared an efficient P adsorbent 
using an Mg/La-modified MBC and subsequently used 
the P-loaded material as a fertilizer to promote the seed 
germination and growth of ryegrass  (Lolium perenne 
L.) with respect to the unloaded adsorbent and/or the 
original magnetic biochar. In a comparative study with 
a conventional chemical fertilizer, Khajavi-Shojaei et  al. 
(2023) found that MgCl2-modified biochar-based slow 
N-release fertilizer increased corn plant growth, chloro-
phyll content and leaf area by 37.1%, 13.6%, and 30.4%, 
respectively. Therefore, further studies should explore 
how mineral-enriched MBCs, in particular with deficient 
or recalcitrant nutrients, affect soil and crop productiv-
ity over the long term, focusing not only on decontami-
nation but also on the improvement of soil properties, 
nutrient release and uptake by agricultural plants, and 
cost-effectiveness as compared to pristine forms and con-
ventional soil amendments.

9 � Conclusions
In most published data, magnetic biochars have shown 
higher efficiency for the remediation of contami-
nated media compared to pristine forms. This is due to 
improved surface functionalities and subsequently all 
related adsorption/degradation mechanisms. As envi-
ronmental pollution has become a global issue, effluent 
treatment and to a lesser extent soil remediation using 
MBCs have been the hot research topics worldwide. 
Interestingly, the adsorption and catalytic properties of 
MBCs could be further improved via surface doping with 
minerals. These co-modified biochars have been success-
fully tested for environmental applications. Nevertheless, 
investigating the direct use of these mineral-impregnated 
MBCs as soil conditioners for the improvement of crop 
production could provide new insights into agricultural 
applications, which have been limited to pristine forms 
so far. This includes examining how these modified 
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materials would effectively adsorb/release nutrients in 
soil/substrate systems, support sustainable crop yields, 
and contribute to global food security.
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