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Abstract

This study developed phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM)
to improve nitrogen retention and humification during composting. Systematically, this study elucidated the syn-
ergistic biotic-abiotic mechanisms by tracking nitrogen transformation, fluorescence spectral dynamics, functional
genes and microbial succession. Results demonstrated that compared to conventional biochar (BC), the BCP/BCPM
immobilized NH," via an abiotic pathway (surface adsorption and struvite crystallization), mitigating NH; emissions
by 21.29-27.99%, while upregulating nitrification genes (amoA, hao, nxrA) and enriching functional consortia (Bacil-
laceae) to enhance total nitrogen retention (by 3%) through a biotic pathway. The biotic-abiotic synergy elevated
the humification index (P, /Py ,) by 24.01-33.61%. The potential mechanism might be that a nitrogen retention
supplied nitrogen skeleton and nitrogenous precursors for aromatic condensation reactions. Moreover, the enriched
functional microbiota (Thermobifida) drove lignin degradation and protein-like conversion, redirecting toward pre-
cursors to stable humic-like substances. The phosphorus mainly mediated and enhanced the humification process
(+7.74% vs. BCPM), while magnesium synergistically reduced more NH; emissions (-8.51% vs. BCP). Therefore, based
on the phosphorus-magnesium co-modified biochar, increasing the phosphorus content loaded on biochar offers
greater potential for humification. The spatiotemporal coordination of abiotic mineral interactions and biotic micro-
bial specialization enabled simultaneous nitrogen retention and humification in composting.

Highlights

+  P/P-Mg modified biochar synchronously boosts nitrogen retention and humification via biotic-abiotic mecha-
nisms.

- Functional microbiota redirect nitrogenous organics to humic substances formation.

- Biochar-microbe synergy establishes a dual-functional framework for sustainable composting additive design.

*Correspondence:

Jing Yuan

jingyuan@cau.edu.cn

Full list of author information is available at the end of the article

. ©The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ Sprlnger permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://orcid.org/0000-0002-6936-7615
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s42773-025-00530-7&domain=pdf

Tang et al. Biochar (2026) 8:25

Page 2 of 16

abiotic mechanisms

Graphical Abstract

brganic matter Generation of small molecule substances

Nitrogen retention

BC_ BCP BCPM
Treatment

===

Preliminary synthesis of skeleton

Mitigating NH; emission 21.29-27.99%
BC —(O— BCP —/\— BCPM :

A
)
00— 7 a2 g as a2
Time (d)
@ Phosphorus 80
modified biochar (BCP) &
(]
Phosphorus-Magnesi 5 60+
@ Phosphoru gnestim *E Lignocellulose <
co-modified biochar (BCPM) 5
g- | Protein
L
MgCl,-6H,0 1 i
9o & Lipids B :
= | ol

Keywords Phosphorus and magnesium modified biochar, Composting, Ammonia emission, Humification, Biotic-

Formation of humic substances

Humification enhancement

Py /P o 24.01—343.61 %
) I e

Nitrogen skeleton

Abiotic pathway % |
H w

Nitrogenous precursors

C4: Protein-like
<
substances
More positive interaction

< Biotic pathway e

Functional microbiota

200
250 300 350 400 450 500 550
Em (nm)

-
Thermophilic Coc N?
)

@ Magnesium: reduced NH; emission @ Phosphorus: enhanced humification

1 Introduction
Composting serves as a critical technological bridge for
converting organic waste into humus-rich fertilizers,
advancing circular agriculture and sustainable devel-
opment (Zhao et al. 2022a). However, conventional
composting faces two persistent challenges: substan-
tial nitrogen loss (16-74% of initial nitrogen via NH,
volatilization) (Céceres et al. 2018; Liu et al. 2023a, b)
and inefficient humification, which limits its soil appli-
cation potential (Chen et al. 2023a). Moreover, humic
substances (HS), as the cornerstone of compost quality,
require nitrogen participation in biological and abiotic
humification pathways (Li et al. 2025; Xu et al. 2022).
Dual enhancement of nitrogen conservation and humifi-
cation efficiency remains unresolved.
Phosphate-magnesium (P-Mg) salts have emerged as
promising additives, reducing NH; emissions by 69.4%
and total nitrogen loss by 60.6% through struvite crys-
tallization (Zhao et al. 2020). Phosphate additives also
accelerate abiotic humification by promoting complex
HS structures (Yang et al. 2024), while magnesium-
phosphate fertilizers enhance humification via mineral

release (Kong et al. 2022a). Therefore, P-Mg salts con-
stitute promising additives for the concurrent optimiza-
tion of humification efficiency and emission mitigation.
However, high-dose P-Mg salt application (10-20% dry
weight) triggers salt stress (EC >4 mS cm™), causing phy-
totoxicity (Chan et al. 2016; Jiang et al. 2016; Shan et al.
2021) and suppressing microbial activity, thereby com-
promising composting efficiency.

To resolve this issue, biochar emerges as a synergistic
carrier. Its inherent properties could mitigate NH; loss
and salt stress (Guo et al. 2020), while modified biochars
(MBC) further overcome limitations of conventional bio-
char (e.g., limited adsorption capacity and insufficient
surface active site density) through tailored functionali-
zation (Ravindiran et al. 2024). For instance, iron-modi-
fied biochar enhances nitrogen retention in composting
systems via synergistic surface chemisorption and micro-
biome modulation (Tang et al. 2025). Qiu et al. (2025)
demonstrated that phosphoric acid-modified biochar
accelerates sewage sludge humification. Gu et al. (2025)
engineered magnesium-modified biochar to reduce NH,
emissions by 18% via pore-functionalization. However,
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these single-element modified biochars fail to analyze the
nitrogen—humification trade-off and underlying mecha-
nisms during composting, while the effect of P-Mg co-
modified biochar’s dual-functional enhancement remains
unexplored during composting.

Recent advances highlight inseparable linkages
between compost humification and N transformation,
prompting intensified investigation into their synergy.
Recent advances confirm that optimized nitrogen sources
enhance biodegradability and humification efficiency
(Lin et al. 2024). Furthermore, Liu et al. (2023a) demon-
strated that as the precursors for humification, the releas-
ing of biogenic N-containing compounds from sludge is
important for controlling humification. Nitrogen scar-
city during compost maturation constrains microbial
metabolism and humic acid polymerization (Wang et al.
2023a, b). Phosphate additives in compost have been
shown to enrich functional microbial communities to
promote the formation of humic acid carbon and nitro-
gen skeletons (Su et al. 2024). Modified biochars could
physically adsorb nitrogen while biologically activating
microbiota, offering dual pathways to enhance compost-
ing humification and nitrogen retention. Specifically,
surface-loaded ions provide active sites for abiotic NH,"
fixation, forming a biochar composite carrier through
microbial regulation. On the other hand, the composite
carrier simultaneously provides humification precur-
sors and microbial niches for both biological and abiotic
pathways. Despite its potential, critical knowledge gaps
persist regarding: How does P-Mg salt-modified bio-
char coordinate abiotic fixation and biological regulation
under composting stress to achieve dual nitrogen-humifi-
cation enhancement?

This study systematically investigates the mechanisms
by which P-Mg salt-modified biochar coordinates biolog-
ical and abiotic pathways to enhance nitrogen retention
and humification in swine manure composting. By inte-
grating tracking of nitrogen transformation, fluorescence
spectroscopy, functional genomics, and microbial succes-
sion dynamics, we aim to elucidate the interplay between
P-Mg salt-modified biochar mediated nitrogen conser-
vation and humification processes. Our findings provide
a novel strategy for developing advanced composting
additives that concurrently improve fertilizer quality and
environmental sustainability in waste management.

2 Materials and methods

2.1 Composting materials

The raw materials were fresh pig manure, woodchips, and
cornstalk. Pig manure was collected from the Sujiatuo
Pig Farm (Haidian District, Beijing, China). The corn-
stalk was taken from the Shangzhuang Experimental Sta-
tion of China Agricultural University (Haidian District,
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Beijing, China) and crushed into 2-5 c¢m particles. The
wood chips were taken from a furniture processing fac-
tory (Hebei) and the particle size was 1-3 mm. Key phys-
iochemical properties of composting materials are shown
in Table S1. Biochar made from wood chips was pur-
chased from Henan Lize Environmental Protection Tech-
nology Co., Ltd. The pyrolysis temperature of biochar
was 500 “C. The particle size of the biochar was 100 mesh,
its organic carbon content was 68%, its pH value was
9.00, its moisture content was 10.35%, and its ash con-
tent was 9.45%. The modified biochar samples were pre-
pared using the impregnation method (Tang et al. 2025;
Wang et al. 2023a). Briefly, the biochar was rinsed with
deionized water for surface impurities and dried at 60
°C for 24 h. According to a previous study by Jiang et al.
(2016) and Wu et al. (2017), the addition of phosphorus
(P) and magnesium (Mg) salts at 20% (molar mass) of the
initial nitrogen content is appropriate. 100 g of biochar
was immersed in 0.59 mol L™ KH,PO, (analytical pure-
grade) solution, and the reaction was carried out at 25 C
with magnetic stirring at 150 r min~! for 3 h. The soaked
biochar was washed with deionised water until the pH of
the filtrate was maintained, and then dried at 60 °C for
24 h. The product was cooled, crushed, sieved (0.15 mm),
and labeled as conventional biochar (BC) or phosphorus-
modified biochar (BCP) respectively. Phosphorus-mag-
nesium co-modified biochar (BCPM) was prepared using
BCP as a raw material in the same method, with impreg-
nation using 0.59 mol L' MgCl,-6H,O solution.

2.2 Experimental system and protocols

Three composting experiments were performed at the
Shangzhuang Experimental Station of China Agricultural
University (Haidian District, Beijing, China). A stainless
steel composting reactor with an effective volume of 60
L was used in this study. The parameters of this reactor
have been reported elsewhere (Yuan et al. 2018).

The mixture of pig manure with woodchips and corn-
stalks (as bulking agents) was used as composting feed-
stock at a wet weight ratio of 17:2:1. The moisture
content of the feedstock was set at 65% and the mix-
ture weight was 35 kg. Multiple comparative trials sug-
gest that 8—10% biochar addition (dry weight) achieves
maximal nitrogen conservation efficiency and phospho-
rus bioavailability (Wang et al. 2021; Wei et al. 2016;
Qian et al. 2013). Three treatments with the addition
of 8% (dry weight) of BC, BCP and BCPM respectively
were designed and were designated as “BC’, “BCP” and
“BCPM”. The three treatments were consecutively oper-
ated for 6 weeks and the manual turning was conducted
on days 7, 14, 21, 28, 35, and 42. The initial aeration rate
was 0.24 L kg™! DM min~!. The aeration rate was reduced
by 50% and 75% during the cooling and maturity periods,
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respectively. Solid samples were collected from five rep-
resentative points (including the top, middle and bottom
parts of the compost pile and the inner and outer layers)
in each reactor after manual turning, homogenized, and
stored at —4 °C or —80 °C for physicochemical and micro-
biological analysis, respectively. Three technical repli-
cates were analyzed per sample.

2.3 Analytic methods

2.3.1 Characterization of biochar materials

The specific surface area and pore structure of BC, BCP
and BCPM were characterized using an automated spe-
cific surface and porosity analyzer (BET, Micromeritics
ASAP 2460, USA). Fourier-transform infrared spectros-
copy (FTIR) was employed to analyze the functional
group composition of the biochar using a Thermo Sci-
entific Nicolet iS20 spectrometer. A scanning electron
microscope mirror (SEM, ZEISS Gemini 300, Germany)
was used to analyze the surface morphology of the bio-
char. Energy Dispersive X-ray Spectroscopy (EDS) was
used to analyze the surface chemistry of the biochar.

2.3.2 Physicochemical properties

The moisture content was measured by drying fresh
solid samples at 105 °C for 12 h. Fresh solid samples were
mixed with deionized water at a mass ratio of 1:10 and
shaken for 30 min to obtain the water extract, which was
used to measure electrical conductivity (EC), and germi-
nation index (GI). The EC values were determined with
an EC meter (pHS-3C, Shanghai Precision & Scientific
Instruments Co., Ltd., China). GI was measured using the
method described previously by (Kong et al. 2022b; Wang
et al. 2022b). Fresh solid samples were also extracted
using 2 M potassium chloride (1:10, w/v) to determine
the concentration of ammonium nitrogen (NH,*—N) and
nitrate nitrogen (NO3;™—-N) using a flow analyzer (Techni-
con Auto Analyzer3; Seal Analytical GmbH, Norderstedt,
Germany). A solution of 2% boric acid and 0.1 M sulphu-
ric acid were utilized to absorb and titrate NH; for quan-
tification, respectively. Elemental contents contents were
determined using an elemental analyzer (vario MACRO
cube, Ele mentar, Hanau, Germany). Nutrients (P, Mg
and K) were determined by inductively coupled plasma-—
mass spectrometry (5800 ICP-OES, Agilent, USA).

2.3.3 EEM and PARAFAC modeling

EEM fluorescence spectra of the fractions were obtained
using a Hitachi F-7000 fluorescence spectrophotom-
eter (Hitachi High Technologies, Japan). The excitation
wavelengths (Ex) were 200—600 nm at 10 nm intervals
and the emission wavelengths (Em) were 200 — 600 nm at
1 nm intervals. The EEM spectra of Milli-Q water were
obtained and subtracted as the background of the EEM
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spectra of all the samples in order to minimise the effect
of Rayleigh scattering and Raman scattering. The meas-
ured fluorescence intensities are given in Raman Units
(R.U.). All samples were diluted with the same dissolved
organic carbon (DOC) content to compare EEM spectra.
The EEM spectrum was divided horizontally and verti-
cally into five regions. Aromatic protein-like substances
were represented by regions (I) and (II), fulvic-acid-like
substances by region (III), soluble-microbial-byproduct-
like substances by region (IV), and humic-acid-like sub-
stances by region (V) (Chen et al. 2003). EEM spectra
were analyzed using fluorescence region integration (FRI)
to evaluate the distribution of organic matter.

PARAFAC analysis was carried out in MATLAB 2018a
(Mathworks, Natick, MA) with the DOMFluor toolbox
(www.models.life.ku.dk), according to the tutorial of
Stedmon (Stedmon and Bro 2008). Component identi-
fication was conducted through the OpenFluor online
spectral library (https://openfluor.lablicate.com), which
catalogs auto-fluorescence spectra of environmental
organic compounds (Murphy et al. 2014). The humifi-
cation index (HIX) was computed as H/(L+H), where
H and L are the integrated emission intensities in the
ranges of 435-480 nm and 300-345 nm, respectively,
under an excitation of 254 nm. These two areas are calcu-
lated between emission wavelengths 300 nm and 345 nm
for L and between 435 and 480 nm for H. The biogenic
index (BIX) is calculated at A, 310 nm, by dividing the
fluorescence intensity emitted at A, 380 nm, by the fluo-
rescence intensity emitted at A,,, 430 nm (Huguet et al.
2009).

2.3.4 High-throughput sequencing

To reveal the microbial succession, DNA was extracted
from the composting samples collected on 0, 7, 21 and 42
day. Each sample was analyzed in three replicates. DNA
was extracted by utilizing the AxyPrep DNA Isolation
Kit (AXYGEN Inc., United States). The high-through-
put sequencing was performed with the Illumina HiSeq
PE3000 platform (Shanghai Majorbio Bio-Pharm Tech-
nology Co., Ltd, Shanghai). The PCR primers 338F and
806R targeting the 16S rRNA gene V3-V4 field were used
to investigate the response of composting bacteria to dif-
ferent biochar.

2.3.5 Quantitative PCR of genes

The total genomic DNA for detecting genes and 16S
rRNA was extracted using the FastDNA Spin Kit for
Soil (MP Biomedicals) following the manufacturer’s
instructions. Nitrogen genes (amoA, hao, nxrA) and
16S rRNA were quantified by the WaferGen SmartChip
Real-Time qPCR System (WaferGen Bio-systems, Fre-
mont, CA, USA). Primers (Table S2) from previous
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studies (Liu et al. 2024) and from Anhui Microanaly
Genetech Co., Ltd were employed for amplification.

2.4 Statistical analysis

In this study, the mean values and standard deviations
of the triplicate measurements for each treatment are
reported. Statistics were analysed with SAS 8.2 (SAS
Institute, Cary, NC, USA) and SPSS 26.0 (IBM, USA).
OriginPro 2024 and Adobe Illustrator 2021 software
were used to generate graphs. Differential bacteria
between different treatments were identified using
a three-group comparison and Linear Discriminant
Analysis Effect Size (LEfSe). Moreover, bacterial func-
tions were predicted based on the Functional Anno-
tation of Prokaryotic Taxa (FAPROTAX) database.
An interactive Mantel test correlation heatmap was
generated using the ChiPlot online website (https://
www.chiplot.online/).

¢ (B)
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3 Results and discussion

3.1 Characterization of biochar

The efficacy of biochar in composting systems is intrin-
sically linked to its structural and compositional charac-
teristics (An et al. 2022). Phosphorus (P) loading on the
biochar (4.22% in BCP, 3.45% in BCPM) induced sur-
face roughening and particle irregularity (Fig. 1A-C),
resulting in reduced specific surface area (Table 1). Fur-
thermore, BCPM exhibited additional magnesium (Mg)
enrichment (0.88%) compared to BCP, as confirmed
by EDS elemental mapping and quantitative elemen-
tal detection (Fig. 1D—-@). Although direct XRD or XPS
speciation was not performed, prior studies confirm that
KH,PO,-modified biochars retain predominantly bio-
available orthophosphates and condensed phosphates
(Huang et al. 2023). Despite the lower P concentration
in BCPM compared to BCP, the synergistic interaction
between P and Mg could further improve nitrogen fixa-
tion efficiency. Notably, the total amount of P and Mg
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Fig. 1 Scanning Electron Microscopy (SEM) images of BC (A), BCP (B) and BCPM (C); Energy Dispersive X-ray Spectrometer (EDS) images
of BC (D), BCP (E) and BCPM (F); G P and Mg element content; H Infrared spectra. BC, BCP and BCPM represent conventional biochar (BC),
phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM), respectively
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Table 1 Basic physicochemical properties of biochar
Treatments SSA APD TPV pH EC Element

(m?g7™") (nm) (em3*g™) ) (mScm™) C (%) N (%) H (%) S (%)
BC 10.97 4.06 0.0111 8.23 0.71 48.76 0.99 3.16 0.21
BCP 5.61 8.06 0.0116 6.86 455 42.84 0.88 2.68 0.16
BCPM 5.01 9.30 0.0120 6.99 447 39.39 0.82 2.75 0.15

The specific surface area (SSA), average pore diameter (APD) and total pore volume (TPV)

BC, BCP and BCPM represent conventional biochar (BC), phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM), respectively

was approximately the same for BCP (4.62%) and BCPM
(4.54%). FTIR analysis revealed that phosphate salt and
magnesium salt modifications introduced oxygen-con-
taining (C=0, C-0, —OH) and acidic (COO") functional
groups, enhancing NH,* adsorption capacity through the
provision of active sites (Li et al. 2019; Wang et al. 2022c).
In comparison to BC, BCP and BCPM introduced P/Mg
and new functional groups, which resulted in alterations
to the properties of biochar.

3.2 Physicochemical parameters of compost

All three treatments exhibited superior rapid warming
performance, reaching the thermophilic stage (>55 °C)
on the first day (Fig. 2A). This phenomenon was attrib-
uted to the ability of biochar to enhance the metabolic
efficiency of microorganisms, thereby facilitating the
rapid decomposition of organic matter (OM) for heat
production during composting. Modified biochars main-
tained thermophilic conditions (> 55 °C) for 18 days with-
out compromising compost safety. Following a period of
21 days, the BCP and BCPM treatments exhibited accel-
erated cooling into the maturity phase. This facilitates the
formation of humus from small molecules that are disin-
tegrated during the thermophilic phase.

The composting process was observed to demonstrate
opposing trends in oxygen concentration and tempera-
ture (Fig. 2B). The trend of oxygen concentration was
consistent across treatments, with oxygen content gradu-
ally decreasing and then increasing again after turning.
Reduced aeration (cut 50% on day 9; cut 75% on day 22)
caused transient oxygen fluctuations during thermophilic
phases. Oxygen levels remained above 5% throughout the
composting process to maintain aerobic microbial activ-
ity (Zeng et al. 2016).

The electrical conductivity (EC) value affects the qual-
ity of the compost as well as its potential phytotoxicity.
The EC demonstrated a declining and then ascending
trend (Fig. 2E). The final EC of the three treatments
reached a plateau at approximately 2.4 mS cm™, below
the the phytotoxicity threshold (4 mS cm™). It is worth
noting that the addition of phosphate and magne-
sium salts to the compost resulted in high conductivity

values, even exceeding phytotoxicity threshold (Chan
et al. 2016). However, the addition of BCP and BCPM
was observed to mitigate this phenomenon. This mitiga-
tion arose from NH,* immobilization via struvite crystal-
lization and surface adsorption (Jiang et al. 2016).

The seed germination index (GI) presented a fluctuat-
ing upward trend (Fig. 2F). GI values of the treatments
reached the highest values on the 35th day (BC: 107.61%;
BCP: 124.19%; BCPM: 133.86%), driven by the reduc-
tion of phytotoxic substances (e.g., volatile fatty acids,
NH,*) and humus formation (Wang et al. 2020). The final
GI decreased significantly (reaching 85.81-94.87%),
which was correlated with salt ion accumulation during
the maturity period. However, the final GI values of BCP
and BCPM were increased by 1.42% and 10.57%, respec-
tively, relative to BC. This may be related to the fact that
phosphorus and magnesium are key nutrients required
by plants in biological processes, including enzyme activ-
ity, protein synthesis, photosynthesis and seed germina-
tion (Wang et al. 2022b). It is also likely that BCP and
BCPM promote humification.

3.3 Nitrogen transformation

The nitrogen transformation dynamics revealed distinct
patterns in NH,* and NO;~ evolution (Fig. 3A, B). All
treatments exhibited a predominant trajectory of ini-
tial NH," accumulation followed by progressive deple-
tion, despite slight divergence in BC during days 28-35
(Fig. 3A). During thermophilic phases, NH,* accumula-
tion stemmed from enhanced organic nitrogen miner-
alization mediated by ammonifying microbiota (Awasthi
et al. 2017). Subsequently, as the temperature decreased,
the NH,* content also declined, which may be associated
with the resumption of nitrification (Zhang et al. 2019)
This was also supported by the fact that a significant
increase in NO;~ content could be observed on the 35th
day of composting. At the end of composting, the NO;~
content of BCP and BCPM was significantly increased
by 87 and 88 times, respectively, compared to BC (5.21
mg kg'DM). NH,* content was consistently higher in
BCP and BCPM than in BC. NH,* accumulation in BCP
and BCPM compost increased by 32.84% and 23.06%,
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Fig. 2 Temporal changes in the A temperature, B oxygen content, C electrical conductivity (EC) and D germination index (Gl) during pig manure
composting. BC, BCP and BCPM represent treatments with the addition of conventional biochar (BC), phosphorus-modified biochar (BCP)

and phosphorus-magnesium co-modified biochar (BCPM), respectively

respectively. Similar results were found in the study
by Jiang et al. (2016), where the addition of magnesium
salts and phosphates was able to increase the NH, and
NO;™ concentrations.

The mineralisation of organic nitrogen to NH,* and
subsequent conversion to NH; could occur under condi-
tions of high temperature and alkaline pH. All treatments
exhibited substantial NH; emissions during the thermo-
philic phase, with peak emission rates recorded at 0.67,
0.57, and 0.51 g kg™'DM d! for BC, BCP, and BCPM,
respectively, during the initial week (Fig. 3C). Notably,
the emission differential between treatments diminished
in the second week as pH levels stabilized.

Compared to BC, BCP and BCPM demonstrated supe-
rior NH; mitigation performance, reducing cumula-
tive emissions by 21.29% and 27.99%, respectively. This
enhancement was attributed to a surface adsorption
through oxygen-containing functional groups (C=0,

COO") that immobilized NH,* (Zhu et al. 2023). Surface
charge modifications played distinct roles. In BCP, phos-
phorus loading increased surface negative charge (from
P-containing groups), enhancing electrostatic attraction
of NH," in the composting pH environment (7.5-9.0). In
BCPM, magnesium loading (via Mg** sites) reduced net
negative charge (Ibrahim et al. 2024), further strength-
ening NH," adsorption. Crucially, Mg*" enabled stru-
vite formation, co-immobilizing NH," and PO,* during
composting (Ren et al. 2009). Notably, Gu et al. (2025)
reported an 18% reduction in NH; using Mg-modified
biochar alone, whereas our BCPM achieved a signifi-
cantly higher reduction of 27.99%. This disparity under-
scores phosphate’s indispensable role in forming struvite
(MgNH,PO,). These mechanisms accounted for BCPM’s
additional 8.51% NH; emission mitigation compared to
BCP, underscoring the role of magnesium-phosphate

synergy.
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during composting. BC, BCP and BCPM represent treatments with the addition of conventional biochar (BC), phosphorus-modified biochar (BCP)

and phosphorus-magnesium co-modified biochar (BCPM), respectively

More importantly, total nitrogen (TN) increased by
27.32-31.15% across treatments (Fig. 3D), with BCP/
BCPM achieving 3% higher TN retention than BC, dem-
onstrating effective reconciliation of NH,* and NO;~
accumulation and nitrogen loss mitigation. The parity in
TN levels despite BCPM’s lower NH; emissions implies
nitrogen redistribution, where BCP was likely to stabilize
more nitrogen via humus complexation. Meanwhile, due
to the physical concentration effect and biotransforma-
tion (Yang et al. 2019), total phosphorus (TP) and total
potassium (TK) were significantly higher in BCP (13.42%
and 12.00%) and BCPM (20.00% and 15.50%) compared
to BC (Table 2). It resulted in an increase in total nutri-
ents by 9.96% and 14.27% for BCP and BCPM, respec-
tively. Given the phosphorus modification in both BCP
and BCPM, Olsen-P content serves as a critical indica-
tor of compost fertilizer efficiency. Compared to BC,

BCP and BCPM elevated Olsen-P levels by 26.84% and
32.48%, respectively (Table S3). Modified biochar likely
enhances the dissolution of sparingly soluble inorganic
phosphates and mineralization of organic phosphorus,
thereby increasing bioavailable phosphorus pools (Cui
et al. 2022). Thus, BCP and BCPM demonstrated supe-
rior nutrient retention and supply capacity as safe and
effective amendments.

3.4 Humification variations and pathways

Regulating nitrogen sources enhanced humification effi-
ciency (Lin et al. 2024), as evidenced by multi-spectral
analysis in this study. EEM spectroscopy coupled with
Fluorescence Regional Integration (FRI) revealed distinct
phase-dependent humus evolution patterns (Fig. 4A, B).
All treatments exhibited consistent fluorescence shifts:
decreased soluble microbial by-products (region IV) and
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Table 2 Total nutrients before and after composting
Treatment Do D42

TN TP TK Total TN TP TK Total
BC 18.3 258 15.0 59.1 233 380 20.0 81.3
BCP 18.3 286 16.8 63.8 24.0 43.1 224 89.4
BCPM 183 285 164 63.2 24.0 456 233 929

Total nitrogen (TN), total phosphorus (TP) and total potassium (TK). All values are expressed as g kg™' on a dry weight basis

BC, BCP and BCPM represent treatments with the addition of unmodified biochar (BC), phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified

biochar (BCPM), respectively
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increased humic-like substances (region V) during the 42
days of composting. Notably, BCP and BCPM achieved
33.61% and 24.01% higher Py, /Py, ratios than BC, indi-
cating enhanced humic acid polymerization. These find-
ings align with previous reports on phosphate-enhanced
humus stabilization (Kong et al. 2022a; Liu et al. 2022).
This also explained the higher GI of BCP and BCPM. Ele-
vated phosphorus levels may accelerate organic matter
decomposition and humic acid polymerization by acti-
vating lignin-degrading microbes and serving as electron

acceptors for phosphate respiration. Thus, BCP (P:4.22%)
was superior to BCPM (P:3.45%) in promoting humifica-
tion by 7.74%.

EEM-PARAFAC can be applied to identify fluo-
rescent components of protein-like and humic sub-
stances (HS) in dissolved organic matter and efficiently
reflect the humification process. EEM-PARAFAC
decomposition identified four fluorescent compo-
nents (Fig. 4C). C1 and C2 were humic-like substances
(Jutaporn et al. 2020; Liu et al. 2019; Ren et al. 2021),



Tang et al. Biochar (2026) 8:25

C3 was fulvic-acid substances (Chai et al. 2019), and
C4 was protein-like/amino acid-like (Kim et al. 2020).
F...x percentages may indicate changes in fluorescent
fraction concentrations. Temporal F . variations
revealed critical process dynamics (Fig. 4D). All treat-
ments exhibited gradual enrichment of stable humic
components (C1-C2) concurrent with C4 depletion,
confirming the conversion of protein-like precursors
into aromatic humic structures (Jutaporn et al. 2020;
Yu et al. 2019). The complexity of compost feedstock
properties dictates that humic acid formation typi-
cally involves synergistic interactions between multi-
ple abiotic and biotic pathways (Wei et al. 2022). BCP
and BCPM exhibited comparable compositional trends
that diverged markedly from BC, suggesting distinct
humification pathways between the treatments.

Specifically, in the BC group, F,,, values of all
components peaked on day 21 before declining. This
indicated that the humic acid precursor substances
synthesised in BC were unstable and biodegrad-
able. This transient accumulation pattern was cor-
roborated by the biological index (BIX) (Fig. S1A),
reflecting the dominance of unstable biogenic sub-
stances. Conversely, BCP and BCPM exhibited pro-
gressive accumulation of humic-like (C1-C2) and
fulvic-like (C3) substances, achieving final ratios of
0.16 and 0.15 respectively, surpassing BC’s 0.13. This
is consistent with the previous results for GI and EC.
Notably, BCP/BCPM increased humic acid nitrogen
(HA-N) by 41.99-44.44% over BC, peaking at day 35
(Fig. S2). This aligns with humification dynamics and
ammonia-nitrite succession patterns. These results
confirmed the immobilization of nitrogen into humic
matrices. Phosphate-magnesium modified biochar
could enhance humification through dual pathways.
On the one hand, immobilized NH,* (23-33% higher
than BC) provided nitrogenous skeletons for aro-
matic condensation (Zhang et al. 2021), as evidenced
by SUVA,;, increases (Fig. S1B). On the other hand,
adding phosphate enriched phosphate-solubilizing
microbiota, driving nitrogen utilization efficiency to
accelerate humus precursors formation (Wei et al.
2021). Microbiota-driven protein-like components
(C4) degradation supplied precursors for humic acid
polymerization (Gao et al. 2024). The humification
index (HIX) confirmed these synergistic effects again,
with final values reaching 0.90 (BCP) and 0.88 (BCPM)
compared to 0.86 for BC (Fig. 4D). This 2.07-4.22%
enhancement demonstrates that phosphate-magne-
sium co-modification or phosphate modification opti-
mally coordinates abiotic precursor supply with biotic
polymerization processes, establishing an efficient
pathway for humus formation.
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3.5 Microbial community succession during composting

Microorganisms play a pivotal role in the biochemical
process of composting, driving the transformation and
stabilization of organic matter. The principal coordinate
analysis (PCoA) based on Bray—Curtis distance eluci-
dated the microbial community succession, with PC1
(41.18%) and PC2 (25.92%) explaining treatment-specific
divergence (Fig. 5A). BCP and BCPM accelerated com-
munity succession, particularly during thermophilic (day
7) and cooling (day 21) phases, with convergence patterns
emerging during maturation as temperature decreased.

Initial communities were dominated by Firmicutes
(88.16%) and Bacteroidota (10.67%), collectively consti-
tuting >95% of sequences (Fig. 5B). Thermophilic-phase
oxygenic conditions favored functional Firmicutes gen-
era (e.g. Corynebacterium and Bacillus) driving protein/
lignocellulose degradation (Liu et al. 2023c). Actinobac-
teriota, critical for recalcitrant organic matter decompo-
sition (Gladkov et al. 2022), increased markedly during
thermophilic phases (28-39% abundance). BCP treat-
ment outperformed BC and BCPM in enriching Act-
inobacteriota (31.14% and 39.64% in thermophilic and
cooling phases, respectively), correlating with enhanced
humus precursor accumulation. The results corroborated
BCP’s optimal humification performance. Notably, Act-
inobacteriota and Chloroflexi (enriched in BCP/BCPM
during humification) synergistically mediated phosphate-
regulated nitrogen transformation and humic acid syn-
thesis, consistent with established humification pathways
(Wang et al. 2022a, b).

LEfSe analysis identified stage-specific biomarkers
regulated by modified biochar (Fig. 5C). BCPM enriched
thermophilic-phase biomarkers (Bacillus, Tepidimicro-
bium) that enhanced NH; mitigation, while promot-
ing Corynebacterium-mediated depolymerization of
organics into humic acid precursors (e.g., amino acids,
reducing sugars, and polyphenols). BCP and BCPM
treatments uniquely enriched Terrisporobacter and
Clostridium_sensu_stricto_1 for organic degradation,
alongside Ammoniibacillus to reduce nitrogen loss dur-
ing the cooling phase (Wei et al. 2022). In contrast, Ther-
moclostridium and Planifilum were prevalent in the BC
treatments (8.88% and 4.24%, respectively), exhibiting
ammonia-oxidizing activity that likely exacerbated nitro-
gen loss through volatilization (Hoang et al. 2022). Dur-
ing the cooling and maturation phase, BCP and BCPM
selectively enriched cellulolytic genera (Thermobifida,
Saccharomonospora), synergistically enhancing biotic-
abiotic lignocellulose-to-humus conversion (Zhang et al.
2023). These phosphate-magnesium co-modification or
phosphate modification optimized core microbial succes-
sion, demonstrating dual benefits in humification promo-
tion and nitrogen retention.
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Fig. 5 A (-diversity (indicated by PCoA based on Bray—Curtis); B Dominant bacterial community at the phylum level (relative abundance > 1%)
during composting; C Linear discriminant effect size (LEfSe) analysis to screen biomarkers at the genus level from bacterial community and their
relative abundance at different stages of composting (p>0.05). BC, BCP and BCPM represent treatments with the addition of conventional biochar
(BQ), phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM), respectively.

3.6 Functional microbial metabolism during composting

qPCR-based quantification of nitrifying genes (amoA,
hao and nxrA) elucidated their mediation of nitro-
gen cycling toward humification pathways (Fig. 6). The
abundance of nitrification genes exhibited a progres-
sive increase, indicating enhanced nitrification activ-
ity that aligned with NO;~ accumulation trends (Chen
et al. 2023a, b; Liu et al. 2023c). Nitrogen transforma-
tion mediated by functional microorganisms may indi-
rectly regulate humus formation (Tian et al. 2024).
Ammonia-oxidizing bacteria (AOB) catalyze the con-
version of NH,*-N to NO,™-N through amoA-encoded
ammonia monooxygenase, thereby stimulating microbial
biosynthesis (e.g., Bacillaceae) to drive humus forma-
tion. Thus, amoA gene dynamics are critically linked to
nitrogen cycling and humification (Xu et al. 2022). The
absolute abundance of the amoA gene in the BCP and
BCPM groups was found to exceed that of the BC group
(Fig. 6A), which was attributed to the fact that BCP and
BCPM provided sufficient substrate (NH,*) to AOB by
BCP and BCPM. Correspondingly, Bacillaceae taxa (a
humification-associated biomarker) in BCP and BCPM
increased by 125% and 158% during the cooling phase,
and 53% and 76% during the maturation phase com-
pared to BC, facilitating the degradation of protein-like
substances (C4 fraction) for humic precursor synthesis

(Huang et al. 2022). The hao gene, encoding hydroxy-
lamine oxidoreductase (HAO), governs the energy-
yielding oxidation of hydroxylamine critical for AOB
proliferation (Wu et al. 2012). Its temporal expression
pattern paralleled that of amoA, with suppressed activ-
ity during thermophilic phases and subsequent activation
in cooling stages. Subsequent nitrite oxidation mediated
by nxrA completed the nitrification cascade. Despite
BCPM exhibiting 12.43-fold higher mxrA abundance
than BCP at maturity, no significant NO;™-N divergence
was observed, likely due to competitive NO,™ utilization
between nxrA-harboring microbes and denitrifiers (Duan
et al. 2024). Strong inter-gene correlations (amoA, hao,
nxrA; p<0.05) suggest synergistic regulation of nitrogen
transformation networks, potentially redirecting nitrog-
enous compounds toward humic precursor synthesis.
FAPROTAX annotation elucidated metabolic func-
tions associated with nitrogen cycling and organic mat-
ter decomposition (Fig. 7A, B). Biochar amendments
induced phase-specific functional differentiation within
microbial consortia. Nitrogen-related functions (e.g.,
nitrogen fixation, nitrite ammonification, nitrate respira-
tion) accounted for 0.18-2.53% of total annotations, with
elevated activity during thermophilic (day 7) and matu-
ration phases (day 42) corresponding to NH,* and NO;~
peaks. BCP and BCPM enhanced nitrogen-metabolizing
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Fig. 6 Nitrogen cycle pathways in composting: A-C Abundance dynamics of nitrification genes (amoA, hao, nxrA) and D Nitrification processes

populations by 57% and 77% during thermophiles, and
22% and 14% at maturity compared to BC, corroborat-
ing gene-level results above. BCPM significantly ampli-
fied nitrogen respiration during the cooling phase. This
process was potentially mediated by the keystone genus
Thermobifida, which enhances microbial cooperation
via positive cohesion effects to facilitate cellulose deg-
radation (Zhao et al. 2022b). Organic degradation func-
tions (cellulolysis, xylanolysis, ligninolysis) significantly
increased and then decreased (0.08-17.12%), reflecting
the gradual decrease of readily degradable organic mat-
ter. BCP and BCPM treatments selectively enhanced cel-
lulolytic and xylanolytic capacities during cooling and
maturation phases, thereby enriching humification pre-
cursors. Overall, BCP and BCPM optimized microbial
functionality to synergistically improve nitrogen reten-
tion and humification efficiency in composting systems.

3.7 Mechanisms for synergistic nitrogen-humification
enhancement

The Mantel test established a correlation network among

core microbiota and composting performance (physico-

chemical factors, nitrogen transformation, and humifica-

tion), elucidating the multi-scale regulatory mechanisms

of BCP and BCPM in composting (Fig. 7C). Tempera-
ture, as a key physicochemical factor, significantly influ-
enced the dynamics of TN and humic components (C1,
C2, C3) (p<0.05). TN showed a significant positive cor-
relation with humic components (C1, C2, C3) and the
humification index (HIX) (p<0.05). These results fur-
ther demonstrated that BCP/BCPM established a hier-
archical biotic-abiotic pathway to redirect nitrogenous
organics toward humification. BCP/BCPM immobilizes
NH," via chemisorption by oxygen-containing functional
groups and struvite crystallization. Enriched functional
consortia (e.g., Bacillaceae and Thermobifida) degrade
protein-like substances (C4 depletion) and lignin, gener-
ating nitrogenous precursors (amino acids, polyphenols).
Subsequently, biochar, as an electron shuttle, facilitate
redox reactions, integrating N-precursors into humic
substances (C1/C2 components) via Maillard reactions
and phenol-protein coupling (Fan et al. 2024; Yuan et al.
2017), elevating HA-N (Fig. S2) and HIX (0.88-0.90).
This process was supported by FAPROTAX annota-
tion results, confirming the synergy between biotic and
abiotic fixation. Notably, microbial communities showed
significant positive correlations with NH; emissions and
humic components (p<0.05). Actinobacteria enriched
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during the thermophilic phase drove lignin degradation
to generate polyphenol precursors, while the dominant
genus Thermobifida in the cooling phase facilitated C4
to C1/C2 conversion via cellulase secretion. This phase-
specific microbial succession was closely linked to BCP/
BCPM-mediated microenvironment regulation: BCP/
BCPM maintained localized higher PO,*" or Mg** con-
centrations through mesoporous confinement, promot-
ing struvite crystallization (abiotic nitrogen fixation),
while providing a nitrogen skeleton and humic acid pre-
cursors for functional microbiota to optimize precursor
allocation (directing more protein-like/amino acid-like
substances into humic-like substances). Moreover, func-
tional nitrifying genes (amoA, hao, nxrA) orchestrate
ammonia-to-nitrate oxidation, generating bioavailable N
intermediates that indirectly fuel humification through
microbial anabolism of polyphenol-protein complexes
(Wu et al. 2020). These findings demonstrate that BCP/
BCPM synchronously enhances nitrogen retention and
humification efficiency by coordinating a hierarchical
pathway of "biotic -abiotic".

This study establishes a mechanistic framework for
mitigating nitrogen loss and enhancing humification
efficiency in composting systems through phosphorus-
modified or phosphorus-magnesium co-modified bio-
char. Despite comparable total P+ Mg content in BCP
(4.62%; P:4.22%, Mg:0.88%) and BCPM (4.54%; P:3.45%,
Mg:1.09%), the superior nitrogen retention in BCPM
(8.51% lower NH; emissions vs BCP) and enhanced
humification in BCP (7.74% higher efficiency vs BCPM)
indicate a synergistic allocation of functions. Based
on the phosphorus-magnesium co-modified biochar,
increasing the phosphorus content loaded on biochar
would have a higher potential for humification. Co-opti-
mization of P and Mg in composting systems is recom-
mended to harness their synergistic potential. Future
research should prioritize optimizing biochar P/Mg
loading ratios to maximize synergistic effects to advance
nutrient-efficient management of organic waste.

4 Conclusion

This study elucidated the mechanisms by which phos-
phorus (P) and phosphorus-magnesium (P-Mg) co-mod-
ified biochar synergistically enhance nitrogen retention
and humification during composting through biotic-abi-
otic interplay. Abiotically, BCP and BCPM immobilized
NH," via surface functional groups (C=0 and COO") and
struvite crystallization with PO,>/Mg*, mitigating NH,
emission and increasing nitrogen retention. Biotically,
these amendments enriched keystone bacteria (e.g., Ther-
mobifida, Bacillaceae) and upregulated nitrifying genes
(amoA, hao, nxrA), facilitating nitrogen conversion, while
boosting functional microbiota to drive protein-like
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precursor polymerization into humic substances. Cru-
cially, nitrogen skeletons enabled aromatic condensa-
tion via Maillard reactions and phenol-protein coupling,
while functional microbes supplied humic precursors
through lignocellulose degradation. By integrating func-
tional microbiota-material co-design, this study estab-
lishes a multi-scale regulatory framework for P/P-Mg
biochar mediated composting, thereby advancing preci-
sion nutrient management in organic waste upcycling.
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