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Enhancing the transformation 
of nitrogenous organics to humification 
in composting: biotic and abiotic synergy 
mediated by phosphorus and magnesium 
modified biochar
Ruolan Tang1, Yan Liu1, Jingyuan Ma1, Sheng Yao1,2, Tianyu Ren1, Guoxue Li1, Xiaoyan Gong1, Ruonan Ma1 and 
Jing Yuan1*    

Abstract 

This study developed phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM) 
to improve nitrogen retention and humification during composting. Systematically, this study elucidated the syn-
ergistic biotic-abiotic mechanisms by tracking nitrogen transformation, fluorescence spectral dynamics, functional 
genes and microbial succession. Results demonstrated that compared to conventional biochar (BC), the BCP/BCPM 
immobilized NH₄⁺ via an abiotic pathway (surface adsorption and struvite crystallization), mitigating NH₃ emissions 
by 21.29–27.99%, while upregulating nitrification genes (amoA, hao, nxrA) and enriching functional consortia (Bacil-
laceae) to enhance total nitrogen retention (by 3%) through a biotic pathway. The biotic-abiotic synergy elevated 
the humification index (PV,n/PIII,n) by 24.01–33.61%. The potential mechanism might be that a nitrogen retention 
supplied nitrogen skeleton and nitrogenous precursors for aromatic condensation reactions. Moreover, the enriched 
functional microbiota (Thermobifida) drove lignin degradation and protein-like conversion, redirecting toward pre-
cursors to stable humic-like substances. The phosphorus mainly mediated and enhanced the humification process 
(+ 7.74% vs. BCPM), while magnesium synergistically reduced more NH₃ emissions (–8.51% vs. BCP). Therefore, based 
on the phosphorus-magnesium co-modified biochar, increasing the phosphorus content loaded on biochar offers 
greater potential for humification. The spatiotemporal coordination of abiotic mineral interactions and biotic micro-
bial specialization enabled simultaneous nitrogen retention and humification in composting.

Highlights 

•	 P/P-Mg modified biochar synchronously boosts nitrogen retention and  humification via  biotic-abiotic mecha-
nisms.

•	 Functional microbiota redirect nitrogenous organics to humic substances formation.
•	 Biochar-microbe synergy establishes a dual-functional framework for sustainable composting additive design.
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1  Introduction
Composting serves as a critical technological bridge for 
converting organic waste into humus-rich fertilizers, 
advancing circular agriculture and sustainable devel-
opment (Zhao et  al. 2022a). However, conventional 
composting faces two persistent challenges: substan-
tial nitrogen loss (16–74% of initial nitrogen via NH3 
volatilization) (Cáceres et  al. 2018; Liu et  al. 2023a, b) 
and inefficient humification, which limits its  soil appli-
cation potential (Chen et  al. 2023a). Moreover, humic 
substances (HS), as the cornerstone of compost quality, 
require nitrogen participation in biological and abiotic 
humification pathways (Li et  al. 2025; Xu et  al. 2022). 
Dual enhancement of nitrogen conservation and humifi-
cation efficiency remains unresolved.

Phosphate-magnesium (P-Mg) salts have emerged as 
promising additives, reducing NH3 emissions by 69.4% 
and total nitrogen loss by 60.6% through struvite crys-
tallization (Zhao et  al. 2020). Phosphate additives also 
accelerate abiotic humification by promoting complex 
HS structures (Yang et  al. 2024), while magnesium-
phosphate fertilizers enhance humification via mineral 

release (Kong et  al. 2022a). Therefore, P-Mg salts con-
stitute promising additives for the concurrent optimiza-
tion of humification efficiency and emission mitigation. 
However, high-dose P-Mg salt application (10–20% dry 
weight) triggers salt stress (EC > 4 mS cm⁻1), causing phy-
totoxicity (Chan et al. 2016; Jiang et al. 2016; Shan et al. 
2021) and suppressing microbial activity, thereby com-
promising composting efficiency.

To resolve this issue, biochar emerges as a synergistic 
carrier. Its inherent properties could mitigate NH₃ loss 
and salt stress (Guo et al. 2020), while modified biochars 
(MBC) further overcome limitations of conventional bio-
char (e.g., limited adsorption capacity and insufficient 
surface active site density) through tailored functionali-
zation (Ravindiran et al. 2024). For instance, iron-modi-
fied biochar enhances nitrogen retention in composting 
systems via synergistic surface chemisorption and micro-
biome modulation (Tang et  al. 2025). Qiu et  al. (2025) ​​
demonstrated  that phosphoric acid-modified biochar 
accelerates sewage sludge humification. Gu et  al. (2025) 
engineered magnesium-modified biochar to reduce NH3 
emissions by 18% via pore-functionalization. However, 
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these single-element modified biochars fail to analyze the 
nitrogen–humification trade-off and underlying mecha-
nisms during composting, while the effect of  P-Mg co-
modified biochar’s dual-functional enhancement remains 
unexplored during composting.

Recent advances highlight inseparable linkages 
between compost humification and N transformation, 
prompting intensified investigation into their synergy. 
Recent advances confirm that optimized nitrogen sources 
enhance biodegradability and humification efficiency 
(Lin et al. 2024). Furthermore, Liu et al. (2023a) demon-
strated that as the precursors for humification, the releas-
ing of biogenic N-containing compounds from sludge is 
important for controlling humification.  Nitrogen scar-
city during compost maturation constrains microbial 
metabolism and humic acid polymerization (Wang et al. 
2023a, b). Phosphate additives in compost have been 
shown to enrich functional microbial communities to 
promote the formation of humic acid carbon and nitro-
gen skeletons (Su et  al. 2024). Modified biochars could 
physically adsorb nitrogen while biologically activating 
microbiota, offering dual pathways to enhance compost-
ing humification and nitrogen retention. Specifically, 
surface-loaded ions provide active sites for abiotic NH4⁺ 
fixation, forming a biochar composite carrier through 
microbial regulation. On the other hand, the composite 
carrier simultaneously provides humification precur-
sors and microbial niches for both biological and abiotic 
pathways. Despite its potential, critical knowledge gaps 
persist regarding: How does P-Mg salt-modified bio-
char coordinate abiotic fixation and biological regulation 
under composting stress to achieve dual nitrogen-humifi-
cation enhancement?

This study systematically investigates the mechanisms 
by which P-Mg salt-modified biochar coordinates biolog-
ical and abiotic pathways to enhance nitrogen retention 
and humification in swine manure composting. By inte-
grating tracking of nitrogen transformation, fluorescence 
spectroscopy, functional genomics, and microbial succes-
sion dynamics, we aim to elucidate the interplay between 
P-Mg salt-modified biochar mediated nitrogen conser-
vation and humification processes. Our findings provide 
a novel strategy for developing advanced composting 
additives that concurrently improve fertilizer quality and 
environmental sustainability in waste management.

2 � Materials and methods
2.1 � Composting materials
The raw materials were fresh pig manure, woodchips, and 
cornstalk. Pig manure was collected from the  Sujiatuo 
Pig Farm (Haidian District, Beijing, China). The corn-
stalk was taken from the Shangzhuang Experimental Sta-
tion of China Agricultural University (Haidian District, 

Beijing, China) and crushed into 2–5 cm particles. The 
wood chips were taken from a furniture processing fac-
tory (Hebei) and the particle size was 1–3 mm. Key phys-
iochemical properties of composting materials are shown 
in Table  S1. Biochar made from wood chips was pur-
chased from Henan Lize Environmental Protection Tech-
nology Co., Ltd. The pyrolysis temperature of biochar 
was 500 ℃. The particle size of the biochar was 100 mesh, 
its  organic carbon content was 68%, its  pH value was 
9.00, its  moisture content was 10.35%, and its  ash con-
tent was 9.45%. The modified biochar samples were pre-
pared using the impregnation method (Tang et al. 2025; 
Wang et  al. 2023a). Briefly, the biochar was rinsed with 
deionized water for surface impurities and dried at 60 
℃ for 24 h. According to a previous study by Jiang et al. 
(2016) and Wu et al. (2017), the addition of phosphorus 
(P) and magnesium (Mg) salts at 20% (molar mass) of the 
initial nitrogen content is appropriate. 100 g of biochar 
was immersed in 0.59 mol L–1 KH2PO4 (analytical pure-
grade) solution, and the reaction was carried out at 25 ℃ 
with magnetic stirring at 150 r min–1 for 3 h. The soaked 
biochar was washed with deionised water until the pH of 
the filtrate was maintained, and then dried at 60 °C for 
24 h. The product was cooled, crushed, sieved (0.15 mm), 
and labeled as conventional biochar (BC) or phosphorus-
modified biochar (BCP) respectively. Phosphorus-mag-
nesium co-modified biochar (BCPM) was prepared using 
BCP as a raw material in the same method, with impreg-
nation using 0.59 mol L–1 MgCl₂·6H₂O solution.

2.2 � Experimental system and protocols
Three composting experiments were performed at the 
Shangzhuang Experimental Station of China Agricultural 
University (Haidian District, Beijing, China). A stainless 
steel composting reactor with an effective volume of 60 
L was used in this study. The parameters of this reactor 
have been reported elsewhere (Yuan et al. 2018).

The mixture of pig manure with woodchips and corn-
stalks (as bulking agents) was used as composting feed-
stock at a wet weight ratio of 17:2:1. The moisture 
content of the  feedstock was set at 65% and the mix-
ture weight was 35 kg. Multiple comparative trials sug-
gest that 8–10% biochar addition (dry weight) achieves 
maximal nitrogen conservation efficiency and phospho-
rus bioavailability (Wang et  al. 2021; Wei et  al. 2016; 
Qian et  al. 2013). Three treatments with the  addition 
of 8% (dry weight)  of BC, BCP and BCPM respectively 
were designed and were designated as “BC”, “BCP” and 
“BCPM”. The three treatments were consecutively oper-
ated for 6 weeks and the manual turning was conducted 
on days 7, 14, 21, 28, 35, and 42. The initial aeration rate 
was 0.24 L kg–1 DM min–1. The aeration rate was reduced 
by 50% and 75% during the cooling and maturity periods, 
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respectively. Solid samples were collected from five rep-
resentative points (including the top, middle and bottom 
parts of the compost pile and the inner and outer layers) 
in each reactor after manual turning, homogenized, and 
stored at –4 °C or –80 °C for physicochemical and micro-
biological analysis, respectively. Three technical repli-
cates were analyzed per sample.

2.3 � Analytic methods
2.3.1 � Characterization of biochar materials
The specific surface area and pore structure of BC, BCP 
and BCPM were characterized using an automated spe-
cific surface and porosity analyzer (BET, Micromeritics 
ASAP 2460, USA). Fourier-transform infrared spectros-
copy (FTIR) was employed to analyze the functional 
group composition of the biochar using a Thermo Sci-
entific Nicolet iS20 spectrometer. A scanning electron 
microscope mirror (SEM, ZEISS Gemini 300, Germany) 
was used to analyze the surface morphology of the bio-
char. Energy Dispersive X-ray Spectroscopy (EDS) was 
used to analyze the surface chemistry  of the biochar.

2.3.2 � Physicochemical properties
The moisture content was measured by drying fresh 
solid samples at 105 °C for 12 h. Fresh solid samples were 
mixed with deionized water at a mass ratio of 1:10 and 
shaken for 30 min to obtain the water extract, which was 
used to measure electrical conductivity (EC), and germi-
nation index (GI). The EC values were determined with 
an EC meter (pHS-3C, Shanghai Precision & Scientific 
Instruments Co., Ltd., China). GI was measured using the 
method described previously by (Kong et al. 2022b; Wang 
et  al. 2022b). Fresh solid samples were also extracted 
using 2 M potassium chloride (1:10, w/v) to determine 
the concentration of ammonium nitrogen (NH4

+–N) and 
nitrate nitrogen (NO3

−–N) using a flow analyzer (Techni-
con Auto Analyzer3; Seal Analytical GmbH, Norderstedt, 
Germany). A solution of 2% boric acid and 0.1 M sulphu-
ric acid were utilized to absorb and titrate NH3 for quan-
tification, respectively. Elemental contents contents were 
determined using an elemental analyzer (vario MACRO 
cube, Ele mentar, Hanau, Germany). Nutrients (P, Mg 
and K) were determined by inductively coupled plasma–
mass spectrometry (5800 ICP-OES, Agilent, USA).

2.3.3 � EEM and PARAFAC modeling
EEM fluorescence spectra of the fractions were obtained 
using a Hitachi F-7000 fluorescence spectrophotom-
eter (Hitachi High Technologies, Japan). The excitation 
wavelengths (Ex) were 200 − 600 nm at 10 nm intervals 
and the emission wavelengths (Em) were 200 − 600 nm at 
1 nm intervals. The EEM spectra of Milli-Q water were 
obtained and subtracted as the background of the EEM 

spectra of all the samples in order to minimise the effect 
of Rayleigh scattering and Raman scattering. The meas-
ured fluorescence intensities are given in Raman Units 
(R.U.). All samples were diluted with the same dissolved 
organic carbon (DOC) content to compare EEM spectra. 
The  EEM spectrum was divided horizontally and verti-
cally into five regions. Aromatic protein-like substances 
were represented by regions (I) and (II), fulvic-acid-like 
substances by region (III), soluble-microbial-byproduct-
like substances by region (IV), and humic-acid-like sub-
stances by region (V) (Chen et  al. 2003). EEM spectra 
were analyzed using fluorescence region integration (FRI) 
to evaluate the distribution of organic matter.

PARAFAC analysis was carried out in MATLAB 2018a 
(Mathworks, Natick, MA) with the DOMFluor toolbox 
(www.​models.​life.​ku.​dk), according to the   tutorial of 
Stedmon (Stedmon and Bro 2008). Component identi-
fication was conducted through the OpenFluor online 
spectral library (https://​openf​luor.​labli​cate.​com), which 
catalogs auto-fluorescence spectra of environmental 
organic compounds (Murphy et  al. 2014). The humifi-
cation index (HIX) was computed as H/(L + H), where 
H and L are the integrated emission intensities in the 
ranges of 435–480 nm and 300–345 nm, respectively, 
under an excitation of 254 nm. These two areas are calcu-
lated between emission wavelengths 300 nm and 345 nm 
for L and between 435 and 480 nm for H. The biogenic 
index (BIX) is calculated at λexc 310 nm, by dividing the 
fluorescence intensity emitted at λem 380 nm, by the fluo-
rescence intensity emitted at λem 430 nm (Huguet et  al. 
2009).

2.3.4 � High‑throughput sequencing
To reveal the microbial succession, DNA was extracted 
from the composting samples collected on 0, 7, 21 and 42 
day. Each sample was analyzed in three replicates. DNA 
was extracted by utilizing the AxyPrep DNA Isolation 
Kit (AXYGEN Inc., United States). The high-through-
put sequencing was performed with the Illumina HiSeq 
PE3000 platform (Shanghai Majorbio Bio-Pharm Tech-
nology Co., Ltd, Shanghai). The PCR primers 338F and 
806R targeting the 16S rRNA gene V3-V4 field were used 
to investigate the response of composting bacteria  to dif-
ferent biochar.

2.3.5 � Quantitative PCR of genes
The total genomic DNA for detecting genes and 16S 
rRNA was extracted using the FastDNA Spin Kit for 
Soil (MP Biomedicals) following the manufacturer’s 
instructions. Nitrogen genes (amoA, hao, nxrA) and 
16S rRNA were quantified by the WaferGen SmartChip 
Real-Time qPCR System (WaferGen Bio-systems, Fre-
mont, CA, USA). Primers (Table  S2) from previous 

http://www.models.life.ku.dk
https://openfluor.lablicate.com
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studies (Liu et  al. 2024) and from  Anhui Microanaly 
Genetech Co., Ltd were employed for amplification.

2.4 � Statistical analysis
In this study, the mean values and standard deviations 
of the triplicate measurements for each treatment are 
reported. Statistics were analysed with SAS 8.2 (SAS 
Institute, Cary, NC, USA) and SPSS 26.0 (IBM, USA). 
OriginPro 2024 and Adobe Illustrator 2021 software 
were used to generate graphs. Differential bacteria 
between different treatments were identified using 
a  three-group comparison and Linear Discriminant 
Analysis Effect Size (LEfSe). Moreover, bacterial func-
tions were predicted based on the Functional Anno-
tation of Prokaryotic Taxa (FAPROTAX) database. 
An  interactive Mantel test correlation heatmap was 
generated  using  the ChiPlot online website (https://​
www.​chipl​ot.​online/).

3 � Results and discussion
3.1 � Characterization of biochar
The efficacy of biochar in composting systems is intrin-
sically linked to its structural and compositional charac-
teristics (An et al. 2022). Phosphorus (P) loading on the 
biochar (4.22% in BCP, 3.45% in BCPM) induced sur-
face roughening and particle irregularity (Fig.  1A–C), 
resulting in reduced specific surface area (Table 1). Fur-
thermore, BCPM exhibited additional magnesium (Mg) 
enrichment (0.88%) compared to BCP, as confirmed 
by EDS elemental mapping and quantitative elemen-
tal detection (Fig. 1D–G). Although direct XRD or XPS 
speciation was not performed, prior studies confirm that 
KH₂PO₄-modified biochars retain predominantly bio-
available orthophosphates and condensed phosphates 
(Huang et  al. 2023). Despite the lower P concentration 
in BCPM compared to BCP, the synergistic interaction 
between P and Mg could further improve nitrogen fixa-
tion efficiency. Notably, the total amount of P and Mg 
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was approximately the same for BCP (4.62%) and BCPM 
(4.54%). FTIR analysis revealed that phosphate salt and 
magnesium salt modifications introduced oxygen-con-
taining (C=O, C–O, –OH) and acidic (COO⁻) functional 
groups, enhancing NH4

+ adsorption capacity through the 
provision of active sites (Li et al. 2019; Wang et al. 2022c). 
In comparison to BC, BCP and BCPM introduced P/Mg 
and new functional groups, which resulted in alterations 
to the properties of biochar. 

3.2 � Physicochemical parameters of compost
All three treatments exhibited superior rapid warming 
performance, reaching the thermophilic stage (> 55 °C) 
on the first day (Fig.  2A). This phenomenon was attrib-
uted to the ability of biochar to enhance the metabolic 
efficiency of microorganisms, thereby facilitating the 
rapid decomposition of organic matter (OM) for heat 
production during composting. Modified biochars main-
tained thermophilic conditions (> 55 °C) for 18 days with-
out compromising compost safety. Following a period of 
21 days, the BCP and BCPM treatments exhibited accel-
erated cooling into the maturity phase. This facilitates the 
formation of humus from small molecules that are disin-
tegrated during the thermophilic phase.

The composting process was observed to demonstrate 
opposing trends in oxygen concentration and tempera-
ture (Fig.  2B). The trend of oxygen concentration was 
consistent across treatments, with oxygen content gradu-
ally decreasing and then increasing again after turning. 
Reduced aeration (cut 50% on day 9; cut 75% on day 22) 
caused transient oxygen fluctuations during thermophilic 
phases. Oxygen levels remained above 5% throughout the 
composting process to maintain aerobic microbial activ-
ity (Zeng et al. 2016).

The electrical conductivity (EC) value affects the qual-
ity of the compost as well as its potential phytotoxicity. 
The EC demonstrated a declining and then ascending 
trend (Fig.  2E). The final EC of the three treatments 
reached a plateau at approximately 2.4 mS cm–1, below 
the the phytotoxicity threshold (4 mS cm–1). It is worth 
noting that the addition of phosphate and magne-
sium salts to the compost resulted in high conductivity 

values, even exceeding phytotoxicity threshold (Chan 
et  al. 2016). However, the addition of  BCP and BCPM 
was observed to mitigate this phenomenon. This mitiga-
tion arose from NH4

+ immobilization via struvite crystal-
lization and surface adsorption (Jiang et al. 2016).

The seed germination index (GI) presented a fluctuat-
ing upward trend (Fig.  2F). GI values of the treatments 
reached the highest values on the 35th day (BC: 107.61%; 
BCP: 124.19%; BCPM: 133.86%), driven by the  reduc-
tion  of  phytotoxic substances (e.g., volatile fatty acids, 
NH4

+) and humus formation (Wang et al. 2020). The final 
GI decreased significantly (reaching 85.81–94.87%), 
which was correlated with salt ion accumulation during 
the maturity period. However, the final GI values of BCP 
and BCPM were increased by 1.42% and 10.57%, respec-
tively, relative to BC. This may be related to the fact that 
phosphorus and magnesium are key   nutrients required 
by plants in biological processes, including enzyme activ-
ity, protein synthesis, photosynthesis and seed germina-
tion (Wang et  al. 2022b). It is also likely that BCP and 
BCPM promote humification.

3.3 � Nitrogen transformation
The nitrogen transformation dynamics revealed distinct 
patterns in NH4

+  and NO3
− evolution (Fig.  3A, B). All 

treatments exhibited a predominant trajectory of ini-
tial NH₄⁺ accumulation followed by progressive deple-
tion, despite slight divergence in BC during days 28–35 
(Fig. 3A). During thermophilic phases, NH4

+ accumula-
tion stemmed from enhanced organic nitrogen miner-
alization mediated by ammonifying microbiota (Awasthi 
et al. 2017). Subsequently, as the temperature decreased, 
the NH4

+ content also declined, which may be associated 
with the resumption of nitrification (Zhang et  al. 2019) 
This was also supported by the fact that a significant 
increase in NO3

− content could be observed on the 35th 
day of composting. At the end of composting, the NO3

− 
content of BCP and BCPM was significantly increased 
by 87 and 88 times, respectively, compared to BC (5.21 
mg kg–1DM). NH4

+ content  was consistently higher in 
BCP and BCPM than in BC. NH4

+ accumulation in BCP 
and BCPM compost increased by 32.84% and 23.06%, 

Table 1  Basic physicochemical properties of biochar

The specific surface area (SSA), average pore diameter (APD) and total pore volume (TPV)

BC, BCP and BCPM represent conventional biochar (BC), phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM), respectively

Treatments SSA APD TPV pH EC Element

(m2 g−1) (nm) (cm3 g−1) (-) (mS cm−1) C (%) N (%) H (%) S (%)

BC 10.97 4.06 0.0111 8.23 0.71 48.76 0.99 3.16 0.21

BCP 5.61 8.06 0.0116 6.86 4.55 42.84 0.88 2.68 0.16

BCPM 5.01 9.30 0.0120 6.99 4.47 39.39 0.82 2.75 0.15
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respectively. Similar results were found in the study 
by  Jiang et  al. (2016), where the addition of magnesium 
salts and phosphates was able to increase the NH4

+and 
NO3

− concentrations.
The mineralisation of organic nitrogen to NH4

+ and 
subsequent conversion to NH3 could occur under condi-
tions of high temperature and alkaline pH. All treatments 
exhibited substantial NH3 emissions during the thermo-
philic phase, with peak emission rates recorded at 0.67, 
0.57, and 0.51 g kg−1DM d−1 for BC, BCP, and BCPM, 
respectively, during the initial week (Fig.  3C). Notably, 
the emission differential between treatments diminished 
in the second week as pH levels stabilized.

Compared to BC, BCP and BCPM demonstrated supe-
rior NH3 mitigation performance, reducing cumula-
tive emissions by 21.29% and 27.99%, respectively. This 
enhancement was  attributed to a surface adsorption 
through oxygen-containing functional groups (C=O, 

COO−) that immobilized NH₄+ (Zhu et al. 2023). Surface 
charge modifications played distinct roles. In BCP, phos-
phorus loading increased surface negative charge (from 
P-containing groups), enhancing electrostatic attraction 
of NH₄⁺ in the composting pH environment (7.5–9.0). In 
BCPM, magnesium loading (via Mg2⁺ sites) reduced net 
negative charge (Ibrahim et  al. 2024), further strength-
ening NH₄⁺ adsorption. Crucially, Mg2⁺ enabled stru-
vite formation, co-immobilizing NH₄⁺ and PO₄3⁻ during 
composting (Ren et  al. 2009). Notably, Gu et  al. (2025) 
reported an 18% reduction in NH₃ using Mg-modified 
biochar alone, whereas  our BCPM achieved a signifi-
cantly higher reduction of 27.99%. This disparity under-
scores phosphate’s indispensable role in forming struvite 
(MgNH₄PO₄). These mechanisms accounted for BCPM’s 
additional 8.51% NH3 emission mitigation compared to 
BCP, underscoring the role of magnesium-phosphate 
synergy.
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More importantly, total nitrogen (TN) increased by 
27.32–31.15% across treatments (Fig.  3D), with BCP/
BCPM achieving 3% higher TN retention than BC, dem-
onstrating effective reconciliation of NH4

+  and NO3
− 

accumulation and nitrogen loss mitigation. The parity in 
TN levels despite BCPM’s lower NH3 emissions implies 
nitrogen redistribution, where BCP was likely to stabilize 
more nitrogen via humus complexation. Meanwhile, due 
to the  physical concentration effect and biotransforma-
tion (Yang et  al. 2019), total phosphorus (TP) and total 
potassium (TK) were significantly higher in BCP (13.42% 
and 12.00%) and BCPM (20.00% and 15.50%) compared 
to BC (Table 2). It resulted in an increase in total nutri-
ents by 9.96% and 14.27% for BCP and BCPM, respec-
tively. Given the phosphorus modification in both BCP 
and BCPM, Olsen-P content serves as a critical indica-
tor of compost fertilizer efficiency. Compared to BC, 

BCP and BCPM elevated Olsen-P levels by 26.84% and 
32.48%, respectively (Table  S3). Modified biochar likely 
enhances the dissolution of sparingly soluble inorganic 
phosphates and mineralization of organic phosphorus, 
thereby increasing bioavailable phosphorus pools (Cui 
et  al. 2022). Thus, BCP and BCPM demonstrated supe-
rior nutrient retention and supply capacity as safe and 
effective amendments.

3.4 � Humification variations and pathways
Regulating nitrogen sources enhanced humification effi-
ciency (Lin et  al. 2024), as evidenced by multi-spectral 
analysis in this study. EEM spectroscopy coupled with 
Fluorescence Regional Integration (FRI) revealed distinct 
phase-dependent humus evolution patterns (Fig. 4A, B). 
All treatments exhibited consistent fluorescence shifts: 
decreased soluble microbial by-products (region IV) and 
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increased humic-like substances (region V) during the 42 
days  of composting. Notably, BCP and BCPM achieved 
33.61% and 24.01% higher PV,n/PIII,n ratios than BC, indi-
cating enhanced humic acid polymerization. These find-
ings align with previous reports on phosphate-enhanced 
humus stabilization (Kong et  al. 2022a; Liu et  al. 2022). 
This also explained the higher GI of BCP and BCPM. Ele-
vated phosphorus levels may accelerate organic matter 
decomposition and humic acid polymerization by acti-
vating lignin-degrading microbes and serving as electron 

acceptors for phosphate respiration. Thus, BCP (P:4.22%) 
was superior to BCPM (P:3.45%) in promoting humifica-
tion by 7.74%.

EEM-PARAFAC can be applied to identify fluo-
rescent components of protein-like and humic sub-
stances (HS) in dissolved organic matter and efficiently 
reflect the humification process. EEM-PARAFAC 
decomposition identified four fluorescent compo-
nents (Fig. 4C). C1 and C2 were humic-like substances 
(Jutaporn et al. 2020; Liu et al. 2019; Ren et al. 2021), 

Table 2  Total nutrients before and after composting

Total nitrogen (TN), total phosphorus (TP) and total potassium (TK). All values are expressed as g kg⁻1 on a dry weight basis

BC, BCP and BCPM represent treatments with the addition of unmodified biochar (BC), phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified 
biochar (BCPM), respectively

Treatment D0 D42

TN TP TK Total TN TP TK Total

BC 18.3 25.8 15.0 59.1 23.3 38.0 20.0 81.3

BCP 18.3 28.6 16.8 63.8 24.0 43.1 22.4 89.4

BCPM 18.3 28.5 16.4 63.2 24.0 45.6 23.3 92.9

Fig. 4  A Excitation-emission matrix spectra of initial mixture and final compost of different treatments; B Distribution of fluorescence regional 
integration from samples (region I: aromatic protein-like substances, region II: aromatic protein-like substances, region III: fulvic acid-like substances, 
region IV: soluble microbial by-product-like substances, region V: humic-like substances); C Three fluorescent components decomposed 
by the PARAFAC model according to the EEMs of humic acid samples; D Distribution of three PARAFAC-derived components. Fmax (a.u.) 
represents the maximum fluorescence intensity (arbitrary units)
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C3 was fulvic-acid substances (Chai et  al. 2019), and 
C4 was protein-like/amino acid-like (Kim et al. 2020). 
Fmax percentages may indicate changes in fluorescent 
fraction concentrations. Temporal Fmax variations 
revealed critical process dynamics (Fig. 4D). All treat-
ments exhibited gradual enrichment of stable humic 
components (C1–C2) concurrent with C4 depletion, 
confirming the conversion of  protein-like precursors 
into aromatic humic structures (Jutaporn et  al. 2020; 
Yu et  al. 2019). The complexity of compost feedstock 
properties dictates that humic acid formation typi-
cally involves synergistic interactions between multi-
ple abiotic and biotic pathways (Wei et al. 2022). BCP 
and BCPM exhibited comparable compositional trends 
that diverged markedly from BC, suggesting distinct 
humification pathways between the treatments.

Specifically, in the BC group, Fmax values of all 
components peaked on day 21 before declining. This 
indicated that the humic acid precursor substances 
synthesised in BC were unstable and biodegrad-
able. This transient accumulation pattern was  cor-
roborated by the biological index (BIX) (Fig. S1A), 
reflecting the  dominance  of  unstable biogenic sub-
stances. Conversely, BCP and BCPM exhibited pro-
gressive accumulation of humic-like (C1–C2) and 
fulvic-like (C3) substances, achieving final ratios of 
0.16 and 0.15 respectively, surpassing BC’s 0.13. This 
is consistent with the previous results for GI and EC. 
Notably, BCP/BCPM increased humic acid nitrogen 
(HA-N) by 41.99–44.44% over BC, peaking at day 35 
(Fig. S2). This aligns with humification dynamics and 
ammonia-nitrite succession patterns. These results 
confirmed ​​the  immobilization of nitrogen into humic 
matrices. Phosphate-magnesium modified   biochar 
could enhance humification through dual pathways. 
On the one hand, immobilized NH4

+ (23–33% higher 
than BC) provided nitrogenous skeletons for aro-
matic condensation (Zhang et  al. 2021), as evidenced 
by SUVA254 increases (Fig. S1B). On the other hand, 
adding phosphate enriched phosphate-solubilizing 
microbiota, driving nitrogen utilization efficiency to 
accelerate humus precursors formation (Wei et  al. 
2021). Microbiota-driven protein-like components 
(C4) degradation supplied precursors for humic acid 
polymerization (Gao et  al. 2024). The humification 
index (HIX) confirmed these synergistic effects again, 
with final values reaching 0.90 (BCP) and 0.88 (BCPM) 
compared to 0.86 for BC (Fig.  4D). This 2.07–4.22% 
enhancement demonstrates that phosphate-magne-
sium co-modification or phosphate modification opti-
mally coordinates abiotic precursor supply with biotic 
polymerization processes, establishing an efficient 
pathway for humus formation.

3.5 � Microbial community succession during composting
Microorganisms play a pivotal role in the biochemical 
process of composting, driving the transformation and 
stabilization of organic matter. The principal coordinate 
analysis (PCoA) based on Bray–Curtis distance eluci-
dated the microbial community succession, with PC1 
(41.18%) and PC2 (25.92%) explaining treatment-specific 
divergence (Fig.  5A). BCP and BCPM accelerated com-
munity succession, particularly during thermophilic (day 
7) and cooling (day 21) phases, with convergence patterns 
emerging during maturation as temperature decreased.

Initial communities were dominated by Firmicutes 
(88.16%) and Bacteroidota (10.67%), collectively consti-
tuting > 95% of sequences (Fig.  5B). Thermophilic-phase 
oxygenic conditions favored functional Firmicutes gen-
era (e.g. Corynebacterium and Bacillus) driving protein/
lignocellulose degradation (Liu et al. 2023c). Actinobac-
teriota, critical for recalcitrant organic matter decompo-
sition (Gladkov et  al. 2022), increased markedly during 
thermophilic phases (28–39% abundance). BCP treat-
ment outperformed BC and BCPM in enriching Act-
inobacteriota (31.14% and 39.64% in thermophilic and 
cooling phases, respectively), correlating with enhanced 
humus precursor accumulation. The results corroborated 
BCP’s optimal humification performance. Notably, Act-
inobacteriota and Chloroflexi (enriched in BCP/BCPM 
during humification) synergistically mediated phosphate-
regulated nitrogen transformation and humic acid syn-
thesis, consistent with established humification pathways 
(Wang et al. 2022a, b).

LEfSe analysis identified stage-specific biomarkers 
regulated by modified biochar (Fig. 5C). BCPM enriched 
thermophilic-phase biomarkers (Bacillus, Tepidimicro-
bium) that enhanced NH3 mitigation, while promot-
ing Corynebacterium-mediated depolymerization of 
organics into humic acid precursors (e.g., amino acids, 
reducing sugars, and polyphenols). BCP and BCPM 
treatments uniquely enriched Terrisporobacter and 
Clostridium_sensu_stricto_1 for organic degradation, 
alongside Ammoniibacillus to reduce nitrogen loss dur-
ing the cooling phase (Wei et al. 2022). In contrast, Ther-
moclostridium and Planifilum were prevalent in the BC 
treatments (8.88% and 4.24%, respectively), exhibiting 
ammonia-oxidizing activity that likely exacerbated nitro-
gen loss through volatilization (Hoang et al. 2022). Dur-
ing the  cooling and maturation phase, BCP and BCPM 
selectively enriched cellulolytic genera (Thermobifida, 
Saccharomonospora), synergistically enhancing biotic-
abiotic lignocellulose-to-humus conversion (Zhang et al. 
2023). These phosphate-magnesium co-modification or 
phosphate modification optimized core microbial succes-
sion, demonstrating dual benefits in humification promo-
tion and nitrogen retention.
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3.6 � Functional microbial metabolism during composting
qPCR-based quantification of nitrifying genes (amoA, 
hao and nxrA) elucidated their mediation of nitro-
gen cycling toward humification pathways (Fig.  6). The 
abundance of nitrification genes exhibited a progres-
sive increase, indicating enhanced nitrification activ-
ity that aligned with NO3

− accumulation trends (Chen 
et  al. 2023a, b; Liu et  al. 2023c). Nitrogen transforma-
tion mediated by functional microorganisms may indi-
rectly regulate humus formation (Tian et  al. 2024). 
Ammonia-oxidizing bacteria (AOB) catalyze the con-
version of NH4

+-N to NO2
−-N through amoA-encoded 

ammonia monooxygenase, thereby stimulating microbial 
biosynthesis (e.g., Bacillaceae) to drive humus forma-
tion. Thus, amoA gene dynamics are critically linked to 
nitrogen cycling and humification (Xu et  al. 2022). The 
absolute abundance of the amoA gene in the BCP and 
BCPM groups was found to exceed that of the BC group 
(Fig. 6A), which was attributed to the fact that BCP and 
BCPM provided sufficient substrate (NH4

+) to AOB by 
BCP and BCPM. Correspondingly, Bacillaceae taxa (a 
humification-associated biomarker) in BCP and BCPM 
increased by 125% and 158% during the  cooling  phase, 
and 53% and 76% during the  maturation phase  com-
pared to BC, facilitating the degradation of protein-like 
substances (C4 fraction) for humic precursor synthesis 

(Huang et  al. 2022). The hao gene, encoding hydroxy-
lamine oxidoreductase (HAO), governs the energy-
yielding oxidation of hydroxylamine critical for AOB 
proliferation (Wu et  al. 2012). Its temporal expression 
pattern paralleled  that of amoA, with suppressed activ-
ity during thermophilic phases and subsequent activation 
in cooling stages. Subsequent nitrite oxidation mediated 
by nxrA completed the nitrification cascade. Despite 
BCPM exhibiting 12.43-fold higher nxrA abundance 
than BCP at maturity, no significant NO3

−-N divergence 
was observed, likely due to competitive NO3

− utilization 
between nxrA-harboring microbes and denitrifiers (Duan 
et  al. 2024). Strong inter-gene correlations (amoA, hao, 
nxrA; p < 0.05) suggest synergistic regulation of nitrogen 
transformation networks, potentially redirecting nitrog-
enous compounds toward humic precursor synthesis.

FAPROTAX annotation elucidated metabolic func-
tions associated with nitrogen cycling and organic mat-
ter decomposition (Fig.  7A, B). Biochar amendments 
induced phase-specific functional differentiation within 
microbial consortia. Nitrogen-related functions (e.g., 
nitrogen fixation, nitrite ammonification, nitrate respira-
tion) accounted for 0.18–2.53% of total annotations, with 
elevated activity during thermophilic (day 7) and matu-
ration phases (day 42) corresponding to NH4

+ and NO3
− 

peaks. BCP and BCPM enhanced nitrogen-metabolizing 

Fig. 5  A β-diversity (indicated by PCoA based on Bray–Curtis); B Dominant bacterial community at the phylum level (relative abundance > 1%) 
during composting; C Linear discriminant effect size (LEfSe) analysis to screen biomarkers at the genus level from bacterial community and their 
relative abundance at different stages of composting (p > 0.05). BC, BCP and BCPM represent treatments with the addition of conventional biochar 
(BC), phosphorus-modified biochar (BCP) and phosphorus-magnesium co-modified biochar (BCPM), respectively.
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populations by 57% and 77% during thermophiles, and 
22% and 14% at maturity compared to BC, corroborat-
ing gene-level results above. BCPM significantly ampli-
fied nitrogen respiration during the cooling phase. This 
process was potentially mediated by the keystone genus 
Thermobifida, which enhances microbial cooperation 
via positive cohesion effects to facilitate cellulose deg-
radation (Zhao et al. 2022b). Organic degradation func-
tions (cellulolysis, xylanolysis, ligninolysis) significantly 
increased and then decreased (0.08–17.12%), reflecting 
the gradual decrease of readily degradable organic mat-
ter. BCP and BCPM treatments selectively enhanced cel-
lulolytic and xylanolytic capacities during cooling and 
maturation phases, thereby enriching humification pre-
cursors. Overall, BCP and BCPM optimized microbial 
functionality to synergistically improve nitrogen reten-
tion and humification efficiency in composting systems.

3.7 � Mechanisms for synergistic nitrogen‑humification 
enhancement

The Mantel test established a correlation network among 
core microbiota and composting performance (physico-
chemical factors, nitrogen transformation, and humifica-
tion), elucidating the multi-scale regulatory mechanisms 

of BCP and BCPM in composting (Fig.  7C). Tempera-
ture, as a key physicochemical factor, significantly influ-
enced the dynamics of TN and humic components (C1, 
C2, C3) (p < 0.05). TN showed a significant positive cor-
relation with humic components (C1, C2, C3) and the 
humification index (HIX) (p < 0.05). These results fur-
ther demonstrated that BCP/BCPM established a hier-
archical biotic-abiotic pathway to redirect nitrogenous 
organics toward humification. BCP/BCPM immobilizes 
NH₄⁺ via chemisorption by oxygen-containing functional 
groups and struvite crystallization. Enriched functional 
consortia (e.g., Bacillaceae and Thermobifida) degrade 
protein-like substances (C4 depletion) and lignin, gener-
ating nitrogenous precursors (amino acids, polyphenols). 
Subsequently, biochar, as an electron shuttle, facilitate 
redox reactions, integrating N-precursors into humic 
substances (C1/C2 components) via Maillard reactions 
and phenol–protein coupling (Fan et al. 2024; Yuan et al. 
2017), elevating HA-N (Fig. S2) and HIX (0.88–0.90).

This process was supported by FAPROTAX annota-
tion results, confirming the synergy between biotic and 
abiotic fixation. Notably, microbial communities showed 
significant positive correlations with NH₃ emissions and 
humic components (p < 0.05). Actinobacteria enriched 

Fig. 6  Nitrogen cycle pathways in composting: A–C Abundance dynamics of nitrification genes (amoA, hao, nxrA) and D Nitrification processes
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Fig. 7  Variation of main metabolic function profiles of bacterial community during composting analyzed by FAPROTAX: A Nitrogen cycling and B 
Organic matter decomposition. C Mantel test of core microbiota and composting performance (physicochemical factors, nitrogen transformation, 
and humification)
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during the thermophilic phase drove lignin degradation 
to generate polyphenol precursors, while the dominant 
genus Thermobifida in the cooling phase facilitated C4 
to C1/C2 conversion via cellulase secretion. This phase-
specific microbial succession was closely linked to BCP/
BCPM-mediated microenvironment regulation: BCP/
BCPM maintained localized higher PO₄3⁻ or Mg2⁺ con-
centrations through mesoporous confinement, promot-
ing struvite crystallization (abiotic nitrogen fixation), 
while providing a nitrogen skeleton and humic acid pre-
cursors for functional microbiota to optimize precursor 
allocation (directing more protein-like/amino acid-like 
substances  into humic-like substances). Moreover, func-
tional nitrifying genes (amoA, hao, nxrA) orchestrate 
ammonia-to-nitrate oxidation, generating bioavailable N 
intermediates that indirectly fuel humification through 
microbial anabolism of polyphenol-protein complexes 
(Wu et al. 2020). These findings demonstrate that BCP/
BCPM synchronously enhances nitrogen retention and 
humification efficiency by coordinating a hierarchical 
pathway of "biotic -abiotic".

This study establishes a mechanistic framework for 
mitigating nitrogen loss and enhancing humification 
efficiency in composting systems through phosphorus-
modified or phosphorus-magnesium co-modified bio-
char. Despite comparable total P + Mg content in BCP 
(4.62%; P:4.22%, Mg:0.88%) and BCPM (4.54%; P:3.45%, 
Mg:1.09%), the superior nitrogen retention in BCPM 
(8.51% lower NH₃ emissions vs BCP) and enhanced 
humification in BCP (7.74% higher efficiency vs BCPM) 
indicate a synergistic allocation of functions. Based 
on the phosphorus-magnesium co-modified biochar, 
increasing the phosphorus content loaded on biochar 
would have a higher potential for humification. Co-opti-
mization of P and Mg in composting systems is recom-
mended to harness their synergistic potential.​​ Future 
research should prioritize optimizing biochar P/Mg 
loading ratios to maximize synergistic effects to advance 
nutrient-efficient management of organic waste.

4 � Conclusion
This study elucidated the mechanisms by which phos-
phorus (P) and phosphorus-magnesium (P-Mg) co-mod-
ified biochar synergistically enhance nitrogen retention 
and humification during composting through biotic-abi-
otic interplay. Abiotically, BCP and BCPM immobilized 
NH₄⁺ via surface functional groups (C=O and COO⁻) and 
struvite crystallization with PO₄3⁻/Mg2⁺, mitigating NH3 
emission and increasing nitrogen retention. Biotically, 
these amendments enriched keystone bacteria (e.g., Ther-
mobifida, Bacillaceae) and upregulated nitrifying genes 
(amoA, hao, nxrA), facilitating nitrogen conversion, while 
boosting functional microbiota to drive protein-like 

precursor polymerization into humic substances. Cru-
cially, nitrogen skeletons enabled aromatic condensa-
tion via Maillard reactions and phenol–protein coupling, 
while functional microbes supplied humic precursors 
through lignocellulose degradation. By integrating func-
tional microbiota-material co-design, this study estab-
lishes a multi-scale regulatory framework for P/P-Mg 
biochar mediated composting, thereby advancing preci-
sion nutrient management in organic waste upcycling.
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