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ABSTRACT

Greenhouse gases (GHGs) resulting from human activities significantly impact crop production and agricultural sustainability,
necessitating innovative solutions to mitigate their effects. One promising approach is employing biochar for GHG mitigation,
providing a potential means to offset emissions and enhance crop productivity sustainably. We conducted a comprehensive review
by sourcing reputable academic research from various search engines, focusing on terms such as biochar, methane (CH,), carbon
dioxide (CO,), nitrous oxide (N,0), GHG, soil organic carbon, agricultural land and cropland. The whole review was divided into
three major portions: GHGs, the effect of GHG emission on crop productivity and biochar as an agent of GHG mitigation and
further subtopics were designed under each. The review revealed that GHG emissions, including CO,, CH, and N,O0, detrimentally
affect crop productivity, posing a serious threat to global food security. Studies demonstrated that biochar aids in mitigating
atmospheric CO, by sequestration of C. Studies also demonstrated that biochar can positively influence soil physical properties,
such as reducing bulk density and enhancing soil moisture, potentially leading to a decrease in soil N,O emissions. The decrease in
soil N,O emissions was due to the maintenance of optimal oxygen levels in the soil by biochar. Biochar has been utilized to mitigate
methane (CH,) emissions. The reduction in CH, due to biochar can be linked to the inhibitory effect of biochar chemicals on soil
methanogens. However, further research and widespread adoption of biochar use are imperative to fully realize its global potential.

1 | Introduction

In recent decades, the issue of climate change has emerged as
a pressing concern globally, with greenhouse gas emissions (GHGs)
being a significant contributor to this phenomenon [1, 2]. Among
the various sectors impacted by these emissions, agriculture stands
as a critical player, both as a source and a potential mitigator of
GHGs [3, 4]. GHGs, including carbon dioxide, methane and nitrous
oxide [5], play a pivotal role in climate change due to their heat-
trapping properties [6], directly affecting the Earth’s temperature
and weather patterns [7]. Although CH, and N,O are emitted in
lower quantities than CO,, their global warming potentials (GWPs)
over a 100-year horizon are approximately 28 and 273 times that of
CO,, respectively [8, 9].

Numerous lines of evidence support the assertion that human
actions have been the primary driver of global warming since the
early 20th century [10]. While natural factors like solar radiation
variations, volcanic activity, orbital shifts and the carbon cycle
also influence Earth’s radiation balance [11], the predominant
impact since the late 1700s has been the consistent elevation of
GHG concentrations due to human activities [12]. For example,
the emissions of GHGs such as CO, and N,O have been reported
to occur during dung decomposition [13].

This surge in concentrations of GHG emissions is inducing
warming effects and exerting influence over diverse aspects of
the climate, including surface and ocean temperatures, pre-
cipitation patterns and sea levels [14]. The repercussions of
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climate change extend to human health, agriculture, water re-
sources, forests, wildlife and coastal regions, rendering them all
vulnerable [10]. These gases, predominantly released through
human activities, profoundly influence crop production and
agricultural sustainability.

It is now widely accepted that agriculture is the main source of
anthropogenic N,O [8, 15, 16]. Agriculture contributes to 60% of
the global N,O emissions [17]. Agricultural soils are recognized
as the major source of atmospheric N,O, globally contributing
1.7-4.8 T[gNyr~" [18]. Agriculture accounts for nearly 12% of
global anthropogenic GHG emissions [19]. The concentration of
carbon dioxide (CO,) in the atmosphere has continued to rise and
is now nearly 100 parts per million higher than it was before the
industrial revolution [20].

Based on the aforementioned points, it is imperative to address
GHG emissions from agricultural soils, and one proposed
method is the use of biochar [21, 22]. Biochar, created through
pyrolysis of organic materials at high temperatures in the ab-
sence of oxygen, possesses key characteristics such as alkali pH,
carbon-rich composition, large surface area and high porosity,
making it a suitable soil amendment [23]. Leveraging its physical
and chemical properties, biochar application is advocated as
a potential approach to enhance soil quality, boost crop yield,
mitigate GHG emissions and promote soil carbon
sequestration [24].

Although numerous studies have demonstrated the potential of
biochar to improve soil quality, enhance microbial activity and
reduce GHG emissions, the existing evidence remains frag-
mented and often inconsistent. For example, Kumar et al. [25]
explored biochar’s role as a catalyst/support in advanced oxi-
dation processes but did not deeply link that to soil-based GHG
mitigation within cropping systems. Meanwhile, Sharma et al.
[25] documented improvements in soil physical, chemical and
biological properties by enhancing soil structure [26], moisture
retention, cation exchange capacity (CEC) and nutrient avail-
ability, while also stimulating beneficial microbial activity with
biochar, and Ralebitso-Senior and Orr [27] analysed how biochar
influences microbial communities. However, each of these fo-
cused on isolated effects rather than the integrated pathway
connecting soil-health enhancements to GHG flux reductions.
Similarly, Ambika et al. [28] addressed engineered biochar for
Cr(VI) remediation, and Iboko et al. [29] conducted a meta-
analysis of biochar + nitrogen fertilizer effects on GHG emissions
—but systematic linkage of these outcomes with productivity
gains across agroecosystems remains limited. Moreover, varia-
tions in biochar feedstock, pyrolysis conditions, soil types and
climatic environments have led to contradictory findings, lim-
iting the generalization of results. Long-term field data, partic-
ularly from tropical and sub-Saharan agricultural systems, are
also scarce, while interactions between biochar and other
management practices such as fertilizer application and tillage
remain poorly understood. Consequently, there is a need for
a comprehensive synthesis that bridges these disciplinary and
contextual gaps. This review therefore aims to critically evaluate
existing literature to elucidate how and under what conditions
biochar serves as a sustainable solution for mitigating GHG
emissions and enhancing soil productivity, with emphasis on
mechanisms, environmental contexts and implications for
climate-smart agriculture.

Therefore, the overall objective of this review is to critically
evaluate the potential of biochar as a sustainable solution for
mitigating GHG emissions while enhancing soil productivity
across agricultural systems.

11 | GHGs
1.1.1 | Methane (CH4)

Methane (CHy,) is a potent GHG with a GWP approximately 27—
30 times stronger than CO, over a 100-year horizon [8, 10]. Its
atmospheric concentration has risen steeply in recent decades,
reaching approximately 1875 ppb—the highest in at least
800,000 years and about 2.5 times preindustrial levels [30, 31].
The recent acceleration in CH, accumulation has been attributed
not only to human activities but also to increasing emissions from
natural wetlands driven by climate warming [32], underscoring
its sensitivity to climatic feedback.

Anthropogenic activities remain the dominant source of CHy,
with fossil fuel extraction, livestock production and croplands
jointly contributing roughly 50% of global emissions [33, 34].
Agricultural soils and management practices play a key role in
shaping CH, dynamics. Nitrogen fertilizers, for instance, influ-
ence CH, emissions by altering soil redox balance and microbial
processes, stimulating methanogenesis while inhibiting meth-
anotrophic activity [35-37]. Excessive nitrogen rates can exac-
erbate CH, fluxes, particularly in flooded environments.

Rice paddies remain the largest anthropogenic source of agri-
cultural CH,, emitting substantial amounts under anaerobic soil
conditions [38, 39]. With climate change intensifying heat and
rainfall variability, rice systems face dual challenges: declining
productivity and rising CH, emissions. Globally, rice cultivation
is estimated to account for approximately 10%-12% of anthro-
pogenic CH, emissions, and up to 18% when broader farm-level
sources are included [40, 41]. Warmer temperatures and pro-
longed flooding further enhance methanogenic pathways, rais-
ing concerns for tropical and Asian rice-growing regions.

Recent studies have introduced both refined and transformative
mitigation options. Proven field-level interventions include alternate
wetting and drying (AWD), which can cut CH,4 emissions by 30%-
70% without yield penalties [39, 42]. Precision fertilization, nitrifi-
cation inhibitors, deep placement of urea and integrated nutrient
management improve nitrogen-use efficiency while reducing CH,
generation [43]. The deployment of low-emission or methane-
suppressing rice cultivar breeding lines with modified root exu-
dation and rhizosphere microbiomes has gained traction in recent
CH, mitigation research [44]. Advanced biological and soil-based
interventions are also emerging. These include the deliberate en-
hancement of anaerobic methanotrophic archaea to boost in-soil
CH, oxidation, the use of biochar and organic amendments to
suppress methanogenesis and the adoption of climate-adaptive
cultivation systems that reduce flooding durations and improve
soil aeration [43, 45]. Collectively, these innovations highlight the
increasing potential for integrating microbial ecology, soil science
and precision agriculture to sustainably curb methane emissions in
crop-based systems.

1.1.2 | Carbon Dioxide (CO,)

CO, is the primary GHG, with levels rising from 280 ppm
(preindustrial) to 415 ppm today [46]. Human activities—fossil
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fuel combustion and deforestation—drive these increases. Ag-
riculture, forestry and land use account for ~24% of CO,
emissions [47]. Deforestation, reducing carbon sinks, exacerbates
emissions [48].

The concentration of carbon dioxide (CO,) in the air rose to
411.43 parts per million (ppm) in 2019 from 315.98 ppm in
1959, as depicted in Figure 1 [50]. Scientific estimates suggest
that the combined impact of elevated CO, levels and positive
water feedback could lead to a 3°C-5°C increase in the average
global surface temperature by the Year 2100 [47]. Manure
application, while enhancing soil fertility, contributes to CO,
emissions via microbial decomposition and anaerobic pro-
cesses [51]. Improper manure storage further intensifies
emissions [52].

1.1.3 | Nitrous Oxide (N,0)

Though less abundant, N,O is 300 times more potent than CO,
[53] and constitutes ~6% of global GHG emissions [54]. Agri-
cultural soils contribute ~78% of anthropogenic N,O emissions
[55]. Synthetic fertilizers and manure accelerate N,O release
through microbial processes [56], with significant implications
for ozone depletion [57].

1.2 | Effect of GHG Emissions on Crop Productivity

GHG emissions, including carbon dioxide (CO,), methane (CH,)
and nitrous oxide (N,O), significantly threaten global food se-
curity by altering climate conditions essential for crop
productivity.

1.2.1 | Carbon Dioxide and Crop Growth

Elevated atmospheric CO, can enhance photosynthesis, poten-
tially increasing crop yields. However, this effect varies across
species and may be offset by other climate stressors such as
temperature fluctuations, ozone alterations and nutrient limi-
tations [58]. Increased CO, also reduces the protein and nitrogen
content in crops like alfalfa and soybean, lowering forage quality
for livestock [58]. Additionally, C3 plants experience decreased
zinc, iron and protein concentrations under elevated CO,, af-
fecting human nutrition [59, 60].
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1.2.2 | Temperature Rise, Heat Stress and Growth
Disruptions

Global warming induced by GHGs leads to higher average
temperatures, causing heat stress that disrupts photosynthesis,
flowering and fruit formation. Elevated temperatures reduce the
efficiency of Rubisco, a key enzyme in carbon fixation [61, 62].
Heat stress also damages thylakoid membranes, impairing
photosynthesis [63, 64]. Additionally, high temperatures de-
crease pollen viability and cause floral abnormalities, reducing
reproductive success [65, 66].

In Figure 2, the correlation between the average annual tem-
perature and the yearly maize yield from 2004 to 2010 in the
research location is illustrated. In 2004 and 2005, as the tem-
perature rose from 24.79°C to 24.87°C, respectively, the maize
yield decreased from 1.4 to 1.29 t/Ha. This trend continued into
2006, with a temperature increase to 26.48°C resulting in a fur-
ther decline in maize yield to 1.22 t/Ha.

Evapotranspiration rises with increasing temperatures, exacer-
bated by prolonged droughts [68]. Heat stress dehydrates rice
plants, leading to crop loss [69]. Higher temperatures extend the
warm season, shortening crop cycles and reducing maize yields
by affecting pollination and seed germination [70]. A 1°C rise in
temperature can decrease maize yield by 10% [71]. Climate
change is also expected to extend growing seasons, potentially
disrupting crop adaptation and yield [72, 73].

1.2.3 | Changes in Precipitation Patterns

Climate change alters rainfall patterns, leading to more intense
or prolonged droughts. These shifts disrupt crop cycles, affecting
germination, water availability and nutrient uptake. With over
80% of global crop yields dependent on rainfall, such changes
have critical implications [74]. Figure 3 illustrates the correlation
between yearly precipitation and maize crop yield from 2004 to
2015 within the specified study region. In 2004, there was a re-
duction in rainfall from 1456.7 to 1286.2 mm, which coincided
with a decrease in maize yield from 1.4 to 1.29 t/Ha. This pattern
persisted into 2005. However, a notable shift occurred in 2006
when maize yield dropped to 1.22 t/Ha, despite a significant rise
in rainfall to 1470.7 mm. Between 2006 and 2007, there was
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a slight increase in rainfall, and correspondingly, maize yield saw
a slight rise. This trend remained consistent in 2008 and 2009,
maintaining a steady maize yield of 1.25 t/Ha.

Insufficient soil moisture weakens plant resilience, increasing
susceptibility to pests and diseases [75]. Conversely, excessive
rainfall in regions like the Atlantic coast and European moun-
tains leads to yield losses, poor soil workability and reduced
operational days for machinery [74]. In Nigeria, extreme weather
events cause crop production fluctuations, affecting prices and
food security [76]. Similarly, monsoon-induced floods in Thai-
land threaten agricultural output [77].

1.2.4 | Pests, Diseases and Climate Change

Rising temperatures favour pests and diseases, altering their
distribution and increasing infestations [78]. Climate change
drives insect population dynamics, worsening crop losses [79].
Warmer conditions create ecological niches for pest migration
[80] and facilitate plant infections by altering pathogen evolution
and host-pathogen interactions [81, 82]. Elevated CO, intensifies
crop diseases, including powdery mildew in cucurbits and wheat

blight [83, 84]. Additionally, humidity and heat worsen potato
blight and oilseed rape canker [85].

1.2.5 | Water Resources and Soil Fertility

Climate change disrupts precipitation and evaporation cycles,
reducing irrigation water availability and increasing water pol-
lution risks [86]. Saltwater intrusion from rising sea levels
damages water infrastructure [86]. Soil organic matter de-
composition releases dissolved organic matter, impacting water
quality [87]. Climate-driven soil degradation accelerates erosion,
nutrient leaching and loss of soil organic matter, increasing
compaction and reducing fertility [88-90]. Higher temperatures
intensify organic matter decomposition, lowering CEC and
leading to soil acidification [91, 92].

1.3 | Biochar Effects on Soil Properties

The application of biochar to agricultural soils has been shown to
influence a range of physical, chemical and biological soil
properties, thereby potentially enhancing soil productivity and
contributing to GHG mitigation.
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1.3.1 | Soil Physical Properties

Studies have shown that biochar application can improve soil
structure, reduce bulk density and improve aggregate stability.
For example, Ebido et al. [93] found that rice husk biochar (RHB)
added to a coarse-textured Ultisol increased soil organic carbon
(SOC) and improved aggregate stability by up to ~17% at the
highest rate (~60tha™') compared to the unfertilized control.
Improvements in porosity and water-holding capacity have also
been reported, particularly in sandy soils: biochar’s porous
structure increases spaces for water retention and microbial
habitat, thus improving retention and movement of water in the
soil profile. More broadly, reviews show that biochar tends to
reduce soil bulk density, increase porosity and improve aggregate
stability/mean weight diameter (MWD) [94]. For example, an 8-
year field experiment in northeast China in a Mollisol found
aggregate stability increased by ~10.9%-23.5% with biochar
application; the authors attribute this to the porous structure of
biochar and its capacity to serve as binding sites for micro-
aggregates [95]. In one long-term U.S. no-till field, application of
papermill biochar reduced bulk density from ~1.40 to ~1.26 g
cm™ and increased aggregate stability by up to ~67% after 10
years of continuous use [96]. The high specific surface area and
porosity of biochar allow for particle-microbe-mineral in-
teractions, enhancing binding of soil particles into aggregates;
hydrophilic functional groups on the biochar surface (carboxyl,
hydroxyl) improve electrostatic or hydrogen-bond-mediated
particle binding.

In sandy or coarse-textured soils, biochar’s highly porous matrix
offers additional storage of water and enhances plant-available
water content (PAWC). For instance, a meta-analysis found that
coarse-textured soils amended with biochar had ~30% greater
plant-available water capacity [97]. Another review summarizes
that biochar improved field water-holding capacity, soil available
water content and reduced saturated hydraulic conductivity
(sometimes) under certain conditions [98]. The mechanism in-
volved included the fact that biochar provides both macro- and
micropores; the micropores hold water against gravity, while
macropores enhance infiltration and connectivity; increased
porosity and improved aggregate structure reduce compaction
and improve water movement and retention. However, some
caveats remain. In very weathered tropical soils, one study found
biochar increased aggregate stability by up to 33% but had no
detectable effect on field-saturated hydraulic conductivity or
water-retention characteristics after 10 months [99].

1.3.2 | Soil Chemical Properties

On the chemical side, biochar application exerts multiple ben-
eficial effects on soil fertility and nutrient dynamics. Generally,
biochar tends to raise soil pH, particularly when produced from
feedstocks at high pyrolysis temperatures (> 500°C), owing to the
concentration of basic cations such as Ca**, Mg?*, K* and Na* in
its ash fraction [100]. This liming effect is especially valuable for
acidic tropical soils, such as the Alfisols of the Nigerian-derived
savannah, which are often prone to nutrient fixation and alu-
minium toxicity. For instance, Obalum et al. [101], in their re-
view of Nigerian agroecologies, observed that most locally
produced biochars are alkaline (pH > 8) and their application
frequently ameliorates soil acidity while enhancing nutrient
availability and base saturation. Similarly, Oguntunde et al. [102]

reported that the application of maize-stalk biochar at 10-20t
ha™" increased soil pH from 5.3 to 6.8 in a degraded Alfisol in
southwest Nigeria, creating a more favourable environment for
crop nutrient uptake. Biochar also enhances CEC and nutrient
retention through its high surface area, porous structure and
abundance of negatively charged functional groups (carboxyl,
phenolic and hydroxyl moieties). These characteristics increase
the soil’s ability to retain exchangeable cations (NH,*, K*, Ca**,
Mg®*), thereby reducing nutrient leaching and improving
fertilizer-use efficiency [103]. In tropical and subtropical soils,
where leaching losses are common due to high rainfall, the
addition of biochar has been shown to significantly enhance
nutrient retention and plant nutrient uptake. El-Naggar et al.
[104] applied biochars produced from rice straw, silvergrass
residues and umbrella tree to sandy soils and reported CEC
increases of 906%, 180% and 130%, respectively, compared to
unamended soil.

Moreover, biochar serves as a sink and stabilizing agent for SOC.
Its carbon is highly aromatic and recalcitrant, contributing to
long-term carbon sequestration and improving soil organic
matter quality [105]. In addition, biochar can physically protect
native organic matter by promoting the formation of organo-
mineral complexes and microaggregates, thereby enhancing the
stability of SOC [106]. Ebido et al. [93] also reported that RHB
addition to an Ultisol significantly increased SOC concentration,
supporting the notion that biochar enhances both the labile and
stable carbon pools [107]. Furthermore, biochar can modulate
nitrogen dynamics by adsorbing ammonium (NH,*) and nitrate
(NO;37), thus reducing N losses through leaching or volatilization
[106]. The retention of these ions not only enhances soil fertility
but also minimizes environmental pollution from reactive ni-
trogen. For instance, Li et al. [96] reported that biochar-amended
soils retained 35% more NH,*-N and 28% more NO; -N com-
pared to unamended soils, leading to improved nitrogen-use
efficiency in soybean systems (Table 1).

1.3.3 | Soil Biological Properties

On the biological and biochemical side, biochar significantly
influences soil microbial communities, enzyme activities and
overall biochemical functioning. Through its porous struc-
ture, surface chemistry and organic carbon content, biochar
creates new microhabitats and energy sources for soil mi-
croorganisms [100]. These pores can protect microbes from
environmental stress (e.g., desiccation and predation) while
providing surfaces for colonization, thereby enhancing mi-
crobial abundance and diversity [108]. Biochar’s porous ma-
trix also modifies soil aeration, moisture and nutrient
availability, all of which are key determinants of microbial
activity. By improving soil moisture retention, biochar sta-
bilizes the habitat for microbial communities during dry pe-
riods, particularly in coarse-textured tropical soils [109].
Furthermore, the sorption of labile organic molecules and
toxins on biochar surfaces can buffer microbial processes by
reducing substrate loss and toxicity [110]. Biochar amend-
ments often result in increased microbial biomass and en-
zymatic activity, which in turn accelerate nutrient cycling. For
instance, Ebido et al. [93] reported that RHB application in an
Ultisol enhanced microbial biomass carbon and increased
dehydrogenase and phosphatase activities, reflecting im-
proved biological functioning and nutrient turnover (Table 2).
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1.4 | Biochar as an Agent of GHG Sequestration

At present, crop yield uncertainties and rising GHG emissions
have marred the overall productive capacity of agriculture sys-
tems, putting future food security targets in jeopardy. Indeed, this
peculiar situation emphasizes the importance of transitioning
from modern intensive farming to more sustainable agricultural
management, which can boost crop productivity while reducing
GHG emission.

Biochar, a carbon-rich charcoal material, is produced by a dry
carbonization process, either under the complete or partial ab-
sence of O,, at high temperatures ranging from 300°C to 1000°C
[111]. Globally, biochar has attracted considerable attention as
a versatile organic amendment with significant potential for
mitigating the global warming effects [112], increasing crop
productivity [100] and C-sequestration [113]. The availability of
wide-ranging feedstock materials, as well as the pyrolysis tem-
perature conditions, can produce biochar of varied physical and
structural attributes, including but not limited to mechanical
strength, porosity, surface area, particle size, and density and
structural complexity [100, 114].

Biochar application can replenish key soil nutrients in low-
fertility soils due to its unique surface charge density, and the
predominant negatively charged surfaces of biochar also promote
cation adsorption [115, 116]. Since the sources and sinks of three
potent GHGs (CO,, N,0 and CH,) are major components of the C
budget in ecosystems, the inclusion of biochar as a soil
amendment is critical because it can sequester C and, more
importantly, enable soil to negate anthropogenic CO, emissions
[117]. According to estimates, biochar produced from 2.2 Gt of
feedstock material can remove up to 0.49 Gt C from the atmo-
sphere each year, implying greater merits for its use as a key
climate change mitigation strategy [118].

1.4.1 | Effect of Biochar on CO, Sequestration

Carbon sequestration is a process by which atmospheric CO, is
captured and stored to prevent it from being emitted into the
atmosphere [119]. It is essential that the carbon is transferred to
a passive carbon pool, i.e., stable or inert, in order to decrease C
emission to the atmosphere. Transferring even a small amount of
the carbon that cycles between the atmosphere and plants to
a much slower biochar cycle would impact greatly on atmo-
spheric CO, concentration. Biochar is biologically and chemi-
cally more stable than the original carbon form, due to its
molecular structure and its origins. Furthermore, it is difficult for
the sequestered carbon to be released as CO,, making this a good
method for carbon sequestration [120].

Biochar plays a crucial role in carbon sequestration by capturing
and storing carbon in a stable form within the soil. The process
involves multiple mechanisms, including:

1. Pyrolysis and Carbon Stabilization: Biochar is produced
through pyrolysis, a process that involves the thermal de-
composition of biomass in an oxygen-limited environment
[121]. During pyrolysis, labile carbon (e.g., carbohydrates,
proteins) is converted into recalcitrant carbon, forming
aromatic structures that resist microbial degradation [122].
A comprehensive 8-year study examined the decomposition
of biochar derived from ryegrass using compound-specific
14C analysis. The results demonstrated an exceptionally

slow decomposition rate, with the biochar losing only
7%x107%% of its carbon content per day under optimal
conditions [123]. This suggests that nearly 400 years would
be required for just a 1% reduction in its carbon content.
This stabilized carbon remains in the soil for hundreds to
thousands of years, preventing its rapid decomposition and
release as CO, back into the atmosphere [124]. This lon-
gevity ensures that the sequestered carbon remains stored
in the soil, providing a reliable and long-term solution for
carbon sequestration;

2. Reduced Microbial Respiration and Mineralization: Bio-
char has a high carbon-to-nitrogen (C:N) ratio, which limits
its decomposition by microbes [125]. Its complex chemical
structure inhibits microbial respiration and slows down
carbon mineralization, reducing CO, emissions [126].
Biochar amendments possess the capacity to modify en-
zymatic activity through their influence on microbial
community composition and metabolic processes, thereby
instigating alterations in the rates of organic matter de-
composition and subsequent CO, sequestration [127]. It
also promotes microbial interactions that enhance carbon
stabilization by forming microbial biofilms on its surface
[128].

3. Soil Carbon Protection via Adsorption and Aggregate
Formation: Biochar adsorbs dissolved organic carbon
(DOC), preventing its leaching and subsequent oxidation
into CO, [129]. The potential for biochar (charcoal pro-
duced from pyrolysed filtercake) to mitigate carbon and
nutrient leaching in a cultivated Brazilian Ferralsol after
vinasse application was evaluated [129]. Results of their
experiment revealed that biochar-amended soil preferen-
tially retained high-molecular-weight, humic-like DOC
species, as revealed by fluorescence spectroscopy and op-
tical indices. Thus, biochar amendments in vinasse appli-
cation areas may decrease carbon leaching.

4. Enhanced Plant Growth and Photosynthetic Carbon Fix-
ation: By improving soil fertility, water retention and CEC,
biochar enhances plant growth [130]. This leads to greater
CO, uptake by plants through photosynthesis, thereby
increasing biomass production. Some of this biomass is
eventually returned to the soil as organic matter, further
contributing to long-term carbon sequestration.

Several studies have been carried out on the effect of biochar on
the sequestration of atmospheric CO,, with contrasting results.
Some studies report a reduction in CO, emissions; Sun et al. [130]
reported that the application of biochar at the rate of 30t/ha
reduced CO, emissions by 31.5% from a pine forest soil. Ap-
plication of biochar significantly reduced CO, emissions as re-
ported by Qiao and Wu [131]. Gui et al. [132] in their work aimed
to explore if the extra sorption of carbon dioxide (CO,) exists in
the biochar-amended soil. They put biochar and mineral-rich
biochar into soils to perform laboratory CO, sorption experi-
ments. Their results demonstrate that all biochars increased soil
carbon storage and meanwhile further sorb CO, for more carbon
sequestration. It has been reported that the biochar technology
could deliver emission reductions of 3.4~6.3 Pg CO, annually
and persist in soil for hundreds to thousands of years [133, 134].
Sheng et al. [135] also found suppression of total CO, release in
both 500°C- and 700°C-derived biochar-amended soils. By using
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a generalized framework for quantifying, the potential contri-
bution biochar can make towards achieving national carbon
emissions reduction goals, assuming use of only sustainably
supplied biomass, that is, residues from existing agricultural,
livestock, forestry and wastewater treatment operations [136].
Results showed that biochar can play a role in worldwide CDR
strategies, with carbon dioxide removal potential of 6.23 + 0.24%
of total GHG emissions in the 155 countries covered based on
2020 data over a 100-year timeframe, and more than 10% of
national emissions in 28 countries.

Others report an opposite effect; a field experiment by Zhang
et al. [137] reported that wheat straw biochar had significantly
increased CO, emissions by 12%. Hawthorne et al. [138] found
that CO, emission from Douglas-fir forest soil was higher under
biochar application at the rate of 10% compared to the rate of 1%.
Some studies report no effect at all. Fidel et al. [139] observed no
reduction in CO, emissions after application of biochar in a field
study with four cropping systems (continuous corn, switchgrass,
low diversity grass mix and high diversity grass—forb mix).
Cropping system however had a significant effect in the field
study, with soils in grass and grass-forb cropping systems
emitting more CO, than the continuous corn cropping system.
Another field experiment in a pasture ecosystem showed no
significant effects of biochar amendment on soil CO, emissions
[140].

These contrasting effects of biochar on sequestration of atmo-
spheric CO, could be because biochar influences soil total CO,
emissions differently depending on biochar type, soil type and
experimental design [135, 141-144]. Cely et al. [145] found that
biochar derived from wood chips exhibited a negative priming
effect in soils, whereas biochar produced from a mixture of paper
sludge and wheat husk induced a positive priming effect. These
differences may be attributed to variations in biochar properties,
including carbon content, carbon aromaticity, volatile matter,
fixed carbon, easily oxidized organic carbon, metal content and
phenolic compounds, as well as surface characteristics. Their
study indicated that biochar application increased soil CO,
emissions by approximately 25%.

1.4.2 | Effect of Biochar on N,0 Sequestration

The major source of N,O emissions from agricultural soils is the
application of synthetic nitrogen (N) fertilizer, as highlighted by
Wang et al. [144]. Studies demonstrate that biochar can positively
influence soil physical properties, such as reducing bulk density
[146] and enhancing soil moisture [147], potentially leading to
a decrease in soil N,O emissions. The global trend towards
adopting no-tillage and reduced tillage practices is driven by their
demonstrated benefits in enhancing soil organic matter status,
structural condition and water regime [148, 149]. Extensive
studies indicate that reduced tillage induces a significant alter-
ation in soil structure, increasing porosity and decreasing bulk
density over the long term [150]. The transition from traditional
mouldboard ploughing to no-tillage has been associated with
a decrease in N,O emissions [151].

Literature acknowledges the potential of soil compaction to el-
evate N,O emissions from agricultural soils. For instance, Hu
et al. [152] conducted a review on the effects of soil compaction
on productivity and the environment, using New Zealand as
a case study. Their findings suggest that the role of soil

compaction in explaining variability in N,O emissions remains
unclear. Ruser et al. [153] reported a 20% increase in the bulk
density of fine silty soil, leading to a rise in N,O emission. Studies
examining N,O emissions in different contexts further support
these observations. In a Czech Republic cattle overwintering
area, Simek et al. [154] observed higher N,O emissions in
trampled areas, though statistical significance was not achieved,
attributed to high spatial variability. Similarly, a study in Scot-
land simulated trampling in a wet dairy pasture soil, revealing
a threefold increase in N,O emissions [155]. In New Zealand, van
der Weerden and Styles [156] and van der Weerden et al. [157]
noted elevated N,O fluxes from compacted treatments after urine
application in pasture on silt loam soil. In oak forests, Goutal
et al. [158] found higher N,O production in trafficked plots
compared to the control treatment, particularly below 0.3 m
depth, where soil air-filled porosity was significantly reduced.
These reactions were because compaction-induced changes in
the pore system, as highlighted by Dorner and Horn [159],
negatively impact pore size, tortuosity and connectivity. This
alteration in the pore structure directly influences fluid transport
in soil [160, 161], potentially leading to anaerobic conditions and
altered soil processes [162, 163]. In summary, limited pore
continuity and reduced gas transport capacity within and be-
tween aggregates influence N,O production, consumption and
transport to the soil surface, as outlined by Ball [164].

Rondon et al. [165] were among the first to report a reduction in
soil N,O emissions following biochar application. Conducted in
a low-fertility oxisol Colombian savannah, their study revealed
a reduction of up to 50% for soybeans and up to 80% for grass in
N,O emissions. Additionally, Liu et al. [166] conducted a labo-
ratory study on two types of biochar derived from rice straw and
dairy manure, finding a correlation between reduced copy
numbers of the monooxygenase gene amoA and the nitrite re-
ductase gene nirS (genes responsible for nitrification and de-
nitrification) and a subsequent reduction in N,O emissions when
biochar was applied.

In a study assessing the impact of biochar on soil GHG emissions
at both laboratory and field scales, Fidel et al. [139] observed
a 27% suppression of N,O emissions in a corn cropping system.
However, they noted no significant effect at the laboratory scale
across varying soil temperature and moisture levels. This dis-
parity in N,O emission results between laboratory and field-scale
studies emphasizes that laboratory experiments may not reliably
predict the impact of biochar at the field scale. Yanai et al. [147]
conducted a brief laboratory incubation study, applying mu-
nicipal biowaste-derived biochar at a rate of 180 tonnes per
hectare. They observed a noteworthy reduction in N,O emissions
within a wetted volcanic ash soil. Correspondingly, Zhang et al.
[167] demonstrated a significant decline in total N,O emissions
in a hydroagric stagnic anthrosol by 40%-51% and 21%-28% after
the addition of biochar (created via slow pyrolysis of wheat straw
at 350°C-550°C at a rate of 40 tonnes per hectare compared to
control treatments, with or without N-fertilizer, respectively).
This aligns with the results of Sarkhot et al. [168], who also found
a 26% reduction in cumulative N,O flux when using dairy
manure-derived biochar (DBC).

Furthermore, Cayuela et al. [169] conducted a comprehensive
meta-analysis encompassing both short- and long-term studies
evaluating the impact of biochar on N,O emissions. They ob-
served a 54% reduction in soil N,O emission under controlled
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laboratory conditions and a 28% reduction in field conditions.
Their meta-analysis highlighted significant factors influencing
N,O emissions, including the type of feedstock used for biochar
production, pyrolysis conditions and the properties of the
resulting biochar. Additionally, they found a direct relationship
between the reduction of N,O emissions and the application rates
of biochar [169]. The study also proposed that interactions among
biochar, soil texture and nitrogen fertilizer form play a pivotal
role in affecting soil N,O emissions [169].

The reduction of soil nitrous oxide (N,0) emissions by biochar is
attributed to several mechanisms, such as: (1) Improved Soil
Aeration and Reduced Denitrification: Biochar enhances soil
structure, increasing porosity and aeration [170], which pro-
motes oxygen diffusion [171]. This reduces anaerobic conditions,
limiting denitrification, a major source of N,O emissions. The
availability of oxygen to soil microorganisms via water-filled pore
space (WFPS) depends on soil moisture and aeration, ultimately
influencing the activities of nitrifiers and denitrifiers. A study by
Bateman and Baggs [172] investigated the contributions of ni-
trification and denitrification to N,O emissions at different WFPS
levels. The findings revealed that nitrification was the primary
cause of N,O generation at 35%-60% WFPS, while denitrification
dominated at 70% WFPS and higher [172]. (2) Adsorption and
Retention of Nitrogen Compounds: Biochar has a high surface
area and CEC, allowing it to adsorb ammonium (NH,*) and
nitrate (NO5™) [173, 174]. By retaining nitrogen, biochar reduces
substrate availability for nitrification and denitrification, thereby
lowering N,O production [175, 176]. Zhong et al. [177] in-
vestigated the potential for N,O production through bacterial and
fungal nitrification and denitrification in both rhizosphere and
nonrhizosphere soils, along with the abundance of microbial
genes associated with these processes. Their findings revealed
that inorganic fertilizers and biochar significantly influenced
N,O production potential and gene abundance. They concluded
that partially replacing inorganic fertilizers with biochar could
mitigate N,O emissions by reducing bacterial nitrification and
denitrification. (3) Altering Microbial Communities: Biochar
influences soil microbial dynamics, particularly by suppressing
denitrifiers responsible for N,O production. Case et al. [178]
investigated the effect of biochar on soil N,O emissions and N
cycling processes by quantifying soil N immobilization, de-
nitrification, nitrification and mineralization rates using 5N pool
dilution techniques and the FLUAZ numerical calculation
model. They examined whether biochar amendment affected
N,O emissions and the availability and transformations of N in
soils. Results showed that biochar suppressed cumulative soil
N,O production by 91% in near-saturated, fertilized soils. Cu-
mulative denitrification was reduced by 37%, which accounted
for 85%-95% of soil N,O emissions. Biochar also enhances N,O-
reducing bacteria, which convert N,O to harmless N, gas [179].
(4) pH Modification and Inhibition of N,O Formation: Biochar
tends to increase soil pH [114], which can reduce nitrification
rates (lowering NO;™ availability). In the study of Ippolito et al.
[180] in a hardwood-based fast pyrolysis in which biochar was
applied (0 wt.%, 1 wt.%, 2 wt.% and 10 wt.%) to calcareous soil, it
was reported that biochar at higher applications dramatically
lowers soil NO™3—N concentrations and prevents NO™3—N from
accumulating over time. An incubation experiment was per-
formed on the salt-affected soil collected from a three-year
consecutive experiment at biochar application gradients of 7.5,
15 and 30t-ha™' and under nitrogen (N) fertilization [181].
Biochar addition inhibited nitrification in salt-affected irrigation-

silting soil by shifting the community structures of ammonia-
oxidizing bacteria and ammonia-oxidizing archaea and reducing
the relative abundance of dominant functional ammonia-
oxidizers, such as Nitrosospira, Nitrosomonas and Nitro-
sopumilus. Biochar also tends to increase soil pH, which can shift
denitrification pathways towards complete reduction of N,O to
N, gas, minimizing emissions. Biochar was found to suppress
N,0 and NO emissions by altering soil pH during denitrification
[182]. Using acid acrisols and two biochar types, the study found
that biochar’s alkalizing effect, not labile carbon, influenced
product stoichiometry. Acid-leached biochar lost their sup-
pression ability, confirming pH’s critical role in denitrification
product dynamics. In order to study the influence of biochar
addition on N,O emissions from soils with different pH levels
[183], a 40-day incubation experiment was carried out, and four
treatments (control, nitrogen fertilizer application, biochar
amendment and N plus biochar amendment) were set up sep-
arately in soils with three different natural pH levels (acidic
vegetable soil, neutral rice soil and alkaline soil). Results showed
that adding biochar significantly decreased N,O emissions by
20.8% and 47.6% in acidic vegetable soil for both N and no-N
addition treatments, respectively. Thus, biochar amendment
could be used as an effective management practice for mitigating
N,O emissions from acidic and alkaline soils (Table 3).

1.4.3 | Effect of Biochar on CH, Sequestration

Biochar has been utilized to mitigate methane (CH,4) emissions.
In a study by Yu et al. [184], a notable reduction in CH, emissions
from forest soils was observed with the incorporation of 10% w/w
chicken manure biochar. Similarly, Xiao et al. [185] demon-
strated that biochar significantly enhanced CH, uptake in
a chestnut plantation in China, irrespective of the application
rate. The increase in CH, uptake within the soil can be attributed
to biochar-induced elevation of soil pH, promoting the growth of
methanotrophs [186, 187]. Additionally, biochar application
leads to a reduction in soil bulk density and an increase in soil
porosity, facilitating CH, oxidation and uptake by soil microbes
[188, 189]. The reduction in CH,4 due to biochar can be linked to
the inhibitory effect of biochar chemicals on soil methanotrophs
[190]. The porous structure of biochar provides new habitats for
soil microbes, enhancing CH, uptake by methanotrophs more
than CH, production, owing to improved soil aeration [189]. A
study by Karhu et al. [189] highlighted that CH, uptake increased
in biochar-amended soil due to enhanced soil aeration and
improved CH, diffusion through the soil profile. From a labo-
ratory experiment, Liu et al. [21] found that CH, emissions from
paddy soil amended with bamboo char and straw char at 2.5%
application rate were reduced by 51.1% and 91.2% in 49 days.

Lee et al. [191] reported a global meta-analysis conducted re-
garding the effectiveness of biochar. The study by Jeffery et al.
[187] demonstrated that biochar application effectively mitigates
methane (CH,) emissions while enhancing SOC and crop yield.
Their quantitative meta-analysis revealed that biochar sub-
stantially reduces CH, emissions, especially in flooded (paddy)
fields and acidic soils where flooding occurs as part of field
management. Rajalekshmi et al. [192] found that the application
of RHB in wetland Ultisol significantly enhanced soil carbon
content and increased carbon accumulation in rice crops. The
study revealed that RHB contributed substantial refractory
carbon to the soil, improving its nutrient status and productivity.
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Importantly, RHB application led to a notable 50%-60% re-
duction in methane (CH,) emissions compared to farmyard
manure (FYM), highlighting its effectiveness in mitigating GHG
emissions while enhancing soil and crop quality.

An experiment was conducted to evaluate the potential of
mangrove tree wood (Rhizophora apiculata) biochar on CH,
mitigation, soil properties and the productivity of rice cultivated
in a clay loam soil in Thailand [193]. The treatment biochar alone
significantly reduced cumulative methane (CH,) emissions
compared to the nonamended control: 21.1% in the first season,
24.9% in the second season. The treatment biochar + fertilizer
also produced lower CH, emissions than the fertilizer-alone
treatment. A 2-year field study conducted in the sandy loam
soils of Inner Mongolia, China, examined the effects of corn
residue-derived biochar on GHG emissions, SOC, and GWP
under film-mulched, drip-irrigated maize production [194]. Corn
residue-derived biochar, particularly at 15-30 tha™", effectively
reduced CH4 and N,O emissions, improved SOC storage and
lowered net GWP, demonstrating its potential as a climate
mitigation and soil-improvement strategy in semiarid sandy
loam soils under drip-irrigated maize production in northern
China.

Biochar reduces methane (CH,) emissions from the soil through
several mechanisms: (1) Enhanced Aeration and Redox Poten-
tial: Biochar improves soil structure, increasing aeration and
oxygen diffusion [170]. This promotes aerobic microbial activity,
suppressing methanogenic (CH4-producing) archaea that thrive
in anaerobic conditions. The effect of biochar addition on CH,
emissions, and the abundance and community composition of
methanogens and methanotrophs over two rice cultivation
seasons were studied [195]. Biochar application decreased CH,
emissions by reducing methanogenic archaea abundance in the
studied flooded paddy soil. Methanogens and methanotrophs
regulate CH, emissions in paddy soils [196]. Feng et al. [197] and
Qin et al. [198] found significant decreases in CH,4 emissions by
biochar addition and explained the result by increases in
methanotrophic bacteria biodiversity and abundance. The ad-
dition of biochar to paddy soil reduces soil bulk density and
enhances aeration, thereby suppressing methanogenic activity.
This reduction in bulk density is attributed to biochar’s high
porosity [199]. As a nutrient-rich amendment [200], biochar
stimulates rice root growth [201], leading to increased oxygen
secretion [202, 203]. Enhanced oxygen availability further in-
hibits methanogens and their activity. Kim et al. [204] found that
biochar application not only boosted rice yield but also reduced
CH, emissions by improving soil aeration and oxygen supply,
thereby suppressing methanogenesis. (2) Electron Transfer and
Methane Suppression: Biochar acts as an electron acceptor, fa-
cilitating alternative microbial pathways that compete with
methanogenesis. Biochar contains quinone, phenolic and other
redox-active groups that can accept electrons from microbial
metabolism, especially from anaerobic respiration [205]. These
functional groups undergo reversible oxidation and reduction,
influencing microbial electron transfer. Theoretically, carbonyl
and quinone moieties in biochar can function as electron ac-
ceptors, facilitating CH4 consumption in paddy soils. Zhang et al.
[206] reported that the quinone (C=O0) structure in biochar
contributes to anaerobic CH,4 oxidation. This process can account
for up to 50% of total CH, consumption in wetlands [207].
Therefore, biochar may help mitigate CH, emissions partly by

enhancing anaerobic CH, oxidation through its electron-
accepting capacity in paddy soils. (3) Nutrient and
pH Modification: Biochar can increase soil pH, which inhibits
methanogenic archaea that prefer acidic conditions. The alkaline
nature of biochar is mainly due to the ash content [148]. Weber
and Quicker [208] observed a large decrease in methanotrophic
activity when soil pH decreases from 6.3 to 5.6. Generally, at
higher pyrolysis temperatures, the biochar produced is higher
alkaline, and hence, its application significantly promotes the
activity of methanotrophic in acid paddy soil [209]. (4) Reduced
Substrate Availability: Biochar adsorbs DOC, decreasing the
availability of methanogenic precursors like acetate and hy-
drogen. Soil DOC serves as a key substrate for methanogens and
plays a crucial role in CH, production [196]. Yu et al. [184] found
that applying hen biochar to paddy fields reduced soil DOC,
likely due to adsorption within the biochar pores. Zheng et al.
[210] reported that biochar amendment decreased DOC content
by 52% and 71% at application rates of 20 and 40tha™", re-
spectively (Table 4).

2 | Conclusion

This review revealed that GHG emissions, including CO,, CH,4
and N,O0, detrimentally affect crop productivity, posing a serious
threat to global food security. These gases trap heat in the Earth’s
atmosphere, leading to global warming and climate change,
ultimately impacting agriculture and crop yields. Decreased crop
productivity due to climate change can have far-reaching eco-
nomic and social impacts. Reduced yields may lead to food
shortages, increased food prices and economic instability, af-
fecting both farmers and consumers, particularly in vulnerable
regions. Biochar aids in mitigating atmospheric CO, by se-
questration of C (for it is difficult for the sequestered carbon to be
released as CO,, making this a good method for carbon se-
questration). Biochar can positively influence soil physical
properties, such as reducing bulk density and enhancing soil
moisture, potentially leading to a decrease in soil N,O emissions.
The decrease in soil N,O emissions was due to enhanced oxygen
levels in the soil by biochar through improved aeration. Biochar
has been utilized to mitigate methane (CH,) emissions. The
reduction in CH,4 due to biochar can be linked to the inhibitory
effect of biochar chemicals on soil methanotrophs.

Biochar’s potential as an agent of GHG sequestration lies in its
ability to effectively capture and store carbon while promoting
soil health and reducing emissions of other potent GHGs. When
integrated into sustainable land management practices, biochar
can play a vital role in mitigating climate change and fostering
a more sustainable and resilient agricultural system. However,
further research and widespread adoption are essential to fully
realize the potential of biochar on a global scale.

2.1 | Potential Areas of Future Research

Future studies should explore the economic feasibility of in-
tegrating biochar into agricultural systems by assessing the cost-
effectiveness of its production and application relative to po-
tential benefits, including increased crop yields, carbon se-
questration and reduced emissions. In addition, research should
examine the development and implementation of policies and
regulatory frameworks that drive the adoption of biochar in
agriculture, as well as assess the potential barriers and incentives
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at local, national and international levels for the integration of
biochar into sustainable land management practices.
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