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ABSTRACT
Greenhouse gases (GHGs) resulting from human activities signifcantly impact crop production and agricultural sustainability,
necessitating innovative solutions to mitigate their efects. One promising approach is employing biochar for GHG mitigation,
providing a potential means to ofset emissions and enhance crop productivity sustainably. We conducted a comprehensive review
by sourcing reputable academic research from various search engines, focusing on terms such as biochar, methane (CH4), carbon
dioxide (CO2), nitrous oxide (N2O), GHG, soil organic carbon, agricultural land and cropland. The whole review was divided into
three major portions: GHGs, the efect of GHG emission on crop productivity and biochar as an agent of GHG mitigation and
further subtopics were designed under each. The review revealed that GHG emissions, including CO2, CH4 and N2O, detrimentally
afect crop productivity, posing a serious threat to global food security. Studies demonstrated that biochar aids in mitigating
atmospheric CO2 by sequestration of C. Studies also demonstrated that biochar can positively infuence soil physical properties,
such as reducing bulk density and enhancing soil moisture, potentially leading to a decrease in soil N2O emissions. The decrease in
soil N2O emissions was due to the maintenance of optimal oxygen levels in the soil by biochar. Biochar has been utilized tomitigate
methane (CH4) emissions. The reduction in CH4 due to biochar can be linked to the inhibitory efect of biochar chemicals on soil
methanogens. However, further research and widespread adoption of biochar use are imperative to fully realize its global potential.

1 | Introduction

In recent decades, the issue of climate change has emerged as
a pressing concern globally, with greenhouse gas emissions (GHGs)
being a signifcant contributor to this phenomenon [1, 2]. Among
the various sectors impacted by these emissions, agriculture stands
as a critical player, both as a source and a potential mitigator of
GHGs [3, 4]. GHGs, including carbon dioxide, methane and nitrous
oxide [5], play a pivotal role in climate change due to their heat-
trapping properties [6], directly afecting the Earth’s temperature
and weather patterns [7]. Although CH4 and N2O are emitted in
lower quantities than CO2, their global warming potentials (GWPs)
over a 100-year horizon are approximately 28 and 273 times that of
CO2, respectively [8, 9].

Numerous lines of evidence support the assertion that human
actions have been the primary driver of global warming since the
early 20th century [10]. While natural factors like solar radiation
variations, volcanic activity, orbital shifts and the carbon cycle
also infuence Earth’s radiation balance [11], the predominant
impact since the late 1700s has been the consistent elevation of
GHG concentrations due to human activities [12]. For example,
the emissions of GHGs such as CO2 and N2O have been reported
to occur during dung decomposition [13].

This surge in concentrations of GHG emissions is inducing
warming efects and exerting infuence over diverse aspects of
the climate, including surface and ocean temperatures, pre-
cipitation patterns and sea levels [14]. The repercussions of
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climate change extend to human health, agriculture, water re-
sources, forests, wildlife and coastal regions, rendering them all
vulnerable [10]. These gases, predominantly released through
human activities, profoundly infuence crop production and
agricultural sustainability.

It is now widely accepted that agriculture is the main source of
anthropogenic N2O [8, 15, 16]. Agriculture contributes to 60% of
the global N2O emissions [17]. Agricultural soils are recognized
as the major source of atmospheric N2O, globally contributing
1.7–4.8 Tg N yr−1 [18]. Agriculture accounts for nearly 12% of
global anthropogenic GHG emissions [19]. The concentration of
carbon dioxide (CO2) in the atmosphere has continued to rise and
is now nearly 100 parts per million higher than it was before the
industrial revolution [20].

Based on the aforementioned points, it is imperative to address
GHG emissions from agricultural soils, and one proposed
method is the use of biochar [21, 22]. Biochar, created through
pyrolysis of organic materials at high temperatures in the ab-
sence of oxygen, possesses key characteristics such as alkali pH,
carbon-rich composition, large surface area and high porosity,
making it a suitable soil amendment [23]. Leveraging its physical
and chemical properties, biochar application is advocated as
a potential approach to enhance soil quality, boost crop yield,
mitigate GHG emissions and promote soil carbon
sequestration [24].

Although numerous studies have demonstrated the potential of
biochar to improve soil quality, enhance microbial activity and
reduce GHG emissions, the existing evidence remains frag-
mented and often inconsistent. For example, Kumar et al. [25]
explored biochar’s role as a catalyst/support in advanced oxi-
dation processes but did not deeply link that to soil-based GHG
mitigation within cropping systems. Meanwhile, Sharma et al.
[25] documented improvements in soil physical, chemical and
biological properties by enhancing soil structure [26], moisture
retention, cation exchange capacity (CEC) and nutrient avail-
ability, while also stimulating benefcial microbial activity with
biochar, and Ralebitso-Senior and Orr [27] analysed how biochar
infuences microbial communities. However, each of these fo-
cused on isolated efects rather than the integrated pathway
connecting soil-health enhancements to GHG fux reductions.
Similarly, Ambika et al. [28] addressed engineered biochar for
Cr(VI) remediation, and Iboko et al. [29] conducted a meta-
analysis of biochar+ nitrogen fertilizer efects on GHG emissions
—but systematic linkage of these outcomes with productivity
gains across agroecosystems remains limited. Moreover, varia-
tions in biochar feedstock, pyrolysis conditions, soil types and
climatic environments have led to contradictory fndings, lim-
iting the generalization of results. Long-term feld data, partic-
ularly from tropical and sub-Saharan agricultural systems, are
also scarce, while interactions between biochar and other
management practices such as fertilizer application and tillage
remain poorly understood. Consequently, there is a need for
a comprehensive synthesis that bridges these disciplinary and
contextual gaps. This review therefore aims to critically evaluate
existing literature to elucidate how and under what conditions
biochar serves as a sustainable solution for mitigating GHG
emissions and enhancing soil productivity, with emphasis on
mechanisms, environmental contexts and implications for
climate-smart agriculture.

Therefore, the overall objective of this review is to critically
evaluate the potential of biochar as a sustainable solution for
mitigating GHG emissions while enhancing soil productivity
across agricultural systems.

1.1 | GHGs

1.1.1 | Methane (CH4)

Methane (CH4) is a potent GHG with a GWP approximately 27–
30 times stronger than CO2 over a 100-year horizon [8, 10]. Its
atmospheric concentration has risen steeply in recent decades,
reaching approximately 1875 ppb—the highest in at least
800,000 years and about 2.5 times preindustrial levels [30, 31].
The recent acceleration in CH4 accumulation has been attributed
not only to human activities but also to increasing emissions from
natural wetlands driven by climate warming [32], underscoring
its sensitivity to climatic feedback.

Anthropogenic activities remain the dominant source of CH4,
with fossil fuel extraction, livestock production and croplands
jointly contributing roughly 50% of global emissions [33, 34].
Agricultural soils and management practices play a key role in
shaping CH4 dynamics. Nitrogen fertilizers, for instance, infu-
ence CH4 emissions by altering soil redox balance and microbial
processes, stimulating methanogenesis while inhibiting meth-
anotrophic activity [35–37]. Excessive nitrogen rates can exac-
erbate CH4 fuxes, particularly in fooded environments.

Rice paddies remain the largest anthropogenic source of agri-
cultural CH4, emitting substantial amounts under anaerobic soil
conditions [38, 39]. With climate change intensifying heat and
rainfall variability, rice systems face dual challenges: declining
productivity and rising CH4 emissions. Globally, rice cultivation
is estimated to account for approximately 10%–12% of anthro-
pogenic CH4 emissions, and up to 18% when broader farm-level
sources are included [40, 41]. Warmer temperatures and pro-
longed fooding further enhance methanogenic pathways, rais-
ing concerns for tropical and Asian rice-growing regions.

Recent studies have introduced both refned and transformative
mitigation options. Proven feld-level interventions include alternate
wetting and drying (AWD), which can cut CH4 emissions by 30%–
70% without yield penalties [39, 42]. Precision fertilization, nitrif-
cation inhibitors, deep placement of urea and integrated nutrient
management improve nitrogen-use efciency while reducing CH4

generation [43]. The deployment of low-emission or methane-
suppressing rice cultivar breeding lines with modifed root exu-
dation and rhizosphere microbiomes has gained traction in recent
CH4 mitigation research [44]. Advanced biological and soil-based
interventions are also emerging. These include the deliberate en-
hancement of anaerobic methanotrophic archaea to boost in-soil
CH4 oxidation, the use of biochar and organic amendments to
suppress methanogenesis and the adoption of climate-adaptive
cultivation systems that reduce fooding durations and improve
soil aeration [43, 45]. Collectively, these innovations highlight the
increasing potential for integrating microbial ecology, soil science
and precision agriculture to sustainably curb methane emissions in
crop-based systems.

1.1.2 | Carbon Dioxide (CO2)

CO2 is the primary GHG, with levels rising from 280 ppm
(preindustrial) to 415 ppm today [46]. Human activities—fossil
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fuel combustion and deforestation—drive these increases. Ag-
riculture, forestry and land use account for ∼24% of CO2

emissions [47]. Deforestation, reducing carbon sinks, exacerbates
emissions [48].

The concentration of carbon dioxide (CO2) in the air rose to
411.43 parts per million (ppm) in 2019 from 315.98 ppm in
1959, as depicted in Figure 1 [50]. Scientifc estimates suggest
that the combined impact of elevated CO2 levels and positive
water feedback could lead to a 3°C–5°C increase in the average
global surface temperature by the Year 2100 [47]. Manure
application, while enhancing soil fertility, contributes to CO2

emissions via microbial decomposition and anaerobic pro-
cesses [51]. Improper manure storage further intensifes
emissions [52].

1.1.3 | Nitrous Oxide (N2O)

Though less abundant, N2O is 300 times more potent than CO2

[53] and constitutes ∼6% of global GHG emissions [54]. Agri-
cultural soils contribute ∼78% of anthropogenic N2O emissions
[55]. Synthetic fertilizers and manure accelerate N2O release
through microbial processes [56], with signifcant implications
for ozone depletion [57].

1.2 | Efect of GHG Emissions on Crop Productivity

GHG emissions, including carbon dioxide (CO2), methane (CH4)
and nitrous oxide (N2O), signifcantly threaten global food se-
curity by altering climate conditions essential for crop
productivity.

1.2.1 | Carbon Dioxide and Crop Growth

Elevated atmospheric CO2 can enhance photosynthesis, poten-
tially increasing crop yields. However, this efect varies across
species and may be ofset by other climate stressors such as
temperature fuctuations, ozone alterations and nutrient limi-
tations [58]. Increased CO2 also reduces the protein and nitrogen
content in crops like alfalfa and soybean, lowering forage quality
for livestock [58]. Additionally, C3 plants experience decreased
zinc, iron and protein concentrations under elevated CO2, af-
fecting human nutrition [59, 60].

1.2.2 | Temperature Rise, Heat Stress and Growth
Disruptions

Global warming induced by GHGs leads to higher average
temperatures, causing heat stress that disrupts photosynthesis,
fowering and fruit formation. Elevated temperatures reduce the
efciency of Rubisco, a key enzyme in carbon fxation [61, 62].
Heat stress also damages thylakoid membranes, impairing
photosynthesis [63, 64]. Additionally, high temperatures de-
crease pollen viability and cause foral abnormalities, reducing
reproductive success [65, 66].

In Figure 2, the correlation between the average annual tem-
perature and the yearly maize yield from 2004 to 2010 in the
research location is illustrated. In 2004 and 2005, as the tem-
perature rose from 24.79°C to 24.87°C, respectively, the maize
yield decreased from 1.4 to 1.29 t/Ha. This trend continued into
2006, with a temperature increase to 26.48°C resulting in a fur-
ther decline in maize yield to 1.22 t/Ha.

Evapotranspiration rises with increasing temperatures, exacer-
bated by prolonged droughts [68]. Heat stress dehydrates rice
plants, leading to crop loss [69]. Higher temperatures extend the
warm season, shortening crop cycles and reducing maize yields
by afecting pollination and seed germination [70]. A 1°C rise in
temperature can decrease maize yield by 10% [71]. Climate
change is also expected to extend growing seasons, potentially
disrupting crop adaptation and yield [72, 73].

1.2.3 | Changes in Precipitation Patterns

Climate change alters rainfall patterns, leading to more intense
or prolonged droughts. These shifts disrupt crop cycles, afecting
germination, water availability and nutrient uptake. With over
80% of global crop yields dependent on rainfall, such changes
have critical implications [74]. Figure 3 illustrates the correlation
between yearly precipitation and maize crop yield from 2004 to
2015 within the specifed study region. In 2004, there was a re-
duction in rainfall from 1456.7 to 1286.2 mm, which coincided
with a decrease in maize yield from 1.4 to 1.29 t/Ha. This pattern
persisted into 2005. However, a notable shift occurred in 2006
when maize yield dropped to 1.22 t/Ha, despite a signifcant rise
in rainfall to 1470.7 mm. Between 2006 and 2007, there was
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FIGURE 1 | The increase in CO2 concentration in the atmosphere (source [49]).
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a slight increase in rainfall, and correspondingly, maize yield saw
a slight rise. This trend remained consistent in 2008 and 2009,
maintaining a steady maize yield of 1.25 t/Ha.

Insufcient soil moisture weakens plant resilience, increasing
susceptibility to pests and diseases [75]. Conversely, excessive
rainfall in regions like the Atlantic coast and European moun-
tains leads to yield losses, poor soil workability and reduced
operational days for machinery [74]. In Nigeria, extreme weather
events cause crop production fuctuations, afecting prices and
food security [76]. Similarly, monsoon-induced foods in Thai-
land threaten agricultural output [77].

1.2.4 | Pests, Diseases and Climate Change

Rising temperatures favour pests and diseases, altering their
distribution and increasing infestations [78]. Climate change
drives insect population dynamics, worsening crop losses [79].
Warmer conditions create ecological niches for pest migration
[80] and facilitate plant infections by altering pathogen evolution
and host–pathogen interactions [81, 82]. Elevated CO2 intensifes
crop diseases, including powdery mildew in cucurbits and wheat

blight [83, 84]. Additionally, humidity and heat worsen potato
blight and oilseed rape canker [85].

1.2.5 | Water Resources and Soil Fertility

Climate change disrupts precipitation and evaporation cycles,
reducing irrigation water availability and increasing water pol-
lution risks [86]. Saltwater intrusion from rising sea levels
damages water infrastructure [86]. Soil organic matter de-
composition releases dissolved organic matter, impacting water
quality [87]. Climate-driven soil degradation accelerates erosion,
nutrient leaching and loss of soil organic matter, increasing
compaction and reducing fertility [88–90]. Higher temperatures
intensify organic matter decomposition, lowering CEC and
leading to soil acidifcation [91, 92].

1.3 | Biochar Efects on Soil Properties

The application of biochar to agricultural soils has been shown to
infuence a range of physical, chemical and biological soil
properties, thereby potentially enhancing soil productivity and
contributing to GHG mitigation.
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1.3.1 | Soil Physical Properties

Studies have shown that biochar application can improve soil
structure, reduce bulk density and improve aggregate stability.
For example, Ebido et al. [93] found that rice husk biochar (RHB)
added to a coarse-textured Ultisol increased soil organic carbon
(SOC) and improved aggregate stability by up to ∼17% at the
highest rate (≈60 t ha−1) compared to the unfertilized control.
Improvements in porosity and water-holding capacity have also
been reported, particularly in sandy soils: biochar’s porous
structure increases spaces for water retention and microbial
habitat, thus improving retention and movement of water in the
soil profle. More broadly, reviews show that biochar tends to
reduce soil bulk density, increase porosity and improve aggregate
stability/mean weight diameter (MWD) [94]. For example, an 8-
year feld experiment in northeast China in a Mollisol found
aggregate stability increased by ∼10.9%–23.5% with biochar
application; the authors attribute this to the porous structure of
biochar and its capacity to serve as binding sites for micro-
aggregates [95]. In one long-term U.S. no-till feld, application of
papermill biochar reduced bulk density from ∼1.40 to ∼1.26 g
cm−3 and increased aggregate stability by up to ∼67% after 10
years of continuous use [96]. The high specifc surface area and
porosity of biochar allow for particle–microbe–mineral in-
teractions, enhancing binding of soil particles into aggregates;
hydrophilic functional groups on the biochar surface (carboxyl,
hydroxyl) improve electrostatic or hydrogen-bond–mediated
particle binding.

In sandy or coarse-textured soils, biochar’s highly porous matrix
ofers additional storage of water and enhances plant-available
water content (PAWC). For instance, a meta-analysis found that
coarse-textured soils amended with biochar had ∼30% greater
plant-available water capacity [97]. Another review summarizes
that biochar improved feld water-holding capacity, soil available
water content and reduced saturated hydraulic conductivity
(sometimes) under certain conditions [98]. The mechanism in-
volved included the fact that biochar provides both macro- and
micropores; the micropores hold water against gravity, while
macropores enhance infltration and connectivity; increased
porosity and improved aggregate structure reduce compaction
and improve water movement and retention. However, some
caveats remain. In very weathered tropical soils, one study found
biochar increased aggregate stability by up to 33% but had no
detectable efect on feld-saturated hydraulic conductivity or
water-retention characteristics after 10 months [99].

1.3.2 | Soil Chemical Properties

On the chemical side, biochar application exerts multiple ben-
efcial efects on soil fertility and nutrient dynamics. Generally,
biochar tends to raise soil pH, particularly when produced from
feedstocks at high pyrolysis temperatures (≥ 500°C), owing to the
concentration of basic cations such as Ca2+, Mg2+, K+ and Na+ in
its ash fraction [100]. This liming efect is especially valuable for
acidic tropical soils, such as the Alfsols of the Nigerian-derived
savannah, which are often prone to nutrient fxation and alu-
minium toxicity. For instance, Obalum et al. [101], in their re-
view of Nigerian agroecologies, observed that most locally
produced biochars are alkaline (pH> 8) and their application
frequently ameliorates soil acidity while enhancing nutrient
availability and base saturation. Similarly, Oguntunde et al. [102]

reported that the application of maize–stalk biochar at 10–20 t
ha−1 increased soil pH from 5.3 to 6.8 in a degraded Alfsol in
southwest Nigeria, creating a more favourable environment for
crop nutrient uptake. Biochar also enhances CEC and nutrient
retention through its high surface area, porous structure and
abundance of negatively charged functional groups (carboxyl,
phenolic and hydroxyl moieties). These characteristics increase
the soil’s ability to retain exchangeable cations (NH4

+, K+, Ca2+,
Mg2+), thereby reducing nutrient leaching and improving
fertilizer-use efciency [103]. In tropical and subtropical soils,
where leaching losses are common due to high rainfall, the
addition of biochar has been shown to signifcantly enhance
nutrient retention and plant nutrient uptake. El-Naggar et al.
[104] applied biochars produced from rice straw, silvergrass
residues and umbrella tree to sandy soils and reported CEC
increases of 906%, 180% and 130%, respectively, compared to
unamended soil.

Moreover, biochar serves as a sink and stabilizing agent for SOC.
Its carbon is highly aromatic and recalcitrant, contributing to
long-term carbon sequestration and improving soil organic
matter quality [105]. In addition, biochar can physically protect
native organic matter by promoting the formation of organo-
mineral complexes and microaggregates, thereby enhancing the
stability of SOC [106]. Ebido et al. [93] also reported that RHB
addition to an Ultisol signifcantly increased SOC concentration,
supporting the notion that biochar enhances both the labile and
stable carbon pools [107]. Furthermore, biochar can modulate
nitrogen dynamics by adsorbing ammonium (NH4

+) and nitrate
(NO3

−), thus reducing N losses through leaching or volatilization
[106]. The retention of these ions not only enhances soil fertility
but also minimizes environmental pollution from reactive ni-
trogen. For instance, Li et al. [96] reported that biochar-amended
soils retained 35% more NH4

+–N and 28% more NO3
−–N com-

pared to unamended soils, leading to improved nitrogen-use
efciency in soybean systems (Table 1).

1.3.3 | Soil Biological Properties

On the biological and biochemical side, biochar signifcantly
infuences soil microbial communities, enzyme activities and
overall biochemical functioning. Through its porous struc-
ture, surface chemistry and organic carbon content, biochar
creates new microhabitats and energy sources for soil mi-
croorganisms [100]. These pores can protect microbes from
environmental stress (e.g., desiccation and predation) while
providing surfaces for colonization, thereby enhancing mi-
crobial abundance and diversity [108]. Biochar’s porous ma-
trix also modifes soil aeration, moisture and nutrient
availability, all of which are key determinants of microbial
activity. By improving soil moisture retention, biochar sta-
bilizes the habitat for microbial communities during dry pe-
riods, particularly in coarse-textured tropical soils [109].
Furthermore, the sorption of labile organic molecules and
toxins on biochar surfaces can bufer microbial processes by
reducing substrate loss and toxicity [110]. Biochar amend-
ments often result in increased microbial biomass and en-
zymatic activity, which in turn accelerate nutrient cycling. For
instance, Ebido et al. [93] reported that RHB application in an
Ultisol enhanced microbial biomass carbon and increased
dehydrogenase and phosphatase activities, refecting im-
proved biological functioning and nutrient turnover (Table 2).
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1.4 | Biochar as an Agent of GHG Sequestration

At present, crop yield uncertainties and rising GHG emissions
have marred the overall productive capacity of agriculture sys-
tems, putting future food security targets in jeopardy. Indeed, this
peculiar situation emphasizes the importance of transitioning
from modern intensive farming to more sustainable agricultural
management, which can boost crop productivity while reducing
GHG emission.

Biochar, a carbon-rich charcoal material, is produced by a dry
carbonization process, either under the complete or partial ab-
sence of O2, at high temperatures ranging from 300°C to 1000°C
[111]. Globally, biochar has attracted considerable attention as
a versatile organic amendment with signifcant potential for
mitigating the global warming efects [112], increasing crop
productivity [100] and C-sequestration [113]. The availability of
wide-ranging feedstock materials, as well as the pyrolysis tem-
perature conditions, can produce biochar of varied physical and
structural attributes, including but not limited to mechanical
strength, porosity, surface area, particle size, and density and
structural complexity [100, 114].

Biochar application can replenish key soil nutrients in low-
fertility soils due to its unique surface charge density, and the
predominant negatively charged surfaces of biochar also promote
cation adsorption [115, 116]. Since the sources and sinks of three
potent GHGs (CO2, N2O and CH4) aremajor components of the C
budget in ecosystems, the inclusion of biochar as a soil
amendment is critical because it can sequester C and, more
importantly, enable soil to negate anthropogenic CO2 emissions
[117]. According to estimates, biochar produced from 2.2 Gt of
feedstock material can remove up to 0.49 Gt C from the atmo-
sphere each year, implying greater merits for its use as a key
climate change mitigation strategy [118].

1.4.1 | Efect of Biochar on CO2 Sequestration

Carbon sequestration is a process by which atmospheric CO2 is
captured and stored to prevent it from being emitted into the
atmosphere [119]. It is essential that the carbon is transferred to
a passive carbon pool, i.e., stable or inert, in order to decrease C
emission to the atmosphere. Transferring even a small amount of
the carbon that cycles between the atmosphere and plants to
a much slower biochar cycle would impact greatly on atmo-
spheric CO2 concentration. Biochar is biologically and chemi-
cally more stable than the original carbon form, due to its
molecular structure and its origins. Furthermore, it is difcult for
the sequestered carbon to be released as CO2, making this a good
method for carbon sequestration [120].

Biochar plays a crucial role in carbon sequestration by capturing
and storing carbon in a stable form within the soil. The process
involves multiple mechanisms, including:

1. Pyrolysis and Carbon Stabilization: Biochar is produced
through pyrolysis, a process that involves the thermal de-
composition of biomass in an oxygen-limited environment
[121]. During pyrolysis, labile carbon (e.g., carbohydrates,
proteins) is converted into recalcitrant carbon, forming
aromatic structures that resist microbial degradation [122].
A comprehensive 8-year study examined the decomposition
of biochar derived from ryegrass using compound-specifc
14C analysis. The results demonstrated an exceptionally

slow decomposition rate, with the biochar losing only
7 × 10−4% of its carbon content per day under optimal
conditions [123]. This suggests that nearly 400 years would
be required for just a 1% reduction in its carbon content.
This stabilized carbon remains in the soil for hundreds to
thousands of years, preventing its rapid decomposition and
release as CO2 back into the atmosphere [124]. This lon-
gevity ensures that the sequestered carbon remains stored
in the soil, providing a reliable and long-term solution for
carbon sequestration;

2. Reduced Microbial Respiration and Mineralization: Bio-
char has a high carbon-to-nitrogen (C:N) ratio, which limits
its decomposition by microbes [125]. Its complex chemical
structure inhibits microbial respiration and slows down
carbon mineralization, reducing CO2 emissions [126].
Biochar amendments possess the capacity to modify en-
zymatic activity through their infuence on microbial
community composition and metabolic processes, thereby
instigating alterations in the rates of organic matter de-
composition and subsequent CO2 sequestration [127]. It
also promotes microbial interactions that enhance carbon
stabilization by forming microbial bioflms on its surface
[128].

3. Soil Carbon Protection via Adsorption and Aggregate
Formation: Biochar adsorbs dissolved organic carbon
(DOC), preventing its leaching and subsequent oxidation
into CO2 [129]. The potential for biochar (charcoal pro-
duced from pyrolysed fltercake) to mitigate carbon and
nutrient leaching in a cultivated Brazilian Ferralsol after
vinasse application was evaluated [129]. Results of their
experiment revealed that biochar-amended soil preferen-
tially retained high-molecular-weight, humic-like DOC
species, as revealed by fuorescence spectroscopy and op-
tical indices. Thus, biochar amendments in vinasse appli-
cation areas may decrease carbon leaching.

4. Enhanced Plant Growth and Photosynthetic Carbon Fix-
ation: By improving soil fertility, water retention and CEC,
biochar enhances plant growth [130]. This leads to greater
CO2 uptake by plants through photosynthesis, thereby
increasing biomass production. Some of this biomass is
eventually returned to the soil as organic matter, further
contributing to long-term carbon sequestration.

Several studies have been carried out on the efect of biochar on
the sequestration of atmospheric CO2, with contrasting results.
Some studies report a reduction in CO2 emissions; Sun et al. [130]
reported that the application of biochar at the rate of 30 t/ha
reduced CO2 emissions by 31.5% from a pine forest soil. Ap-
plication of biochar signifcantly reduced CO2 emissions as re-
ported by Qiao andWu [131]. Gui et al. [132] in their work aimed
to explore if the extra sorption of carbon dioxide (CO2) exists in
the biochar-amended soil. They put biochar and mineral-rich
biochar into soils to perform laboratory CO2 sorption experi-
ments. Their results demonstrate that all biochars increased soil
carbon storage and meanwhile further sorb CO2 for more carbon
sequestration. It has been reported that the biochar technology
could deliver emission reductions of 3.4∼6.3 Pg CO2 annually
and persist in soil for hundreds to thousands of years [133, 134].
Sheng et al. [135] also found suppression of total CO2 release in
both 500°C- and 700°C-derived biochar-amended soils. By using
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a generalized framework for quantifying, the potential contri-
bution biochar can make towards achieving national carbon
emissions reduction goals, assuming use of only sustainably
supplied biomass, that is, residues from existing agricultural,
livestock, forestry and wastewater treatment operations [136].
Results showed that biochar can play a role in worldwide CDR
strategies, with carbon dioxide removal potential of 6.23± 0.24%
of total GHG emissions in the 155 countries covered based on
2020 data over a 100-year timeframe, and more than 10% of
national emissions in 28 countries.

Others report an opposite efect; a feld experiment by Zhang
et al. [137] reported that wheat straw biochar had signifcantly
increased CO2 emissions by 12%. Hawthorne et al. [138] found
that CO2 emission from Douglas-fr forest soil was higher under
biochar application at the rate of 10% compared to the rate of 1%.
Some studies report no efect at all. Fidel et al. [139] observed no
reduction in CO2 emissions after application of biochar in a feld
study with four cropping systems (continuous corn, switchgrass,
low diversity grass mix and high diversity grass–forb mix).
Cropping system however had a signifcant efect in the feld
study, with soils in grass and grass–forb cropping systems
emitting more CO2 than the continuous corn cropping system.
Another feld experiment in a pasture ecosystem showed no
signifcant efects of biochar amendment on soil CO2 emissions
[140].

These contrasting efects of biochar on sequestration of atmo-
spheric CO2 could be because biochar infuences soil total CO2

emissions diferently depending on biochar type, soil type and
experimental design [135, 141–144]. Cely et al. [145] found that
biochar derived from wood chips exhibited a negative priming
efect in soils, whereas biochar produced from a mixture of paper
sludge and wheat husk induced a positive priming efect. These
diferences may be attributed to variations in biochar properties,
including carbon content, carbon aromaticity, volatile matter,
fxed carbon, easily oxidized organic carbon, metal content and
phenolic compounds, as well as surface characteristics. Their
study indicated that biochar application increased soil CO2

emissions by approximately 25%.

1.4.2 | Efect of Biochar on N2O Sequestration

The major source of N2O emissions from agricultural soils is the
application of synthetic nitrogen (N) fertilizer, as highlighted by
Wang et al. [144]. Studies demonstrate that biochar can positively
infuence soil physical properties, such as reducing bulk density
[146] and enhancing soil moisture [147], potentially leading to
a decrease in soil N2O emissions. The global trend towards
adopting no-tillage and reduced tillage practices is driven by their
demonstrated benefts in enhancing soil organic matter status,
structural condition and water regime [148, 149]. Extensive
studies indicate that reduced tillage induces a signifcant alter-
ation in soil structure, increasing porosity and decreasing bulk
density over the long term [150]. The transition from traditional
mouldboard ploughing to no-tillage has been associated with
a decrease in N2O emissions [151].

Literature acknowledges the potential of soil compaction to el-
evate N2O emissions from agricultural soils. For instance, Hu
et al. [152] conducted a review on the efects of soil compaction
on productivity and the environment, using New Zealand as
a case study. Their fndings suggest that the role of soil

compaction in explaining variability in N2O emissions remains
unclear. Ruser et al. [153] reported a 20% increase in the bulk
density of fne silty soil, leading to a rise in N2O emission. Studies
examining N2O emissions in diferent contexts further support
these observations. In a Czech Republic cattle overwintering
area, Simek et al. [154] observed higher N2O emissions in
trampled areas, though statistical signifcance was not achieved,
attributed to high spatial variability. Similarly, a study in Scot-
land simulated trampling in a wet dairy pasture soil, revealing
a threefold increase in N2O emissions [155]. In New Zealand, van
der Weerden and Styles [156] and van der Weerden et al. [157]
noted elevated N2O fuxes from compacted treatments after urine
application in pasture on silt loam soil. In oak forests, Goutal
et al. [158] found higher N2O production in trafcked plots
compared to the control treatment, particularly below 0.3 m
depth, where soil air-flled porosity was signifcantly reduced.
These reactions were because compaction-induced changes in
the pore system, as highlighted by Dörner and Horn [159],
negatively impact pore size, tortuosity and connectivity. This
alteration in the pore structure directly infuences fuid transport
in soil [160, 161], potentially leading to anaerobic conditions and
altered soil processes [162, 163]. In summary, limited pore
continuity and reduced gas transport capacity within and be-
tween aggregates infuence N2O production, consumption and
transport to the soil surface, as outlined by Ball [164].

Rondon et al. [165] were among the frst to report a reduction in
soil N2O emissions following biochar application. Conducted in
a low-fertility oxisol Colombian savannah, their study revealed
a reduction of up to 50% for soybeans and up to 80% for grass in
N2O emissions. Additionally, Liu et al. [166] conducted a labo-
ratory study on two types of biochar derived from rice straw and
dairy manure, fnding a correlation between reduced copy
numbers of the monooxygenase gene amoA and the nitrite re-
ductase gene nirS (genes responsible for nitrifcation and de-
nitrifcation) and a subsequent reduction in N2O emissions when
biochar was applied.

In a study assessing the impact of biochar on soil GHG emissions
at both laboratory and feld scales, Fidel et al. [139] observed
a 27% suppression of N2O emissions in a corn cropping system.
However, they noted no signifcant efect at the laboratory scale
across varying soil temperature and moisture levels. This dis-
parity in N2O emission results between laboratory and feld-scale
studies emphasizes that laboratory experiments may not reliably
predict the impact of biochar at the feld scale. Yanai et al. [147]
conducted a brief laboratory incubation study, applying mu-
nicipal biowaste-derived biochar at a rate of 180 tonnes per
hectare. They observed a noteworthy reduction in N2O emissions
within a wetted volcanic ash soil. Correspondingly, Zhang et al.
[167] demonstrated a signifcant decline in total N2O emissions
in a hydroagric stagnic anthrosol by 40%–51% and 21%–28% after
the addition of biochar (created via slow pyrolysis of wheat straw
at 350°C–550°C at a rate of 40 tonnes per hectare compared to
control treatments, with or without N-fertilizer, respectively).
This aligns with the results of Sarkhot et al. [168], who also found
a 26% reduction in cumulative N2O fux when using dairy
manure-derived biochar (DBC).

Furthermore, Cayuela et al. [169] conducted a comprehensive
meta-analysis encompassing both short- and long-term studies
evaluating the impact of biochar on N2O emissions. They ob-
served a 54% reduction in soil N2O emission under controlled
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laboratory conditions and a 28% reduction in feld conditions.
Their meta-analysis highlighted signifcant factors infuencing
N2O emissions, including the type of feedstock used for biochar
production, pyrolysis conditions and the properties of the
resulting biochar. Additionally, they found a direct relationship
between the reduction of N2O emissions and the application rates
of biochar [169]. The study also proposed that interactions among
biochar, soil texture and nitrogen fertilizer form play a pivotal
role in afecting soil N2O emissions [169].

The reduction of soil nitrous oxide (N2O) emissions by biochar is
attributed to several mechanisms, such as: (1) Improved Soil
Aeration and Reduced Denitrifcation: Biochar enhances soil
structure, increasing porosity and aeration [170], which pro-
motes oxygen difusion [171]. This reduces anaerobic conditions,
limiting denitrifcation, a major source of N2O emissions. The
availability of oxygen to soil microorganisms via water-flled pore
space (WFPS) depends on soil moisture and aeration, ultimately
infuencing the activities of nitrifers and denitrifers. A study by
Bateman and Baggs [172] investigated the contributions of ni-
trifcation and denitrifcation to N2O emissions at diferentWFPS
levels. The fndings revealed that nitrifcation was the primary
cause of N2O generation at 35%–60%WFPS, while denitrifcation
dominated at 70% WFPS and higher [172]. (2) Adsorption and
Retention of Nitrogen Compounds: Biochar has a high surface
area and CEC, allowing it to adsorb ammonium (NH4

+) and
nitrate (NO3

−) [173, 174]. By retaining nitrogen, biochar reduces
substrate availability for nitrifcation and denitrifcation, thereby
lowering N2O production [175, 176]. Zhong et al. [177] in-
vestigated the potential for N2O production through bacterial and
fungal nitrifcation and denitrifcation in both rhizosphere and
nonrhizosphere soils, along with the abundance of microbial
genes associated with these processes. Their fndings revealed
that inorganic fertilizers and biochar signifcantly infuenced
N2O production potential and gene abundance. They concluded
that partially replacing inorganic fertilizers with biochar could
mitigate N2O emissions by reducing bacterial nitrifcation and
denitrifcation. (3) Altering Microbial Communities: Biochar
infuences soil microbial dynamics, particularly by suppressing
denitrifers responsible for N2O production. Case et al. [178]
investigated the efect of biochar on soil N2O emissions and N
cycling processes by quantifying soil N immobilization, de-
nitrifcation, nitrifcation andmineralization rates using 15N pool
dilution techniques and the FLUAZ numerical calculation
model. They examined whether biochar amendment afected
N2O emissions and the availability and transformations of N in
soils. Results showed that biochar suppressed cumulative soil
N2O production by 91% in near-saturated, fertilized soils. Cu-
mulative denitrifcation was reduced by 37%, which accounted
for 85%–95% of soil N2O emissions. Biochar also enhances N2O-
reducing bacteria, which convert N2O to harmless N2 gas [179].
(4) pH Modifcation and Inhibition of N2O Formation: Biochar
tends to increase soil pH [114], which can reduce nitrifcation
rates (lowering NO3

− availability). In the study of Ippolito et al.
[180] in a hardwood-based fast pyrolysis in which biochar was
applied (0 wt.%, 1 wt.%, 2 wt.% and 10 wt.%) to calcareous soil, it
was reported that biochar at higher applications dramatically
lowers soil NO−

3−N concentrations and prevents NO−
3−N from

accumulating over time. An incubation experiment was per-
formed on the salt-afected soil collected from a three-year
consecutive experiment at biochar application gradients of 7.5,
15 and 30 t⋅ha−1 and under nitrogen (N) fertilization [181].
Biochar addition inhibited nitrifcation in salt-afected irrigation-

silting soil by shifting the community structures of ammonia-
oxidizing bacteria and ammonia-oxidizing archaea and reducing
the relative abundance of dominant functional ammonia-
oxidizers, such as Nitrosospira, Nitrosomonas and Nitro-
sopumilus. Biochar also tends to increase soil pH, which can shift
denitrifcation pathways towards complete reduction of N2O to
N2 gas, minimizing emissions. Biochar was found to suppress
N2O and NO emissions by altering soil pH during denitrifcation
[182]. Using acid acrisols and two biochar types, the study found
that biochar’s alkalizing efect, not labile carbon, infuenced
product stoichiometry. Acid-leached biochar lost their sup-
pression ability, confrming pH’s critical role in denitrifcation
product dynamics. In order to study the infuence of biochar
addition on N2O emissions from soils with diferent pH levels
[183], a 40-day incubation experiment was carried out, and four
treatments (control, nitrogen fertilizer application, biochar
amendment and N plus biochar amendment) were set up sep-
arately in soils with three diferent natural pH levels (acidic
vegetable soil, neutral rice soil and alkaline soil). Results showed
that adding biochar signifcantly decreased N2O emissions by
20.8% and 47.6% in acidic vegetable soil for both N and no-N
addition treatments, respectively. Thus, biochar amendment
could be used as an efective management practice for mitigating
N2O emissions from acidic and alkaline soils (Table 3).

1.4.3 | Efect of Biochar on CH4 Sequestration

Biochar has been utilized to mitigate methane (CH4) emissions.
In a study by Yu et al. [184], a notable reduction in CH4 emissions
from forest soils was observed with the incorporation of 10% w/w
chicken manure biochar. Similarly, Xiao et al. [185] demon-
strated that biochar signifcantly enhanced CH4 uptake in
a chestnut plantation in China, irrespective of the application
rate. The increase in CH4 uptake within the soil can be attributed
to biochar-induced elevation of soil pH, promoting the growth of
methanotrophs [186, 187]. Additionally, biochar application
leads to a reduction in soil bulk density and an increase in soil
porosity, facilitating CH4 oxidation and uptake by soil microbes
[188, 189]. The reduction in CH4 due to biochar can be linked to
the inhibitory efect of biochar chemicals on soil methanotrophs
[190]. The porous structure of biochar provides new habitats for
soil microbes, enhancing CH4 uptake by methanotrophs more
than CH4 production, owing to improved soil aeration [189]. A
study by Karhu et al. [189] highlighted that CH4 uptake increased
in biochar-amended soil due to enhanced soil aeration and
improved CH4 difusion through the soil profle. From a labo-
ratory experiment, Liu et al. [21] found that CH4 emissions from
paddy soil amended with bamboo char and straw char at 2.5%
application rate were reduced by 51.1% and 91.2% in 49 days.

Lee et al. [191] reported a global meta-analysis conducted re-
garding the efectiveness of biochar. The study by Jefery et al.
[187] demonstrated that biochar application efectively mitigates
methane (CH4) emissions while enhancing SOC and crop yield.
Their quantitative meta-analysis revealed that biochar sub-
stantially reduces CH4 emissions, especially in fooded (paddy)
felds and acidic soils where fooding occurs as part of feld
management. Rajalekshmi et al. [192] found that the application
of RHB in wetland Ultisol signifcantly enhanced soil carbon
content and increased carbon accumulation in rice crops. The
study revealed that RHB contributed substantial refractory
carbon to the soil, improving its nutrient status and productivity.
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Importantly, RHB application led to a notable 50%–60% re-
duction in methane (CH4) emissions compared to farmyard
manure (FYM), highlighting its efectiveness in mitigating GHG
emissions while enhancing soil and crop quality.

An experiment was conducted to evaluate the potential of
mangrove tree wood (Rhizophora apiculata) biochar on CH4

mitigation, soil properties and the productivity of rice cultivated
in a clay loam soil in Thailand [193]. The treatment biochar alone
signifcantly reduced cumulative methane (CH4) emissions
compared to the nonamended control: 21.1% in the frst season,
24.9% in the second season. The treatment biochar+ fertilizer
also produced lower CH4 emissions than the fertilizer-alone
treatment. A 2-year feld study conducted in the sandy loam
soils of Inner Mongolia, China, examined the efects of corn
residue–derived biochar on GHG emissions, SOC, and GWP
under flm-mulched, drip-irrigated maize production [194]. Corn
residue–derived biochar, particularly at 15–30 t ha−1, efectively
reduced CH4 and N2O emissions, improved SOC storage and
lowered net GWP, demonstrating its potential as a climate
mitigation and soil-improvement strategy in semiarid sandy
loam soils under drip-irrigated maize production in northern
China.

Biochar reduces methane (CH4) emissions from the soil through
several mechanisms: (1) Enhanced Aeration and Redox Poten-
tial: Biochar improves soil structure, increasing aeration and
oxygen difusion [170]. This promotes aerobic microbial activity,
suppressing methanogenic (CH4-producing) archaea that thrive
in anaerobic conditions. The efect of biochar addition on CH4

emissions, and the abundance and community composition of
methanogens and methanotrophs over two rice cultivation
seasons were studied [195]. Biochar application decreased CH4

emissions by reducing methanogenic archaea abundance in the
studied fooded paddy soil. Methanogens and methanotrophs
regulate CH4 emissions in paddy soils [196]. Feng et al. [197] and
Qin et al. [198] found signifcant decreases in CH4 emissions by
biochar addition and explained the result by increases in
methanotrophic bacteria biodiversity and abundance. The ad-
dition of biochar to paddy soil reduces soil bulk density and
enhances aeration, thereby suppressing methanogenic activity.
This reduction in bulk density is attributed to biochar’s high
porosity [199]. As a nutrient-rich amendment [200], biochar
stimulates rice root growth [201], leading to increased oxygen
secretion [202, 203]. Enhanced oxygen availability further in-
hibits methanogens and their activity. Kim et al. [204] found that
biochar application not only boosted rice yield but also reduced
CH4 emissions by improving soil aeration and oxygen supply,
thereby suppressing methanogenesis. (2) Electron Transfer and
Methane Suppression: Biochar acts as an electron acceptor, fa-
cilitating alternative microbial pathways that compete with
methanogenesis. Biochar contains quinone, phenolic and other
redox-active groups that can accept electrons from microbial
metabolism, especially from anaerobic respiration [205]. These
functional groups undergo reversible oxidation and reduction,
infuencing microbial electron transfer. Theoretically, carbonyl
and quinone moieties in biochar can function as electron ac-
ceptors, facilitating CH4 consumption in paddy soils. Zhang et al.
[206] reported that the quinone (C=O) structure in biochar
contributes to anaerobic CH4 oxidation. This process can account
for up to 50% of total CH4 consumption in wetlands [207].
Therefore, biochar may help mitigate CH4 emissions partly by

enhancing anaerobic CH4 oxidation through its electron-
accepting capacity in paddy soils. (3) Nutrient and
pH Modifcation: Biochar can increase soil pH, which inhibits
methanogenic archaea that prefer acidic conditions. The alkaline
nature of biochar is mainly due to the ash content [148]. Weber
and Quicker [208] observed a large decrease in methanotrophic
activity when soil pH decreases from 6.3 to 5.6. Generally, at
higher pyrolysis temperatures, the biochar produced is higher
alkaline, and hence, its application signifcantly promotes the
activity of methanotrophic in acid paddy soil [209]. (4) Reduced
Substrate Availability: Biochar adsorbs DOC, decreasing the
availability of methanogenic precursors like acetate and hy-
drogen. Soil DOC serves as a key substrate for methanogens and
plays a crucial role in CH4 production [196]. Yu et al. [184] found
that applying hen biochar to paddy felds reduced soil DOC,
likely due to adsorption within the biochar pores. Zheng et al.
[210] reported that biochar amendment decreased DOC content
by 52% and 71% at application rates of 20 and 40 t ha−1, re-
spectively (Table 4).

2 | Conclusion

This review revealed that GHG emissions, including CO2, CH4

and N2O, detrimentally afect crop productivity, posing a serious
threat to global food security. These gases trap heat in the Earth’s
atmosphere, leading to global warming and climate change,
ultimately impacting agriculture and crop yields. Decreased crop
productivity due to climate change can have far-reaching eco-
nomic and social impacts. Reduced yields may lead to food
shortages, increased food prices and economic instability, af-
fecting both farmers and consumers, particularly in vulnerable
regions. Biochar aids in mitigating atmospheric CO2 by se-
questration of C (for it is difcult for the sequestered carbon to be
released as CO2, making this a good method for carbon se-
questration). Biochar can positively infuence soil physical
properties, such as reducing bulk density and enhancing soil
moisture, potentially leading to a decrease in soil N2O emissions.
The decrease in soil N2O emissions was due to enhanced oxygen
levels in the soil by biochar through improved aeration. Biochar
has been utilized to mitigate methane (CH4) emissions. The
reduction in CH4 due to biochar can be linked to the inhibitory
efect of biochar chemicals on soil methanotrophs.

Biochar’s potential as an agent of GHG sequestration lies in its
ability to efectively capture and store carbon while promoting
soil health and reducing emissions of other potent GHGs. When
integrated into sustainable land management practices, biochar
can play a vital role in mitigating climate change and fostering
a more sustainable and resilient agricultural system. However,
further research and widespread adoption are essential to fully
realize the potential of biochar on a global scale.

2.1 | Potential Areas of Future Research

Future studies should explore the economic feasibility of in-
tegrating biochar into agricultural systems by assessing the cost-
efectiveness of its production and application relative to po-
tential benefts, including increased crop yields, carbon se-
questration and reduced emissions. In addition, research should
examine the development and implementation of policies and
regulatory frameworks that drive the adoption of biochar in
agriculture, as well as assess the potential barriers and incentives
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at local, national and international levels for the integration of
biochar into sustainable land management practices.
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