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Abstract

Engineered biochar with enhanced photochemical properties holds great potential for environmental remedia-
tion. However, natural humic substances, crucial players in environmental redox processes, are structurally complex
and slow-forming, hindering mechanistic insights and practical applications. Here, we propose a co-engineering
strategy that combines biochar with artificial humic substances synthesized from pine sawdust via controlled hydro-
thermal humification (180-340 °C). Modulating the hydrothermal temperature can yield artificial humic substances
with diverse degradation degrees of lignin, yielding tailored phenolic architectures and electron-donating capacities
(EDQ). Using Ag* photoreduction as a model reaction, we demonstrate that artificial humic substances produced

at 340 °C exhibit optimal phenol content and the strongest reducing capacity (19.2-fold greater than that of sub-
stances synthesized at 180 °C). Notably, higher molecular weight fractions (> 5 kDa) of artificial humic substances
were found to dominate Ag* photoreduction due to their enriched phenolic content and superior EDC. Mechanistic
investigations reveal that photo-excited phenolic groups generate superoxide radical (O, ), initiating Ag* reduction
via a ligand-to-metal charge transfer (LMCT) pathway. Moreover, we discovered a previously overlooked phenom-
enon: hydrochar undergoes photo-induced dissolution, further enhancing photoreduction. This work provides new
insights into the temperature-dependent lignin transformation into redox-active artificial humic substances and high-
lights the dynamic photochemical behavior of engineered biochar (hydrochar) under solar irradiation.

Highlights

Modulating hydrothermal temperature yields varied lignin degradation progress.

340 °C-synthesized artificial humic substances showed 19-fold higher Ag™ reduction than 180 °C-synthesized
samples.

O,~— generation by photo-excited phenolic groups drives silver reduction, followed by a ligand-to-metal
charge transfer process.

Sunlight exposure triggers dynamic hydrochar transformation, revealing new pathways for photoreduction pro-
cesses.
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1 Introduction

Engineered biochar has emerged as a promising material
for environmental applications due to its excellent sorp-
tive and catalytic properties (Khan et al. 2023; Yameen
et al. 2024). However, its photochemical behavior, espe-
cially under natural sunlight, remains insufficiently
understood. Meanwhile, natural humic substances are
known to mediate redox reactions in aquatic and soil sys-
tems (Peng et al. 2022), yet their structural heterogeneity
and slow natural formation via plant residue decomposi-
tion (Tang et al. 2021; Yang et al. 2021) limit mechanistic
studies and practical applications (Yang et al. 2021; Zin-
garetti et al. 2018).

To overcome these challenges, artificial humic sub-
stances synthesized via hydrothermal humification offer
a tunable and rapid alternative (Yang et al. 2019). Using
plant-derived biomass, this process mimics the natural
humification of lignin-rich matter but provides precise
control over the molecular structure (Xu et al. 2023; Yang
et al. 2019). Unlike dissolved black carbon (DBC) derived
from biochar, which lacks structural flexibility (Li et al.
2020; Liu et al. 2021), hydrothermally produced artificial
humic substances enable the adjustment of phenolic den-
sity and redox potential. In this study, we systematically
explore how hydrothermal temperature modulates the
phenolic architecture and electron-donating capacity of
artificial humic substances, as well as the resulting effects
on their photoreduction performance.

Biochar’s photochemical activity heavily relies on
its aromaticity and surface functional groups (Khan
et al. 2023). However, existing studies predominantly
focus on dissolved organic fractions, overlooking the
dynamic photochemical roles of undissolved biochar.
To address this gap, we explore a previously overlooked
phenomenon—the photo-induced dissolution of hydro-
char—revealing a novel pathway that enhances biochar’s
function as a photochemical mediator. Compared to cel-
lulose/hemicellulose (Chen et al. 2020), the recalcitrant
nature of lignin (Okolie et al. 2021) allows precise tuning
of phenolic architectures during hydrothermal treatment,
directly governing the reducibility of the resultant prod-
ucts (Hao et al. 2018; Wang et al. 2022).

Ag* photoreduction serves as an ideal model reac-
tion for evaluating the photochemical reduction per-
formance of engineered biochar and artificial humic
substances, providing both spectroscopic evidence (via
silver nanoparticle formation) and environmental rel-
evance. Silver nanoparticles (AgNPs) are widely utilized
for their remarkable antimicrobial properties (Guo et al.
2018; Rtimi et al. 2019); however, concerns regarding
their potential environmental risks persist (Dong et al.
2019; Yu et al. 2018). Numerous studies have focused
on Ag* reduction by dissolved humic substances (Dong
et al. 2020; Hou et al. 2013; Jain and Mehata 2017; Zou
et al. 2015), but the contribution of undissolved frac-
tions remains unclear (Huang et al. 2019; Nie et al. 2019),
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particularly regarding aromatic versus aliphatic compo-
nent interactions (Akaighe et al. 2011; Nie et al. 2019).

This study presents an innovative co-engineering strat-
egy combining biochar with artificial humic substances
via regulated hydrothermal humification. We elucidate
the mechanisms underlying Ag" photoreduction medi-
ated by artificial humic substances with varying lignin
degradation degrees and the molecular weights (MW)
under simulated sunlight. The photoreduction mecha-
nisms of AgNP formation mediated by artificial humic
substances were analyzed in detail. Crucially, we reveal
that hydrochar’s photo-induced dissolution under sun-
light provides novel insights into the undissolved bio-
char’s previously overlooked role in environmental redox
processes (Huang et al. 2019).

This co-engineering strategy not only accelerates the
humification process compared to natural pathways but
also provides a tunable platform to investigate the redox
behavior of trace metals (e.g., Ag") and organic pollut-
ants. Collectively, these insights advance the design of
solar-responsive remediation materials and deepen our
understanding of metal geochemical cycling in sunlit
environments.

2 Materials and methods
2.1 Preparation of hydrochar and artificial humic
substances
Artificial humic substances were prepared via one-step
hydrothermal liquefaction (HTL) using waste biomass as
a precursor (Yang et al. 2019). In a 500 mL autoclave, pine
sawdust and ultrapure water were combined at a ratio of
1:10 and subjected to hydrothermal humification to sim-
ulate lignin degradation. For the experiments conducted
at 180 °C and 260 °C, 30 g of pine sawdust was mixed with
300 mL of ultrapure water. For the experiment at 340 °C,
10 g of pine sawdust was mixed with 100 mL of ultrapure
water. Each reaction was sustained for 2 h, after which
the autoclave was cooled to room temperature using tap
water. The obtained solid and liquid phase samples were
separated and recovered via filtration and denoted as S-X
and L-X, respectively, with S representing the hydrochar,
L representing the dissolved artificial humic substances
(hydrothermal liquid), and X representing the HTL tem-
perature (180-340 °C). Furthermore, to study the impact
of long-term irradiation on the dissolution of hydrochar,
S260 was selected as an example after 0—6 weeks of irra-
diation (see SI for details).

2.2 Dissolved artificial humic substances fractionation

To investigate the effect of dissolved artificial humic
substances with different MW on the photoreduction of
Ag* to AgNPs, a part of pristine L340 (<0.22 pm) was
fractionated by a series of Ultracel regenerated cellulose
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ultrafiltration membranes with nominal MW cut-offs of
50, 5, and 1 kDa (Amicon Bioseparations, Millipore). The
filtrates were collected and denoted as MW-fractionated
L340 (<50 kDa, <5 kDa, < 1 kDa ML340).

2.3 Formation of AgNPs under simulated sunlight

The AgNPs were formed by mixing AgNO; with a rep-
resentative dissolved artificial humic substance (L340)
at room temperature under simulated sunlight irradia-
tion. The L340 concentration varied from 17.8 to 71.3 mg
C L', the AgNO; concentration varied from 0.1 to
1x107 mol L7}, and the S340 concentration was fixed
at 100 mg L', Photoreduction experiments were per-
formed using a solar simulator (PLS-SXE300DUYV, Bei-
jing Perfect Light Co., Ltd., China) equipped with a 300
W xenon lamp (light source: 320-780 nm) without light
filters at 500 mW cm™2. The mixed suspension (200 mL)
was added to a top-illuminated photoreactor and covered
with a quartz water jacket glass slide. During simulated
sunlight irradiation, the reaction temperature was main-
tained at room temperature by passing tap water into
the reactor. For kinetic testing, samples were collected
through a syringe at specific time intervals for further
analysis. AgNO; or artificial humic substances were used
as controls and no buffer solution was added to the reac-
tion system. To investigate the effect of dissolved oxygen
on the photoreduction of Ag", the mixed solution was
continuously purged with high-purity nitrogen or air
during the reaction. To evaluate the role of O, in the
photoreduction of Ag*, superoxide dismutase (SOD, 3
kU mL™!) was added before the reaction.

2.4 Characterizations of artificial humic substances

The C, H, N, and O contents of the hydrochar were
measured using an elemental analyzer (Vario EL III).
The chemical functional groups of the undissolved arti-
ficial humic substances were analyzed using solid-state
13C nuclear magnetic resonance (Bruker 400 M). The
chemical composition of the dissolved artificial humic
substances was determined using gas chromatography-
mass spectrometry (GC-MS, Thermo Focus DSQ), and
the total phenolic content of L340 was determined using
the Folin-Ciocalteu method (Wang et al. 2011) (see SI
for details). Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR MS, Bruker) was employed
to analyze the molecular composition of dissolved arti-
ficial humic substances (Qian et al. 2018) (see SI for
details). Mediated electrochemical oxidation (MEQO) was
utilized to quantitatively determine the EDC of L340
at a constant potential, according to a previous study
(Aeschbacher et al. 2010) (see SI for details). The chemi-
cal differences between the L340 fractions were assessed
using a fluorometer (Aqualog, Horiba-Jobin Yvon, USA).
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Excitation-emission matrix (EEM) spectra were meas-
ured at the excitation wavelength of 200—500 nm in 3 nm
intervals and emission wavelength of 200-500 nm in
2 nm intervals for each excitation wavelength. The total
organic carbon (TOC) of dissolved artificial humic sub-
stances was determined using a TOC analyzer (TOC-L
CPH, Shimadzu, Japan).

2.5 Characterization of AgNPs

At each time point, the UV-vis spectra of AgNPs from
300 to 800 nm were recorded using a double-beam
ultraviolet—visible spectrophotometer (TU-1901, Bei-
jing Purkinje General Instrument Co., Ltd., China). The
mass concentration of AgNPs was measured using ultra-
filtration coupled with inductively coupled plasma mass
spectrometry (ICP-OES, Perkin Elmer Optima-8000).
Before ICP analysis, the AgNP suspensions were trans-
ferred to 3 kDa ultrafiltration centrifuge tubes (Amicon
Ultra-15, 3 kDa, Millipore) and centrifuged at 5000 g for
40 min (Li et al. 2018). AgNP concentration was calcu-
lated by subtracting the Ag™ concentration from the total
Ag concentration. The residuals on the filters were rinsed
with deionized water and freeze-dried using a SCI-
ENTZ-10N freeze dryer (Ningbo Scientz Biotechnology
Co., Ltd., China) for X-ray photoelectron spectroscopy
(XPS) and X-ray diffraction (XRD) characterizations.
The valence state of Ag was determined using XPS (PHI
5000C&PHI5300, USA). The morphology of AgNPs was
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observed using a high-resolution transmission electron
microscope (HR-TEM, Tecnai G? F20 S-Twin, FEI, USA)
equipped with energy dispersive X-ray spectrometry
(EDS) and selected area electron diffraction (SAED) at an
acceleration voltage of 200 kV. The TEM specimens were
prepared by slowly drop-drying the solution on a 300-
mesh ultrathin carbon-coated copper grid.

3 Results and discussion
3.1 Characteristics of hydrochar and artificial humic
substances
To elucidate the reductive properties of hydrochar and
artificial humic substances, the properties of hydrochar
were first investigated. The S340 samples contained more
carbon (76.0%) and less oxygen (18.0%) than the sawdust,
$180, and S260 samples, suggesting that hydrothermal
liquefaction at high temperatures accelerated lignin deg-
radation (Table S1). Furthermore, the hydrochar obtained
at diverse hydrothermal temperatures mainly followed a
dehydroxylation trend, as confirmed by the Van Krevelen
diagrams (Fig. 1a). The aromaticity of the hydrochar fol-
lowed the order S340>S5260>S180, indicating that the
biomass feedstock (sawdust) experienced more intense
dehydration and condensation reactions at higher hydro-
thermal temperatures (Fig. 1b and Table S2). The carbon
conversion rate of the diverse artificial humic substances
decreased with an increase in hydrothermal temperature
(Figs. S1-2, Fig. 1c, and Table S1).
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Fig. 1 Characteristics of hydrochar and artificial humic substances. a Evolution of H/C and O/C atomic ratios in the Van Krevelen diagram. b
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Moreover, FT-ICR MS was used to characterize the
molecular composition of the dissolved artificial humic
substances (hydrothermal liquid). The molecular com-
positions of artificial humic substances are presented in
typical Van Krevelen diagrams (Fig. S3). The three arti-
ficial humic substances were mainly distributed in the
lignins/ carboxylic-rich alicyclic molecule-like (CRAM)
structural region (Fig. 1d). The Van Krevelen diagrams
revealed that the hydrothermal temperature facilitated
the transformation of compounds from lignin/CRAM
structures to aromatic structures, as indicated by the
decrease in H/C values (Fig. S4). Additionally, low-polar-
ity and low-molecular-weight compounds were readily
formed at elevated temperatures, as demonstrated by the
decrease in m/z and O/C ratios from 377.8 to 282.9 and
from 0.45 to 0.32, respectively (Fig. le). Consequently,
relatively abundant compounds with more than 7 oxy-
gen atoms and m/z>400 were distinctly transformed into
substances with lower molecular weight and lower oxy-
gen content (Figs. S5-56). This transformation is attrib-
uted to the gradual depolymerization and dehydration
of lignocellulose, resulting in bond breakages and oxygen
separation with increasing hydrothermal temperature.

GC-MS further demonstrated that the concentra-
tions of low-molecular-weight compounds, specifically
phenols and ketones, typical redox-active components,
were notably elevated in artificial humic substances pro-
duced at 260 and 340 °C (Fig. 1f and Table S3). The total
phenolic concentration in these substances followed
the order L340>1260>L180 (Fig. S7), as determined
using the modified Folin—Ciocalteu method (Wang
et al. 2011). The EEM results confirmed that substances
exhibiting peaks at 239/330 and 287/326 nm (excitation/
emission) were associated with phenol-like compounds
resulting from lignin depolymerization (Fig. S8) (Hao
et al. 2018; Yu et al. 2022). The fluorescence intensity
notably increased at higher hydrothermal temperatures,
indicating a corresponding increase in the concentra-
tion of these compounds. Consequently, differences in
the phenol content may account for variations in the
reduction performance of artificial humic substances.

3.2 Photoreduction of Ag* to AgNPs by artificial humic
substances

The phenolic moieties of humic substances can mediate
the conversion of minerals or pollutants into electron-
donating groups (Lv et al. 2018; Walpen et al. 2018;
Yang et al. 2023). The EDCs were measured to confirm
the reductive capacities of various artificial humic sub-
stances. The EDCs of artificial humic substances fol-
lowed the order L340 > L1260 >L180 (Fig. 2a), indicating
that artificial humic substances with higher phenol con-
tent possessed stronger reductive properties. Herein,
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taking the trace metal Ag as a probe, we evaluated
the reductive capacity of artificial humic substances
under simulated sunlight. Compared to the L180 and
L260 samples, the L340 sample significantly acceler-
ated Ag* reduction efficiency under simulated sunlight
by more than 19.2 or 4.7-fold, respectively (Fig. 2b,c).
The rate of photochemically induced growth of AgNPs
followed the order L340 >1260>L180, which was con-
sistent with the trend of phenol content in the samples.
Moreover, TEM images confirmed that dissolved arti-
ficial humic substances prepared at high temperatures
can significantly promote the growth of AgNPs under
simulated sunlight (Fig. S9). As expected, hydrochar
prepared at the three hydrothermal temperatures did
not lead to the formation of the characteristic peak of
AgNPs under simulated sunlight (Fig. 2d).

Based on these comparative results, L340 was selected
as the model reducing agent for detailed investigation of
the Ag* photoreduction mechanism. Using optimized
conditions (1 mmol L™ AgNO, and 59.7 mg C L' DOC
of L340 (<50 kDa)), we systematically characterized the
photoreduction process under simulated sunlight. The
relatively colorless solution turned light yellow upon light
exposure, and the color deepened as irradiation con-
tinued (Fig. S10). Moreover, the absorbance increased
with longer irradiation time, and the characteristic peak
(~400 nm) of AgNPs gradually shifted to longer wave-
lengths (Fig. S10), indicating that the formation rate of
AgNPs accelerated. Control samples without light expo-
sure or containing only AgNO; showed no obvious char-
acteristic peak of AgNPs, indicating that the formation of
AgNPs required light exposure and artificial humic sub-
stances (Fig. S11). With prolonged irradiation, the mor-
phology of AgNPs in the presence of L340 changed from
an initial spherical or quasi-spherical shape to triangular
or other polygonal shapes, and eventually aggregated
and eventually formed rod-like or larger nanoclusters
(Fig. S12). The concentration of AgNPs increased from
27.9 mg L™! after 15 min to 47.8 mg L™ after 4 h of irra-
diation (Fig. S13). Furthermore, the SAED pattern of
AgNPs formed in the 4 h sample shows four face-cen-
tered cubic planes: (111), (200), (220), and (311) planes
of elemental Ag (Fig. S14a). EDS further confirmed the
presence of metallic Ag (Fig. S14b). In the XRD analy-
sis, a prominent diffraction peak emerged at 37.9° in the
lyophilized sample, corresponding to the (111) crystal
plane of metallic Ag (Fig. S15). The presence of elemen-
tal Ag species was further verified using XPS analysis.
As depicted in Fig. S16, the Ag 3d;,, and Ag 3d;,, signals
appeared at 367.9 eV and 373.9 eV, indicating the pres-
ence of metallic Ag (Huang et al. 2019). In summary, the
qualitative or quantitative characterization methods of
UV-vis, TEM-EDS, XRD, XPS, and ICP-OES proved that
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nano-silver can be generated in the presence of artificial
humic substances under simulated sunlight.

3.3 Mechanisms of photoreduction of Ag*

Several associated parameters, including artificial humic
substance concentrations, AgJr concentrations, and
pH, were varied to elucidate the potential mechanism
of Ag* photoreduction by L340. The surface plasmon
resonance (SPR) peak of AgNPs was broader at lower
concentrations of artificial humic substances or Ag"
(Fig. 3a,b), indicating an insufficient amount of reactive
species to reduce and stabilize AgNPs with small parti-
cle sizes (Adegboyega et al. 2013; Akaighe et al. 2011).
The increase in the growth rate of AgNPs correlated
positively with the rise in pH, which was substantiated
by the amplified SPR peak intensity of AgNPs as the pH
increased (Fig. 3c). In contrast to alkaline environments,
the formation of AgNPs may not be favorable in acidic
environments because AgNPs are prone to dissolution

under acidic conditions (Huang et al. 2019; Peretyazhko
et al. 2014).

The role of O,"~ in the reduction of Ag* was verified
by purging with gas or adding SOD. The presence of O,"~
can be determined by applying the EPR technology and
using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a
spin trap (Wang et al. 2020). As illustrated in Fig. 3d, six
characteristic peaks of the DMPO—O,'~ spin adducts
were observed in the L340 suspension under simulated
sunlight. However, with prolonged irradiation time, the
O,"” content attenuated severely and was not detect-
able after 2 h of irradiation (Fig. 3e). The role of O,"” in
photoreduction was further elucidated by the presence
of SOD (Fig. 3f), which stopped AgNP formation, con-
firming that O,"~ is the key reductant in the artificial
humic substances-induced photoreduction. However,
the photoreduction formation rate of AgNPs increased
significantly in the nitrogen-purged condition (Fig. 3g-
i), indicating that O,"” is not the only reductant in the
reduction of Ag*. These results show that the LMCT is a



Sun et al. Biochar (2026) 8:12 Page 7 of 11
2.0 2.0 2.0
(a) (b)
01.6 o 1.6 01.6
e ] g
51_2 71.3mgc L’ 81.2 102 mol L™ Ag* §1-2
808 ‘308 10% mol L' Ag* 808
< e semgcL’| K 5104mol L' Ag"| o
17) &
0.4 M 0.4 0.4 6oy
0.0 0.0 0.0
300 400 500 600 700 800 300 400 500 600 700 800 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm) Wavelength (nm)
8
1.2 without SOD
- (d) 15 min b (e) ()
El % ° \ 809
> 30 min T, S
E M/\/\/\/\/\/\*""‘" 3 4 506
7]
g 60, min E 2 with SOD
£ 120 o = 2 0.3
bt Perraspinrippi] O
0 0.0
3460 3480 3500 3520 3540 3560 15 30 60 120 300 400 500 600 700 800
Magnetic filed (G) Time (min) Wavelength (nm)
18 d with ai 0 min 18— ithout i 0 min
urged with air —— without purging ——
1s](h) P tomn|  1.5] () — 15 min
[ —— 30 min [ —— 30 min
§1.2 ,_ ——1h %1.2 ——1h
3 / ——2h ——2h
509 ——4h 'g 0.9 —4h
2 2
2061 208]
0.3{ N 0.3{\

0.0
300

450 600
Wavelength (nm)

750

0.0
300 400 500 600 700 800
Wavelength (nm)

0.0 :
300 400 500 600 700 800
Wavelength (nm)

Fig. 3 Mechanisms of AgNP formation. a Effects of different concentrations of < 50 kDa M¢L340 (17.8-71.3 mg C L™'). b Effects of different Ag™
concentrations (107*-1072 mol L™"). ¢ Effects of different initial pH values (4.32-8.70). d EPR spectrum of the DMPO adduct with O, in the presence
of artificial humic substances under simulated sunlight. e Quantification of O,~. f UV-vis absorption spectra of AgNPs with and without 3000 U
mL~' SOD under simulated sunlight. g UV-vis absorption spectra of AgNPs in L340 suspensions with nitrogen purging under simulated sunlight. h
UV-vis absorption spectra of AgNPs in L340 suspensions with air purging under simulated sunlight. i UV-vis absorption spectra of AgNPs in L340
suspensions without purging under simulated sunlight (DOC=35.6 mg C L™, [Ag"]1=1x 102 mol L")

pathway for the photoreduction of Ag?, and jointly with
0,7, is responsible for the artificial humic substances-
induced photoreduction of Ag™.

The photoreduction of Ag* to AgNPs was explored
using 1 mmol L™' AgNO, and 35.6 mg L™ DOC of
pristine or M{L340 under simulated sunlight. The
SPR peak intensities of AgNPs in pristine and <50 kDa
M¢L340 increased with prolonged irradiation time
(Fig. 4a,b), whereas no obvious SPR peaks were
observed for AgNPs in the UV-vis spectra of <5 kDa
ML340 and<1 kDa ML340 (Fig. 4c,d). This result
indicated that the formation rate of AgNPs in the pris-
tine and <50 kDa M{L340 was much higher than that
in the lower- MW ML340. The SPR peak intensity
of AgNPs in lower-MW ML340 samples remained
unchanged even if the irradiation time was prolonged,
implying that the Ag* reduction ability of lower-MW

ML340 was weak under sunlight irradiation. How-
ever, the particle size of AgNPs was independent of
the MW of dissolved artificial humic substances (Fig.
S17), which was inconsistent with the UV —vis results.
As previously reported, the light attenuation phenom-
enon of M-NOM may hide its real reductive abil-
ity (Yin et al. 2014). Given the crucial role of phenolic
moieties in reducing Ag®, we assessed the total phe-
nolic content of artificial humic substances with vary-
ing MW. The total phenolic concentration in pristine
or ML340 followed the order pristine L340 =~ 50 kDa
M¢L340>5 kDa ML340>1 kDa ML340 (Fig. 4e),
and the EEM results further confirmed this order (Fig.
$18). The phenolic moieties were the main contributors
to the reduction capacity, as confirmed by the electro-
chemical test results (Fig. 4f and Fig. S19).
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3.4 Dissolution of hydrochar and promotes Ag* reduction
We further investigated the photoreduction potential of
dissolved organic matter (DOM) derived from hydrochar
upon prolonged sunlight exposure. Structural changes
induced by sunlight irradiation significantly promoted
hydrochar dissolution, evidenced by increased mass loss
(Table S4) and decreased particle diameter (Fig. 5a).
Additionally, an increase in the O/C atomic ratio con-
firmed progressive oxidation and enrichment of oxygen-
rich functional groups (Fig. 5b).

GC-MS analysis revealed distinct compositional shifts
in hydrochar-derived DOM following sunlight irradia-
tion, showing enhanced formation of low-molecular-
weight, oxygen-rich compounds over the irradiation
periods (Fig. 5¢). Correspondingly, TOC concentrations
consistently increased, confirming continued DOM
release (Fig. S20). The phenolic content gradually
declined, indicating photochemical oxidation of phenolic
moieties (Fig. S21). Moreover, DOM molecular weights
exhibited a clear reduction, reflecting the progressive
depolymerization into smaller molecules (Fig. S22).
Meanwhile, an increased O/C ratio further suggested
enhanced oxidation within DOM (Fig. S23).

With prolonged irradiation time, the SPR peak inten-
sity increased significantly (Fig. 5¢). The concentration
of AgNPs increased from 11.0 mg L™ after 15 min of

irradiation to 25.9 mg L' for 4 h (Fig. S24). Remark-
ably, despite reduced phenolic content and molecular
weights, DOM released from long-term irradiated hydro-
char (S260) demonstrated significantly improved Ag’
photoreduction performance (24% Ag* reduction ratio),
representing a 5.3-fold enhancement compared to arti-
ficial humic substances synthesized at the same hydro-
thermal temperature (L260, Fig. 2c). This enhancement
is likely attributable to increased superoxide radical gen-
eration and efficient LMCT mediated by newly formed
oxygen-rich functional groups. These findings provide
novel insights into the dynamic photochemical trans-
formation pathways of hydrochar under natural sunlight
exposure and their implications for environmental redox
processes.

4 Conclusions

This study demonstrates that controlled hydrother-
mal humification (180-340 °C) of pine sawdust enables
precise engineering of artificial humic substances with
tunable phenolic architectures and electron-donating
capacities. Using Ag" photoreduction as a model system,
we show that 340 °C-derived artificial humic substances
exhibit optimal performance (19.2-fold enhancement
over 180 °C-derived samples) through O, generation
by photoexcited phenolic groups. Crucially, we reveal the
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novel phenomenon of sunlight-induced hydrochar disso-
lution, which dynamically enhances redox activity. These
findings advance both: (1) the design of solar-responsive
remediation materials through molecular-weight-con-
trolled synthesis, and (2) the fundamental understand-
ing of biochar’s environmental transformations in sunlit
systems.

Abbreviations

AgNPs Silver nanoparticles

CRAM Carboxylic-rich alicyclic molecule-like

DBC Dissolved black carbon

DMPO 5,5-Dimethyl-1-pyrroline-N-oxide

DOM Dissolved organic matter

EDC Electron-donating capacities

EDS Energy dispersive X-ray spectrometry

EEM Excitation-emission matrix

FT-ICRMS  Fourier transformion cyclotron resonance mass spectrometry
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HR-TEM High-resolution transmission electron microscope
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ICP-OES Inductively coupled plasma mass spectrometry
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MEO Mediated electrochemical oxidation

Mg Molecular weight fractionated
MW Molecular weight
NOM Natural organic matter

0,7~ Superoxide radicals

SAED Selected area electron diffraction
SOD Superoxide dismutase
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TOC Total organic carbon
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