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Abstract

Engineered biochar has emerged as a versatile tool for purpose-specific rhizosphere engineering, offering tailored
solutions for enhancing crop production, crop protection, and environmental remediation. Yet, its effectiveness
depends on optimizing application for specific functional goals rather than adopting a one-size-fits-all approach. This
review explores how engineered biochar shapes rhizosphere processes to support crop production, crop protection,
and soil remediation. It examines key mechanisms including enhanced nutrient availability, stimulation of beneficial
microbial communities, pathogen suppression, and soil contaminant immobilization, and how different biochar
modifications, such as nutrient enrichment, antimicrobial functionalization, and surface engineering, drive these out-
comes. The review highlights important trade-offs, such as the competing demands of nutrient availability for crop
growth versus contaminant immobilization for remediation, and accounts for the spatial and temporal variability

of biochar effects in the rhizosphere. While biochar presents clear synergistic benefits (e.g., improving soil structure,
enhancing water retention, reducing greenhouse gas emissions, and enabling carbon sequestration), its practical
application faces challenges related to competing objectives, rhizosphere complexity, and economic constraints.
Emerging innovations such as nanocomposite biochars, bioprimed biochars, and biochar-microbe synergies offer
new avenues for precision agriculture and sustainable land management. Finally, the review emphasizes the impor-
tance of long-term field studies to evaluate sustainability, and outlines opportunities for biochar in climate change
mitigation, waste valorization, and agroecological resilience. By integrating the latest research on biochar’s mecha-
nisms, challenges, and opportunities, this review provides a comprehensive framework for leveraging engineered
biochar to address the pressing challenges of modern agriculture and environmental management.

Highlights

- Engineered biochars are tailored to modify rhizosphere interactions, optimizing nutrient cycling, microbial activ-
ity, and soil structure.
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and remediation.
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A one-size-fits-all approach is ineffective, and biochar must be customized for crop production, crop protection,
Biochar effects evolve over time, requiring precise application strategies to maintain long-term soil and plant
Balancing yield enhancement, pathogen suppression, and contaminant stabilization demands careful biochar

Integrating biochar engineering with precision agriculture and climate resilience strategies is key for sustainabil-

Keywords Engineered biochar, Rhizosphere engineering, Microbial communities, Pathogen suppression, Biochar

challenges, Innovative biochar applications
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1 Introduction

The growing demands of a rapidly expanding global
population, coupled with the escalating impacts of cli-
mate change, have placed unprecedented pressure on
agricultural systems and natural ecosystems. Sustainable
solutions that enhance crop productivity, protect plants
from pests and diseases, and remediate contaminated
soils are urgently needed. Among these, engineered

biochar-based rhizosphere engineering (strategic manip-
ulation of root-associated soil zone) has emerged as a
transformative approach to optimizing soil functions and
addressing the tripartite nexus of crop production, pro-
tection, and environmental remediation. Engineered bio-
char, a carbon-rich material derived from the pyrolysis of
organic biomass and modified for specific applications,
offers superior physicochemical properties compared to
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conventional biochar, including high surface area, poros-
ity, tailored nutrient retention, and enhanced contami-
nant sorption capacities (Ravindiran et al. 2024; Yu et al.
2015). Recent advancements, such as nano-enabled bio-
char with reduced particle size and enhanced reactivity,
have demonstrated potential for improving soil struc-
ture, increasing nutrient availability, and immobilizing
pollutants (Chhipa 2016; Chausali et al. 2021). However,
despite its promise, the spatial and temporal variability
of biochar effects, trade-offs between nutrient availability
and contaminant sorption, and limited field-scale valida-
tion remain critical research gaps.

The rhizosphere represents one of Earth’s most bio-
logically active interfaces, where root exudates create a
dynamic microenvironment facilitating intricate chemi-
cal signaling and nutrient exchange between plants and
soil biota (Saeed et al. 2021; Wang and Kuzyakov 2024).
Recent advances reveal that biochar’s most profound
impacts occur precisely within this critical zone through
a process now termed rhizosphere engineering, the delib-
erate modification of root-soil-microbe interactions
through targeted biochar applications (Zhang et al. 2023).
This paradigm shift recognizes that biochar’s benefits
(nutrient retention, pathogen suppression, contaminant
immobilization) manifest only when its physicochemical
properties are precisely aligned with rhizospheric condi-
tions, through four key mechanisms: Firstly biochar alters
the composition and quantity of root exudates (organic
acids, flavonoids, strigolactones), which subsequently
reshape microbial recruitment and nutrient mobiliza-
tion (Sun et al. 2020). Secondly, the pore architecture of
biochar (10-100 pum) provides ideal refuge for beneficial
microbes (Wong et al. 2022), increasing their abundance
3-5-fold compared to bulk soil. This creates a "microbial
hotspot” where nitrogen (N) fixation and phytohormone
production are amplified. Thirdly, biochar stabilizes
rhizospheric pH fluctuations and maintains optimal
moisture even under drought (Joseph et al. 2021). Lastly,
in polluted soils, biochar forms a protective zone around
roots, reducing heavy metal uptake by permitting essen-
tial nutrient flow (Antonangelo et al. 2025). This selec-
tive filtration is mediated by surface functional groups
(-COOH, -OH) that preferentially bind contaminants.
This advanced understanding transforms biochar from a
passive amendment to an active rhizospheric architect,
as illustrated in Fig. 1. However, this tripartite framework
must be carefully designed and strategically deployed to
optimize root zone processes for sustainable agriculture.

Engineered biochar has shown promise in modulat-
ing these interactions, yet critical knowledge gaps persist
regarding its effects on microbial communities, pathogen
suppression, and contaminant immobilization (Sarma
et al. 2024; Yang et al. 2025). For instance, how does
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biochar influence the balance between beneficial and
pathogenic microbes in the rhizosphere? Can biochar be
engineered to simultaneously enhance crop productivity
and protect plants from soil-borne diseases? Addressing
these questions is essential for developing purpose-spe-
cific biochars that optimize microbial interactions and
nutrient dynamics. Unlike conventional biochar applica-
tions, rhizosphere engineering with engineered biochar
enables precise manipulation of soil microbial networks,
root exudate dynamics, and biogeochemical cycles to
achieve targeted agronomic and environmental benefits
(Luthra et al. 2024). Nutrient-enriched biochars improve
soil fertility by providing a controlled release of essen-
tial nutrients like N, phosphorus (P), and potassium (K)
(Kizito et al. 2019). Bioprimed biochars inoculated with
plant growth-promoting rhizobacteria (PGPR) or arbus-
cular mycorrhizal fungi (AMF) facilitate nutrient uptake
and enhance plant resilience against environmental
stresses (Sun et al. 2016; Sani et al. 2020). Additionally,
high porosity biochars improve water retention, which
is crucial for crop production in arid or degraded soils
(Chen et al. 2023a, b). Beyond crop productivity, engi-
neered biochars represent a sustainable alternative to
chemical pesticides. Functionalized biochars with anti-
microbial properties suppress soil-borne pathogens (Rat-
nadass et al. 2023; Mahmoud et al. 2024), while biochars
enriched with plant defense elicitors can trigger induced
systemic resistance (ISR: plant’s enhanced defensive
capacity triggered by specific environmental stimuli and
microbes etc.,) enhancing plant immunity (Wang et al.
2021a, b, ¢; Ahmad et al. 2024). Similarly, nanocompos-
ite biochars, incorporating nanoparticles such as silver
or copper, have demonstrated effectiveness in pathogen
suppression, offering a promising tool for integrated pest
management (Pavlicevic et al. 2023). In the context of
environmental remediation, biochars with contaminant-
immobilizing properties facilitate the detoxification of
heavy metals and organic pollutants, restoring soil health
and functionality (Sha et al. 2023; Li et al. 2024). Despite
this potential, widespread adoption of engineered bio-
char faces several challenges. The economic feasibility of
large-scale application is constrained by feedstock avail-
ability, production costs, post-modification techniques,
and logistical barriers. Additionally, the long-term stabil-
ity and transformation of engineered biochar in different
soil environments remain poorly understood, raising con-
cerns about unintended ecological impacts. Addressing
these challenges requires a multidisciplinary approach
integrating advancements in biochar engineering, preci-
sion agriculture, and supportive policy frameworks.

This review addresses these limitations by providing
a comprehensive analysis of engineered biochar-based
rhizosphere engineering, integrating its applications
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Fig. 1 Biochar as rhizosphere architect: schematic showing how engineered biochar simultaneously transforms A crop productivity (nutrient
cycling/water retention), B plant defense (pathogen suppression/root immunity), and C soil detoxification (metal immobilization/pollutant
degradation) through tailored physicochemical interactions in the root zone, highlighting biochar’s role in rhizosphere engineering
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across three core areas: crop production, crop protec-
tion, and environmental remediation. We explore the
purpose-specific engineering of biochar for targeted
outcomes and propose a practical framework for selec-
tion and application, an aspect that is critically missing
in the existing literature (Table 1). We hypothesize that
engineered biochars, when tailored for specific rhizos-
phere functions, can achieve synergistic outcomes across
crop production, crop protection, and soil remediation,
provided that trade-offs and soil-specific factors are care-
fully accounted for. Unlike previous reviews that often
focus on single aspects such as biochar’s role in soil fer-
tility or pollutant removal, this work presents a holistic
framework that categorizes engineered biochars based
on their tailored functionalities and mechanisms in the
rhizosphere (Table 1). A key novelty of this review is the
systematic classification of engineered biochars into dif-
ferent functional types, including nutrient-enriched,
bioprimed, porous, antimicrobial, ISR-inducing, adsorp-
tive, and catalytic biochars, linking each to specific rhizo-
sphere processes and targeted applications. Additionally,
this review provides detailed mechanistic insights into
how engineered biochar influences nutrient dynam-
ics, microbial interactions, soil structure, pathogen sup-
pression, and contaminant remediation, aspects that are
often overlooked in previous reviews. Another unique
contribution of this review is its integrated approach to
the tripartite nexus, synthesizing the roles of engineered
biochar in crop productivity, plant protection, and envi-
ronmental remediation, while highlighting synergistic
effects and trade-offs. Finally, this work critically assesses
the economic feasibility, scalability, and long-term sta-
bility of engineered biochars, identifying research gaps
and future directions for optimizing their role in climate
change mitigation, sustainable soil management, and
enhanced crop resilience. By bridging these gaps, this
review provides a scientifically informed roadmap for
leveraging engineered biochar-based rhizosphere engi-
neering to achieve sustainable agriculture, environmental
restoration, and global food security.

2 Review methodology

This review was conducted following a structured lit-
erature survey and thematic synthesis approach. We
searched major scientific databases including Web of
Science, Scopus, PubMed, Google Scholar, ScienceDi-
rect, and AGRICOLA and Agris: databases with a focus
on agriculture, using combinations of keywords such as
“engineered biochar, “biochar modification’, “rhizos-
phere engineering,” “nanocomposite biochar,” “bioprimed
biochar,” “ISR biochar,” “microbial biochar, “crop pro-
duction,” “crop protection,” “remediation,” “soil contami-

nants,” “soil microbiome,” and “biochar mechanisms.” All
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results were considered, and additional hand-searching
was performed. Additionally, targeted manual searches
were performed on the websites of agricultural research
institutes, environmental agencies, and biochar-related
organizations to capture relevant grey literature and pol-
icy reports not indexed in conventional databases. The
search covered literature published between 2010 and
2025, with a strong focus on the most recent and high-
impact studies from 2018 to 2025. Only peer-reviewed
journal articles, authoritative reviews, and experimen-
tal studies were included. Conference papers, opinion
pieces, and non-English language publications were
excluded. Inclusion criteria were: (i) peer-reviewed origi-
nal research or reviews; (ii) studies reporting experi-
mental evidence of biochar modification and its effects
on rhizosphere processes; (iii) publications detailing
mechanisms, challenges, or applications of engineered
biochar in at least one of the three key areas: crop pro-
duction, crop protection, or soil remediation. Exclusion
criteria included: (i) purely theoretical papers without
data; (ii) studies focused solely on unmodified or con-
ventional biochar unless they provided mechanistic
insights relevant to engineered biochar; (iii) duplicated
studies or those lacking methodological rigor, (iv) stud-
ies evaluating biochar under hydroponic conditions with-
out soil-rhizosphere relevance. To minimize selection
bias, studies were screened independently by at least two
authors, and any discrepancies were resolved through
discussion and cross-validation. A critical reading of each
selected study was conducted to assess limitations, meth-
odologies, and replicability. Data were synthesized and
organized thematically under sections for crop produc-
tion, crop protection, and remediation. Critical insights,
gaps, limitations, and recommendations were extracted
and tabulated.

3 Engineered biochar and classification

for tailored application
3.1 Engineered biochar for crop production
3.1.1 Nutrient-enriched biochar
Nutrient-enriched biochar is engineered to enhance
nutrient retention and release, making it a valuable
soil amendment for improving fertility in degraded or
nutrient-poor soils. Nutrient-enriched biochar is pro-
duced through three main approaches: (i) natural feed-
stock enrichment via increased nutrient uptake (Yao
et al. 2013b), (ii) pre-pyrolytic blending of feedstock
with nutrient-rich materials or compounds (Khajavi-
Shojaei et al. 2020), and (iii) post-pyrolytic soaking or
impregnation with liquid or gaseous nutrient sources.
Among these, post-pyrolytic modification offers bet-
ter control over nutrient composition and loading effi-
ciency, although it often incurs higher production costs
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compared to feedstock-based enrichment. A wide range
of materials are used for engineering nutrient-enriched
biochar, including (i) organic materials such as manure,
slurries, digestate (Kizito et al. 2019), compost, and
wastewater (Zheng et al. 2019); (ii) mineral raw mate-
rials like rock phosphate (Moradi et al. 2019), apatite,
struvite, and dolomite (Li et al. 2018a, b); (iii) chemical
compounds including P salts (Nardis et al. 2020), N salts
(Khajavi-Shojaei et al. 2020), and trace metals. Notably,
chemical nutrient enrichment tends to provide higher
nutrient concentrations but may pose risks of leaching or
toxicity under certain soil conditions. In contrast, organi-
cally enriched biochars provide more gradual nutrient
release and improved microbial compatibility, though
often with lower immediate availability (Table 2).

The nutrients in enriched biochars are stabilized within
the recalcitrant structures of pyrolyzed material (Suwan-
ree et al. 2022), which consists of slow-degrading carbon
forms (Rajput et al. 2024) and insoluble compounds like
silicates (Sornhiran et al. 2022). These structures enable
mineral bonding and gradual mineralization of organic
macronutrients, preventing nutrient losses through
leaching (Peng et al. 2021) or volatilization (Puga et al.
2020). This slow-release mechanism aligns nutrient avail-
ability with plant demand, contrasting with the rapid
nutrient release and lower long-term efficiency of min-
eral fertilizers, which can negatively impact soil micro-
flora. As shown in Table 2, nutrient-enriched biochars
have been widely studied for their capacity to reduce
dependency on synthetic fertilizers and recycle nutri-
ents from waste streams such as digestate (Zheng et al.
2025), wastewater (Zheng et al. 2019), and stormwater
(Marcinczyk et al. 2022). These applications not only sup-
port circular nutrient economies but also contribute to
climate change mitigation by reducing greenhouse gas
emissions associated with N loss (Osman et al. 2022).
However, field performance remains inconsistent, partly
due to soil-specific responses and differences in biochar
composition. Despite their benefits, several challenges
limit widespread adoption. These include soil acidifi-
cation risks (Das et al. 2020), occasional suppression
of crop root development (Anyanwu et al. 2018), and
simultaneous promotion of both crop and weed growth
(Safaei Khorram et al. 2018). The effectiveness of nutri-
ent-enriched biochar is highly dependent on soil type and
crop species, making broad recommendations difficult
(Zhu et al. 2015). Financial barriers such as high activa-
tion costs (Alhashimi and Aktas 2017) and expenses for
added nutrients (Mosa et al. 2018) further limit their
widespread adoption (Li et al. 2023d). To improve fea-
sibility, the use of low-cost enrichment strategies, such
as nutrient capture from wastewater, is recommended
over energy-intensive regeneration methods (Harussani
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and Sapuan 2022; Almanassra et al. 2021). In this regard,
Latawiec et al. (2021) reported that biochar application
up to 60 Mg ha™! yielded economic benefits, reaching
break-even point after three years. Overall, nutrient-
enriched biochar holds strong potential for low-fertility
and weathered upland soils (Palansooriya et al. 2019), but
future work should focus on standardizing enrichment
techniques, evaluating long-term field efficacy, and devel-
oping integrated strategies that balance crop nutrition
with weed and soil microbiome management.

3.1.2 Bioprimed biochar

Bioprimed biochar is engineered through the activity
or enrichment of soil macrobiota, such as earthworms
(Yuvaraj et al. 2021), or microbes, including bacteria
(Blanco-Vargas et al. 2022) and fungi (Iacomino et al.
2023). Earthworms-bioprimed biochar is modified by
association with exoenzymes, either through the addition
of biochar to vermicomposting (Yuvaraj et al. 2021) or
earthworm-enriched soil (Sanchez-Hernandez 2018). It
can also be treated with vermicompost extracts, contain-
ing exoenzymes and associated microbes. These modifi-
cations enhance nutrient transformation and availability
(Carril et al. 2024) while improving the biochar s specific
surface area. Such biochar has demonstrated improved
plant growth, leaf area, and net assimilation rates, even
under reduced irrigation (Jahan et al. 2023). Microbi-
ally bioprimed biochar is prepared by inoculating bio-
char with defined microbial isolates (Azeem et al. 2021;
Ortiz-Liébana et al. 2022) or colonizing it with micro-
bial communities from sources such as compost (Eden-
born et al. 2017), or slurry (Ferdous 2024). The biochar
is either soaked in microbial suspension (Azeem et al.
2021; Guerena et al. 2019) or co-cultivated with cell cul-
tures (Hale et al. 2014; Lebrun et al. 2021). This process
enriches the biochar surface with plant growth-promot-
ing bacteria (PGPB) including phosphate solubilizers
(Azeem et al. 2021; Kari et al. 2021) or N, fixators (Kari
et al. 2021). These microbes enhance nutrient transfor-
mation, increase soil fertility and protect plants against
environmental stressors like potentially toxic elements
(PTE) (Yuvaraj et al. 2021). Similarly, fungal biopriming
protects plants from pathogenic moulds (da Silva et al.
2022; Muter 2017) and increases maize germination and
growth (Muter 2017).

PGPB-bioprimed biochar enhances plant nutri-
tion and crop yields as evidenced in beans (Guerena
et al. 2019) and mung beans (Azeem et al. 2021), offer-
ing a sustainable alternative to conventional fertilizers
derived from non-renewable resources. Comparatively,
fungal-primed biochars show greater promise in patho-
gen suppression, while bacterial-primed variants are
more effective in nutrient solubilization, suggesting that
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the biochar—-microbe pairing should be selected based
on the dominant crop constraint (Table 2). Bioprimed
biochar contributes to sustainable agriculture (Kari
et al. 2021) and environmental pollution remediation
(Bolan et al. 2023b). Using renewable feedstock (Kari
et al. 2021; Sun et al. 2016) and leveraging the benefits
provided by symbiotic microbes underscore its impor-
tance in sustainable agricultural practices (Iacomino
et al. 2023). Limitations of bioprimed biochar include
challenges in microbial inoculation efficacy, which
depends on efficient colonization and adherence to the
biochar surface (Bolan et al. 2023b; Jaafar et al. 2014),
durability of the inoculum (microbial viability during
storage) (Azeem et al. 2021; Husna et al. 2019), and
soil performance (microbial proliferation and activity)
(Wang et al. 2021a). In contrast to direct soil inocula-
tion, biochar provides a protective microsite that can
enhance microbial survival; yet the biochar-microbe-
soil interaction is highly context-dependent. While
the porous structure of biochar and microbial extra-
cellular polymers facilitate colonization (Carril et al.
2024), microbial consortia may undergo compositional
shifts over time (Carril et al. 2024), raising concerns
about long-term efficacy. Encouragingly, strong micro-
bial adherence to the biochar surface (Tao et al. 2018)
does not hinder root colonization (Douds Jr et al. 2014;
Hale et al. 2014), and biochar-introduced strains do
not outcompete native soil microbes (Solaiman et al.
2010). Biochar feedstock and pyrolysis temperature sig-
nificantly influence microbial compatibility. Hardwood-
derived biochars (e.g., from acacia or coconut shell)
have been shown to support higher microbial viabil-
ity during storage compared to softer or more fibrous
materials (Husna et al. 2019; Kuppusamy et al. 2011).
Biochars produced at 600 °C outperform those made
at 350 °C in terms of microbial stability and coloniza-
tion efficiency (Azeem et al. 2021). Additionally, add-
ing nutrients (e.g., glucose, phosphate) to the microbial
inoculation suspension can enhance microbial activity
and storage viability (Sun et al. 2016), particularly for
commercial-scale applications. Future studies should
focus on long-term field validation, optimization of
microbe-biochar pairings for specific crops or stresses,
and cost-effective scale-up strategies to ensure wide-
spread adoption of this promising technology.

3.1.3 Porous and high surface area biochar

Porous and high surface area biochars are engineered
using physical methods such as steam (Borchard et al.
2012; Sajjadi et al. 2019) and microwave irradiation (Saj-
jadi et al. 2019), as well as chemical methods involv-
ing gaseous phase such as O; (Huff et al. 2018) and H,
in air (Diaz et al. 2024; Sajjadi et al. 2019) and liquid
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phases such as acids (Ameur et al. 2018), alkalis (Ghas-
semi-Golezani and Farhangi-Abriz 2023), oxidative
agents (Paymaneh et al. 2018), arylation at acidic pH
(Snoussi et al. 2022), and surfactants (Hua et al. 2018).
These post-pyrolytic treatments alter the surface struc-
ture of pristine biochar by disrupting or enlarging cavi-
ties and pores. Biochars from feedstocks, such as wood
(Ameur et al. 2018; Neuberger et al. 2024), and oilseed
rape straw residues (Chen et al. 2023a, b) are commonly
modified using chemicals like KOH, H,SO,, HNO,
(Vikrant et al. 2018) or HCI (Ameur et al. 2018; Vikrant
et al. 2018). KOH modifies the biochar through releasing
volatiles and forming micropores through redox reaction
and gasification (Huang et al. 2017). H,SO, and HNO,
remove the impurities and introduce sulfonic and nitro
groups, respectively, while HCl increases the surface area
through removing inorganic ash and impurities, thus
increasing porosity (Lin et al. 2024; Yan et al. 2024). The
resulting biochar exhibits enhanced porosity and specific
surface area (SSA), enabling higher adsorption capacity
for nutrients (Borchard et al. 2012; Paymaneh et al. 2018)
and potentially toxic elements (Yang et al. 2021a, b). In
comparison to unmodified or low-temperature biochars,
chemically activated variants offer superior adsorption
performance but often require more energy- and input-
intensive procedures (Table 2). These properties con-
tribute to soil quality restoration (Murtaza et al. 2024),
increased plant growth and yields (Antor et al. 2023),
enhanced nitrification and NH,* sorption (Tsang and
Ok 2022). Porous biochars also improve nutrient reten-
tion, particularly gaseous nitrogen capture in composted
materials (Kim et al. 2022) making co-composted biochar
a promising tool for sustainable agriculture (Antonangelo
et al. 2021). Moreover, their enhanced carbon reactivity
facilitates greater CO, sorption and long-term soil car-
bon storage, positioning them as effective tools for cli-
mate change mitigation (Ringsby et al. 2024).

Despite their advantages, limitations of porous bio-
chars include reduced levels of exchangeable cations due
to activation with strong alkalis such as KOH (Masoumi
and Dalai 2020), loss of surface functional groups and
formation of less polar biochars due to gas or steam acti-
vation, which can limit nutrient interactions (Borchard
et al. 2012). Acid activation (e.g., with H,SO, or HNOj;)
may cause carbon degradation and release of greenhouse
gases (Uchimiya et al. 2012), while microwave-based acti-
vations suffer from scalability issues due to inconsistent
heating and reproducibility (Zhao et al. 2010). In con-
trast, steam activation is gaining popularity for its sim-
plicity, low cost, and environmental friendliness (Sajjadi
et al. 2019), offering a viable alternative to CO, or acid-
based methods for large-scale applications. Addition-
ally, innovative approaches such as photochemical and
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acoustic activation with CO, offer promising, adjustable
techniques that may bridge laboratory and field-scale
applications (Chen et al. 2014). Future research should
focus on optimizing activation protocols for different
feedstocks and target functions, reducing environmen-
tal risks of chemical activation, and validating the per-
formance of porous biochars in field-scale rhizosphere
engineering.

3.2 Engineered biochar for crop protection

3.2.1 Antimicrobial functionalized biochar

Antimicrobial functionalized biochar has been reformed
to possess antimicrobial properties, making it an effec-
tive tool for crop protection (Khan et al. 2024). The BC
is typically prepared from any organic material through
pyrolysis of biomass at very high temperature ranges
(300 to 700 °C), followed by post-treatment with several
biotic and abiotic antimicrobial agents (Jin et al. 2024).
Methods for functionalization of BC comprise impregna-
tion, adsorption or coating of antimicrobial agents onto
the surface of BC (Geca et al. 2023), with efficacy often
depending on the biochar’s porosity, surface chemistry,
and compatibility with the antimicrobial compound. A
range of biotic agents includes essential oils, chitosan,
biocontrol microbes and their extracts, while abiotic
agents encompass metals like silver (Ag), silicon (Si)
and zinc (Zn) as well as metal oxides such as iron oxide
(FeO) and zinc oxide (ZnO) (Table 3). While metal-based
agents often act rapidly through cell wall disruption or
ROS generation, biotic agents may provide longer-term
protection by enhancing host immunity or reshaping
microbial communities. Antimicrobial biochars act via
multiple mechanisms: disrupting microbial membranes,
interfering with ion transport, and generating oxidative
stress to inhibit pathogen proliferation. In addition to
pathogen suppression, these biochars can enhance soil
microbial balance and reduce dependency on chemical
pesticides, contributing to integrated pest management
and improved soil health (Alfei et al. 2024).

Comparative studies provide insights into agent-spe-
cific effects and rhizosphere interactions. For instance,
silver-functionalized biochar reduced Fusarium wilt inci-
dence in tomato by up to 60% (Kim et al. 2023), while
silicon-enriched biochar suppressed a broader range
of pests and pathogens across solanaceous and grami-
neous crops, including aphids, cicadas, soil fungi, and
nematodes (Ratnadass et al. 2023). However, Abdellatef
et al. (2022) reported enhanced resistance to Rhizoctonia
solani in rice when using biochar coated with the essen-
tial biopolymer chitosan. Moreover, Ahmed et al. (2021)
reported enhanced resistance (89.04%) to Rhizoctonia
solani in rice when using chitosan-Mg composite bio-
char. A study depicted the potential of three aromatic
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plants essential oil-based BC in stored peanut seeds and
found that antifungal compound was produced after its
application (Barbara et al. 2023). Studies emphasize the
synergistic benefits of combining biochar with biocon-
trol microbes. For example, ZnO-functionalized biochar
reduced downy mildew in grapevines (Ramezani et al.
2019), while FeO-enriched biochar suppressed root-
knot nematode infection in tomato by enhancing plant
metabolic responses (Mahmoud et al. 2024) (Table 3). A
more integrative approach, combining 3% w/w rice husk
derived BC combined with two microbial extracts (Bacil-
lus subtilis and Trichoderma harzianum) profoundly
reduced RKN infection by 60% by reducing number of
galls, juveniles and eggs produced in root zone of tomato
(Arshad et al. 2021). Likewise, 3% v/v green waste BC
consortium with a biocontrol arbuscular mycorrhizal
fungi (AMF) extract enhanced its colonization in the
rhizosphere of soybean and thereby lowering the nutri-
ents supply leads to mitigate the Sclerotina sclerotiorum
development in the soil (Safaei Asadabadi et al. 2021).
As highlighted in Table 3, despite their promise, antimi-
crobial biochars face several challenges. These include
variability in field efficacy, potential toxicity to non-target
soil microbes, and stability of antimicrobial agents during
storage or soil interaction (Mahmoud et al. 2024). More-
over, while metal-enriched biochars may show higher
pathogen suppression rates, their long-term effects on
beneficial microbial communities remain underexplored
(Barbara et al. 2023). Future research should emphasize
the development of biochar-microbe consortia tailored
for specific crops and soil conditions and investigate the
compatibility of antimicrobial biochars with broader
soil microbiomes and integrated pest management
frameworks.

3.2.2 Induced systemic resistance (ISR)/defense elicitor
biochar

Induced systemic resistance (ISR) BC, also known as
defense elicitor BC, is prepared by pyrolyzing organic
materials, which modifies the BC to have beneficial
properties to boost plant defense mechanism (Arshad
et al. 2024). During the process, antimicrobial agents
both biotic and abiotic can be incorporated into the
BC matrix to enhance its defensive capabilities. Biotic
agents like Bacillus spp., Pseudomonas spp., and Tricho-
derma spp (Hou et al. 2022) and abiotic agents such as
zinc oxide nanoparticles (ZnO-NPs) and silver nano-
particles (Ag-NPs) and 5-methoxyindole nano-bio-
char are commonly used to enhance the antimicrobial
properties of BC (Table 3). Unlike direct antimicro-
bial biochars, ISR biochars do not attack pathogens
directly, but rather stimulate the plant’s intrinsic resist-
ance pathways, making them a promising eco-friendly



Page 15 of 60

(2026) 8:3

Mustafa et al. Biochar

[aA3] Jejndsjow Je

%05 Aq

2layds

UOI3De JO Wsiueydaul umouyun s AI9AIS 9589 -OZIYJ Ul YdDd 4O 20bULIAS
(1207) "o 12 Jewuny| 21eH159AU| wisiueyd3N -SIp 9Y3 2onpay uofelayljold SOUOWIOPNASY o1ewo| punoj 10N S111gns snjj1pbg
sappnsad 1o} - uaboyied 1surebe
pa3u padnpal uoponpold
/%1°9% Aq snolqnue pue
sdolid Jayio uj [0l umousun s| Buisealnap  AuAIRDe [eIqOIDIW supIsayUl payduus
(9'e€707) |B I UIf  -UODOIQ JO} 10WOId WISIUBYDR|  9dU3pIdUl 95835IJ paseadu| pioy1ydoiAyd 01e10d punoj 10N -s92Awoydang
el1910eq [BIdYD
-uaq ApendnJed
(zz02) wisiueydsw suoleindod  A1ISISAIp [e1qo.dIW Elelel! SU225210N}y
|e 19 OY4RAN-NSO puUNOJION  PAUYSP-[[PMON  SPOIBWAU JSMOT [IOS padURYU]  -PWISU J0UY JOOY 9o3N1a7 1911] A13jnod SOUOWIOPNASY
[10s 943 Ul
%5 /€ Aq UORIIUDUOD
s|l0s UOIRUl J[IM Wny  eluowwe pue Hd
Jagwinond suoid -IDSN4 JO dUIP ‘]anew djuebio
(€207) e 1@ 1Y -winupsn4 Ul asn punNojION  -IDUl 3yl padnpay Bupueyu] -dds wnupsny 1aqwinand 915eM UdaIn  ds bulapoydL|
asn
sdon [BDIWAYD PIdNPaI
1N ul uoissald /%cc 01dn
(#zoz)  -dns apolewlau ioy UORDUI NYY UO[12IOX3 Elelel
‘|e 39 pnowlyepy Aoedyja ypayd punoj 10N 9SP2ID9(  S9M|OEIdUI JUB]d  -PWISU JOUY JO0Y 01eWO]  DdndUbeW USAID  (O34) IPIXO UM
(6107)  uonoe |ebunyiue Jo umouun si uondJul
|e 19 lueZOWRY Spow 21eH1SAAU| WwISIUBYDRN [ebuny ssaiddng punoy 10N MIpPJIW Aumogd sadein POOM  (QUZ) 2pIXO dDUl7Z
uolssald
|jonuod  -dns uaboyied uj uolendod Aunwwod S1095Ul
(€707)  uaboyied paieipaw P9A|OAUL DR suaboyied ayy |elqoDIW [e1dyd BurydNg pue sdoin
‘|e 12 ssepeuley -|eIqouDIW 4o} 3N 1013 NN a1e|nbasiumoq -Uaq padueyuy 1IM [eL1Deg SNO3deUR|OS punoj 10N (IS) uod|IS
909 01 dn
S|10S 95e3SIP 1|IM winupsn wni
(£207) e 1@ Wiy 2AIIsuas-Hd ul A|ddy punoj 10N passaiddng Hd jlos abueyd  -odsAxo wnupsn4 01eWo| punoj 10N (QIPENIS
UO[1eZ]UO|0D pue
uondayul pjow
(1707) e 1@ SUYM padnpay UO[1eZ|U0|0D winioj101)2s
Ipeqgepesy [oejes umouun s ‘uoddyUl JAV 2binsdn DUJJ0I3)S '9PO} 215eM
(1207) "|e 12 peYSIY pUNOJION  WSIUBYD3W 10BX] NYY paonpay ‘77 PIONPAY  -BUISU JOUY 100Y UBSQAOS ‘01PWIO|  UIID) SNy 1Y  SIDIIXD [BIGOIDIN
20URISISU
anoiduwll pue  s|[92 |eIqoIW JO
(zz07) 9211 Ul uon soene [ebuny ANAIDNPUOD
B33 Jo18I9PaY  -IgIyul [ebuny ioy asn punoj 10N paoNpPayY  |ed1103]2 2U9JSIU|  [UDJOS DIUOIIOZIYY 901y punoj 10N uesoNyd
ERUEN
-sisiad pasueyua 1oy P35 Ul
(€200) $9QOIDIU YUM spunodwod |eb
‘|e 19 elequeg Eli[le[1le}) puUNO} 10N -Unjlaue padNpPoId s|solgnuy -dds snyj1biadsy SP99s 1NURS( punoj 10N S|10 [BIIURSST |elqoDIWRUY
awodno 1s94/aseasiq
uoneywi| uondaloid wsjueydaw Juaboyied juabe
2DUDIBRY  UOIEPUBWIWODIDY /abusjeyd 1 buipuiq a1aydsoziyy pa13bae] doud 3soH leydoig paiaauibug Jseydoiq jo adAL

Bupsauibus a1sydsoziys paseq-leydoiq paiaauibus Uo sndoy [e13ads e yiim uoidaioid doid Joj Jeydoiq palasulbua Huisn ssipnis Jo Alewuuns € ajqeL



Page 16 of 60

(2026) 8:3

Mustafa et al. Biochar

(%00 pue
%601) SeliAloe
3sealn pue
(z200) SENBEIIPET] 3sepIsodn|b-¢ 3pLIN02IND
‘e19 RAIISRQ  PINOYS A1DIX0101AYd punoj 10N pasealnu| pUNOJION  1OJ 100 BABSSED) PARSSED) 215eM dosinog DWLIBPOYDL]
umouyun si
syuabe jouod0Iqg £443r pue 14d
papaau si usyibusiisjo  sausb SAISUSEP  UOROWOD0| 7 Ul Elelo
(1207) ‘e 19 peysly JJI|-}|9s buisealdu) wis|ueYd3N paie|nbaidn JalJeg ese1dy  -eWSU J0UY J00Y 01eWO| 3Ny a1y siQns snjpbg 10119 3sulRQd
adeiwooiq
umouun s| uendAb3 jo abe
(£100) wsiueydsw a1ayd wislueydaw  -1uauad uoneulw ade) 1sodwod
‘e 12 biaquazi3 -50z|yJ 21eH1ISIAU| aiaydsoziyy  -19b Ul aseanag punojioN  -wooiq uepndAb3 01eWO| ue|d Jadday EHlVSEETIS)
%Ly po9m Jo wniu
pasueyus 3q p|noys 01dn Ag ssewolq $309y9 dIyed -owweAdoid
(1707) 'e 19 Apneg A1dDy1ads 1soH ssad0id MO|S paaMm BudNPay  -O|9||e paysiuiwig  paam adeluoolg upaq bqo punoy 10N osl-91eso0ydA|D
(pauljoasAiy> pue
99608 £Aq 101 12150q0sAT]
19b1e) 1004 WNJDSN4 JO 'SDUOWOPN3S)
oy1>ads 1oy 2dA1 Jeyd Bulssiw 20ULPDUIAYY  AHUNWWOD |elq Buas
(1207) ‘[e32 URlL  -OIQ dYIdads Ajnuap| 2dA1 Jeyoolg padnpay  -oulw 31enbay 101 1004 WnULSN -uib uesuaWy punoj 10N 150dWODIWIBA
906 Aq
JUSWILRIY DAIS SUONPIS3JUI 10) wnJ assebeq dva+aie
(0202) eAIydeAL punojioN  -uadxe ag p|nod 1001 padNpay  Hd |I0S 21e|NPOYN  -0dSAXO WnLDSN ueagAos auediebng  -uogued winideD)
2dUsap pIde DLIesNy Jo
(0207) e 12 s1onpoud Al DUl 95e3SIP 101 uondiospe (lupjos winy uidn] 21 ppind
eAslplaquieby  -d9y9 1500 dojansg puUNOJION  1OO0J Ul UoIIONP3Y 91eA3|9 Dg -IDSN4) 104 JOOY pajea1-MmolieN SzIe | SDUOWIOPNASY
paads
susboyied 2 3ulPsp DY SUOIPISD)UI [0S 91 JO SN
sbuel peoiguo  passsulbuiieyy  biuboousaufbop  -doid [edlwaydo pyubooul
(207) " 19 wedy] 1591 01 pasN pawNssy  -lojayy padnpay  -1sAyd sy1 15009 aukbopiojay 01PWO| aunbsay eD [0 J215eD
%56/ Ag
(£107) paAjoAUl sa12ads pauUySp 10U UOMNPIS3JUISPO}  JUSWSAOW SPO} 3poy wnjja1adsp buliap
‘e 19 3]0D-SnIpne|D 9pOjeWaU Uy 2193dG 9pOIeWAN  -PWSU PadNPay -PWRU PRldniisqO  -eulau 1ouy 100y 01eWoO| young wjed -0yl + HINY
%56 Ag suon
-B1S94Ul (Supsauad
SNY2USJA1DIH) Hd paiayje pue
suIsiueyoaw UMOUNUN'S|  9pOolewau Uolsa|  suoneindod [eiq supiauad
(9107) '|p 19 961095 BulApapun Aye;d wsiueydaly 3001 passaiddng  -oud1uw padueyul snyoua|A1piy 101180 ysny 3ads 2M[097
spioe olueblo jo
uonendod (pjod ENEIETET
(1202) 2dAy Jeyooiq -jujwIb aukbop puiseanul pjodujwpib
‘|E 19 [PPUOIN 9|geuNS Ayusp|  buissiw puy Dg  -I0ja)y) paii1eg AjJe|noinied aukbopiojapy 201y punoj 10N 150dWODIWISA
swodino 159d/9seasig
uonejwi| uondalolid wsiueydaw Juaboyieq juabe
2dUAIDYY  UOIEPUSWIWIOIDY /abuajjeyd 3 buipuiy aiaydsoziyy pa1abiel doud1soH Jeydoig paJaauibug Jeydoiq jo adA)

(penunuod) € ajqeL



Page 17 of 60

(2026) 8:3

Mustafa et al. Biochar

spunodwod
SplouoAe|j pue  21aydsoziyl ayi ul
abuel peoiq isuiebe sojjouayd jo $9qOIDIUW [eIdYD WIN122UISDA
uol2e JO Wsiu umouun si uopdnpoid -uaq o ds - wniodsAxo
(£207) "|p 1@ JISY -eydsw Ajuep wIsIuBYI3N pasueyUT sduepUNGY wnupsny uonod 315em dluebiy  padop-jouodolg
1ue|d ul spunod
-wod d1jouayd
pasealoul pue
(g 2dA1 Jeyoolq Buissiu uoneissyur isad Ul Hd a1ayd ppiadibny
'e€707) e 1@ buepy  [ewndo aulwiaiag 2dA1leyoolg  UORdNPRI %THS -SOZIUYJ PRIy pizaidopods azle punoj 10N HJAY
Buljeubrs
SOUOARJOSI pue
%/ 17 Aq 20usp saiadoid [ed
q 2dA1 1eyoolq Buissiw -1DUl 3se3s|p 101 -lwayd021sAyd
‘e,707) '|e 19 buepy  Sreudoidde Anusp) adA1Jeyd0lg  100J Ul UOIONPRY [10s anroidw| 101100y ueagAos punoj 10N HOM
asep
-Ixolad pue spiou
-OAe|4 ‘so1jouayd
Bupueyus Aq DWIBPOYDL] JO wnupjzioy
(#202) '|e 19 pewyy punoj 10N punoj 10N YS| paiabbu] - AlAnoe pasueyus 1|IM |eLa1eg Jue|dbb3 215eM Jea] DWI3POYIL|
ysippai ur ys| jo Auninoe jeiq
UoMdNPUI SY} PUB  -0IDIW Pasealdul
(q sAemyied auab adue  Apnis sauab adue 95e3SIP JO pamoys [10s wni 1S
'e€707) '[P 19 UsYD -151591 31e61SaAU| -1s1591 parabie| uolssaiddng  pspusuie-Dg eyl  -0dsAxo wniupsn4 ysipay 3sny 201y sI1qQns snjjiobg
a1ayd
-s0zZIYJ (SIsuauIyd
‘dss 7 edel eJIS
puissiu s -seig) 10yoxed ul
Apnis usboyied  Apnis usaboyied 9oueisisas  uopendod Ydod Ke|2 dp1uljoey
(9107) e 19 9A oyads 19bie] polebiel  jueid panoidwi pasueyul punoy 10N auinedeln poom yeuer Buriesaq uol|
el-4d
2Uab SAISUJIP
o1e|nbHaidn pue
wsiueydsw aAll %07 A9 SOY apupiodIU pupiw
(zc07)|p1@ Buoy  -d3104d [Ny AyUSP) punoj 10N pasealou| punoj 10N pioyiydoify4 -pyruaq bupLOdIN ¥[PIS UIOD  2|OPUIAXOYIDW-G
110D pue [1os oyt Ul
(z200) uolssaiddns  ueaw 1AUIPUIAG G- Yd SPUSD AAIS uone|ndod
‘|6 19 AMeyieys|3 SNUIA 102.1p 19bie] snuiA ssaiddng  -uggep paisbbu]  Ydod pasueyul A SNUIA 018104 0D2eqO| 91SBM U215 DIOIAXO DJjaISqaly
SP|0J-001 01
ela1oeq bulwio) 956 01 dn uoney  pasealnul pey
(6100 AIHI_Ys 2J0ds-uou Jo  -Sajul WNIYIAd 2yl siydpioiofyo o (gD3YAd) siydpioiojyo
SINY[IN pue eulsod [eu21eq aroiduw| 9J1-4]2YS LIOYS paonpay  a1aydsoziys 2yl U o buidweqg 01eWo| paseq-iueld SOUOWOPNASH
swodino 159d/9seasig
uonejwi| uondalolid wsiueydaw Juaboyieq jusbe
2dUAIDYY  UOIEPUSWIWOIDY /abuajjeyd 3 buipuig a1aydsoziyy pa1abiel doud1soH Jeydolg paJaauibug Jeydoiq jo adA)

(penunuod) € ajqeL



Page 18 of 60

(2026) 8:3

Mustafa et al. Biochar

16uny |eziy103Aw Jendsnae Y

(H-O-H pue
%5988 Aq ‘0-D'0=DH
uondayulspol ‘W= D=2 'H-0)
35N 9|eds o|eds ab1e| uo -euIaU JoUy sdnoub |euon apoy
(£207) |e 12 Japeyy -9b.e| 10) 9z1wndo A|ldde jou ued 1004 PadNPay -OunjuaybiH  -PWISU 10UY 100y 0o1ewo| punoj 10N OUBN-U3ID
1PDqD}
DISIWAg JO deAle|
SeAle| Jelsul Jeisul pig pue
(‘g Apnis abuel pIg pue pug 01 pug 1surebe pasoJosown)
'®1707) '|e 12 buepp AJD1X0} puedx3 pa1wl| A1DIX0| A1DIX0| punoy 10N 120qD) DIs|wag Jue|dbbH3 punoj 10N $da3Apio)
Kemyied
pioe 21jAo1jes
(£200) wisiueyoaw adue Buneande Aq 10S Ul wn/  Uoaulialem pue sappn
|B 19 DIADDI|ARY -151S31 ||nJ dUIwiex3 puUNO}ION  dURISISal 9dNPU|  snbunyssaiddng  -odsAxo wnupsn4 01eWO| punoj 10N -Jedoueu edl|is
A1DIX01 10311p Aq wisiueydaw
uonedidde oleds ablejuo  uoneindod apoy  HBulke| 6O sapol apolewau s10p
(1Z07) je1 uey  9eds-able| dojensg Alddeiouued)  -ewau padnpay -ewau pakejpg POOM 3uld Sauld 950dON|H  Wwniuenb uogled
%0¢ Aq 1ad
-dad jo10ds Jeg) dPn
(2707) '|e 19 qeyy punoj 10N puUNO} 10N  |el31Deq PadNpay punojioN 1ods jes| |elaideg Jaddag ysny ooy -Jedoueu yse A4 ausodwodouen
S1001 A3 Ul
SPIOUOAR}} JO 9A1D3301d-01q 121512d02A|
puissiw s| uononpold ayy 4V pue saiep ‘ds:} wniodsAxo
(S107) ' 12 sy punoj 10N [le3op 1sodwiod psoueyUg  -NXa 1001 arcidw| wnupsny 01eWO| 315eM U310 1sodwod
awodino 159d/9aseasiq
uonejywi| uondaold wisjueydaw Juaboyieq juabe
2UAIDYPY  UOIIEPUBWIWIOIDY /abuajjeyd 1 buipuig aiaydsoziyy palabie] dou>3soH leydolg paJaauibug Jeydoiq jo adA)

(panunuod) € 3jqey



Mustafa et al. Biochar (2026) 8:3

alternative to conventional pesticides (Poveda et al.
2021a, b). ISR-BC enhances crop protection by activat-
ing the plant’s natural defense mechanisms by increas-
ing the beneficial microbe population in the soil leading
to increased resistance against various pathogens and
pests (Iacomino et al. 2022).

Comparative studies across ISR biochar types dem-
onstrate variability in efficacy, depending on the elicitor
type, host crop, and target pathogen. For instance, Kong
et al. (2022) investigated the nexus of 5-methoxyindole
and corn stalk BC against Phytophthora nicotianae and
reduction in lesion diameter of up to 9.26% , along with
upregulation of defensive elicitors by increasing reac-
tive oxygen species (ROS) 20% leads to activated ethyl-
ene pathway and upregulate PR-la gene in Nicotiana
benthamiana. Moreover, rice husk BC amended with
beneficial microbes such as Trichoderma harzianum and
Bacillus subtilis have been significantly shown to reduce
nematode infestations in tomato plants and upregulated
defensive genes PR1 and JERF3, as reported by Arshad
et al. (2021) (Table 3). Similarly, soursop waste BC and
Trichoderma aureoviride URM 5158 reportedly reduced
the disease severity of cassava root rot by 75% and
increased defensive enzyme p-glucosidase and urease
activities by 109% and 200% respectively (da Silva et al.
2022). Another finding depicted that Pseudomonas chlo-
roraphis 4.4.1 augmented plant-based BC (PYREG®) had
profoundly reduced the Pythium infestation up to 95% in
tomato plants and remarkably enhanced the population
of P. chlororaphis in rhizosphere, resulting in improving
plant vigor and defensive immunity (Postma and Nijhuis
2019). Furthermore, a combining treatment of Klebsiella
oxytoca (PGPR) and green waste BC at 1.5% exhibited
negative ELISA of potato virus Y and triggered defensive
genes PR1-b and Coil, resulting in defensive biochemical
like catalase, superoxide dismutase and polyphenol oxi-
dase in tobacco plant (Elsharkawy et al. 2022) (Table 3).

However, several challenges remain as indicated in
Table 3. ISR biochars are highly context-dependent;
their efficacy varies with plant species, timing, elicitor
dose, and environmental conditions (Ahmad et al. 2024).
Moreover, the long-term stability of defense induction
and the risk of overstimulation of plant immunity poten-
tially affecting growth, require further investigation.
Additionally, a clear distinction between microbial ISR
via root colonization and ISR triggered by metabolite-
soaked biochars is often lacking in experimental designs,
limiting mechanistic interpretations (Chen et al. 2023a,
b). To address these gaps, future research should prior-
itize field-scale validation of ISR biochars, unravel their
specificity in activating plant hormone pathways, and
explore combinations with plant—-microbe-biocarbon
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interfaces for tailored pest and disease suppression
strategies.

3.2.3 Nanocomposite biochar

Nanocomposite BC is an innovative material prepared
by integrating nanomaterials into BC. This composite is
typically produced through methods such as co-pyrolysis
where biomass is combined with nanoparticles during
the thermal decomposition process or by post-pyrolysis
modification where nanoparticles are added to BC after
its production (Harussani and Sapuan 2024). These nano-
materials, which include metal oxides (e.g., Fe;O4, ZnO),
carbon-based nanostructures (e.g., graphene, carbon
nanotubes), quantum dots, and biopolymers, enhance
the surface reactivity, porosity, and catalytic functions
of biochar, making it highly effective in agricultural
applications (Chakraborty et al. 2023). The use of nano-
composite BC is crucial for crop protection and sustain-
able agriculture as it not only enhances soil fertility and
water retention but also reduces reliance on chemical
inputs, thus promoting environmental sustainability and
food security. Compared to conventional biochar, nano-
composite BCs allow for the controlled release of active
agents, increased microbial modulation, and enhanced
redox interactions (Ramadan and Abd-Elsalam 2020;
Singh et al. 2023).

For instance, a study by Aftab et al. (2022) demon-
strated that fly ash nanoparticle-enriched rice husk BC
significantly reduced bacterial leaf spot of pepper by 30%
caused by Xanthomonas campestris pv. vesicatoria. Simi-
larly, Han et al. (2021) showed that glucose carbon quan-
tum dots reduced pine wood nematode (Bursaphelenchus
xylophilus) population, delayed the egg laying process,
and caused direct toxicity to nematodes by a fatty acid
degradation mechanism. Likewise, silica nanoparticle-
coated BC has all been used effectively to suppress and
delay the damage from Fusarium oxysporum infection in
tomato and watermelon and to activate the salicylic acid
defensive pathway (Pavlicevic et al. 2023). Additionally,
Cordyceps fumosorosea-derived BC nanoparticles pos-
sessed toxicity against 2nd and 3rd instar larvae of Bemi-
sia tabaci and inhibited the egg hatching process (Wang
etal. 2021a, b, c). These studies highlight the versatility of
nanomaterials: silica and carbon-based particles enhance
plant immunity; metal oxide nanoparticles introduce
antimicrobial or nematicidal activity; and biopolymer-
based systems improve biocompatibility. However,
efficacy varies based on nanoparticle type, biochar feed-
stock, and application rate, requiring site-specific optimi-
zation. (Table 3).

Despite their promise, nanocomposite biochars raise
critical concerns. The environmental fate, bioavailability,
and potential ecotoxicity of engineered nanomaterials
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remain largely unknown, particularly under long-term
field conditions (Khader et al. 2023). Additionally, the
interaction between nanoparticle-functionalized bio-
char and soil microbial communities requires deeper
investigation (Wang et al. 2021a, b, c), as both beneficial
and pathogenic microbes can be affected. Assessing the
safety and persistence of nanoparticle residues in agro-
ecosystems should thus be a critical focus of future stud-
ies in addition to exploring synergistic formulations (e.g.,
nanocomposite BC with ISR-inducing microbes) for inte-
grated plant protection.

3.3 Engineered biochar for remediation of contaminated
sites
3.3.1 Adsorptive biochar
Adsorptive biochar is engineered to trap and immobilize
contaminants through its high surface area, porosity, and
surface functionality. It is produced through pyrolysis,
where biomass (e.g., agricultural residues, wood) is ther-
mally decomposed in oxygen-limited conditions, creating
a carbon-rich material with high adsorptive properties
(Chemerys et al. 2020). The efficiency of adsorptive bio-
char is heavily influenced by the pyrolysis parameters
(e.g., temperature, residence time), which control the
development of micropores and surface chemistry (Wang
et al. 2017). To further enhance performance, biochars
undergo activation processes, such as chemical activa-
tion with potassium hydroxide (KOH) or physical activa-
tion using steam, which further increase micropores and
surface area, improving the biochar’s ability to adsorb
heavy metals and organic pollutants like pesticides (Gab-
hane et al. 2020). The incorporation of specific functional
groups, such as thiols (-SH) and carboxyls (-COOH)), is
introduced to target specific contaminants, such as mer-
cury (Hg) and lead (Pb), through electrostatic attraction
and covalent bonding (Dai et al. 2021).

Hybrid strategies that incorporate materials like iron
oxides, bentonite, or activated carbon further enhance
contaminant removal. For example, Fe-enriched biochar
shows higher affinity for arsenic (As), while bentonite-
modified biochars effectively adsorb hydrophobic pesti-
cides (Zhang et al. 2019). Biochar amended with activated
carbon also captures volatile organic compounds (VOCs)
effectively (Mukhopadhyay et al. 2021). Adsorptive bio-
char immobilizes pollutants in soil, reducing their bioa-
vailability and plant uptake. For example, KOH-activated
biochar reduces lead bioavailability by over 70%, protect-
ing crops from toxicity (El-Naggar et al. 2021). It also
minimizes pesticide leaching, as seen with rice husk bio-
char, safeguarding groundwater and supporting healthier
crop growth (Choi et al. 2023). Beyond pollutant immo-
bilization, adsorptive biochar improves soil health by
retaining nutrients like N and P, reducing leaching, and
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promoting crop growth (Dietrich et al. 2020). It also aids
carbon sequestration, supporting climate change miti-
gation (Smith 2016). Advantages include high adsorp-
tion capacity for diverse contaminants and improved soil
quality through nutrient retention (Sadhu et al. 2022).
However, several limitations constrain the broader appli-
cation of adsorptive biochars. Chemically activated bio-
chars often incur high production costs and may require
additional post-treatment to ensure environmental
safety (Kamali et al. 2022). Moreover, the performance
of adsorptive biochar is highly variable depending on the
feedstock type, pyrolysis conditions, and local soil chem-
istry (Table 4). There is also limited consistency in field-
scale outcomes due to soil heterogeneity and fluctuating
contaminant loads. Developing low-cost, feedstock-opti-
mized activation strategies, evaluating the long-term sta-
bility of sorbed pollutants under varying environmental
conditions, and coupling adsorptive biochar with micro-
bial or phytoremediation techniques for enhanced multi-
functionality should thus be the key research areas in the
future.

3.3.2 Catalytic and redox reactive biochar/
metal-impregnated biochar

Metal-impregnated biochar is synthesized by incorporat-
ing specific metals such as iron (Fe), zinc (Zn), manga-
nese (Mn), or copper (Cu) into the biochar matrix either
during the pyrolysis process or through post-treatment
methods. Typically, metal salts like ferric chloride (FeCl,)
or zinc nitrate are used to impregnate the biomass feed-
stock prior to pyrolysis, embedding the metal ions into
the carbon structure and enhancing the surface reac-
tivity and binding sites of the resulting biochar (Yang
et al. 2021b). Alternatively, post-pyrolysis treatments
with metal nanoparticles, such as nano-zero valent iron
(nZVI), can increase the affinity of biochar for inorganic
contaminants, particularly heavy metals and metalloids
like arsenic and lead (Pinisakul et al. 2023). The addi-
tion of iron and manganese oxides is known to enhance
redox properties, enabling the transformation of toxic
contaminants such as hexavalent chromium (Cr(VI)) to
less harmful trivalent chromium (Cr(III)), thereby reduc-
ing their bioavailability and environmental impact (Yang
et al. 2021b).

The incorporation of copper and zinc oxides into bio-
char improves its ability to absorb both organic pol-
lutants, such as pesticides and pharmaceuticals, and
heavy metals like cadmium (Cd), by forming stable
metal—organic complexes and enhancing surface polar-
ity (Sutton et al. 2019). These modifications increase the
diversity of applications for metal-impregnated biochars,
particularly in treating industrial wastewater and reme-
diating polluted soils (Table 4). The presence of metal
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oxides also facilitates catalytic reactions, contributing to
the degradation of organic contaminants and the inacti-
vation of soil-borne pathogens, suggesting a role in rhizo-
sphere detoxification and disease control. Agronomically,
metal-impregnated biochars help stabilize contami-
nated soils, reduce leaching of hazardous elements, and
improve crop health. For example, iron-loaded biochar
has been shown to decrease arsenic mobility by more
than 90%, thus improving plant health and reducing risks
to food safety (Bhatt et al. 2023). In addition to its con-
taminant immobilization potential, metal-impregnated
biochar enhances nutrient availability by participat-
ing in chemical exchanges that liberate bound nutrients
or buffer soil pH, facilitating greater nutrient solubility
and accessibility to plant roots (Zhou et al. 2018). These
properties make it an ideal amendment for rehabilitating
degraded or polluted soils, enabling safe crop cultivation
and reducing the risk of groundwater contamination.
Studies by Liu et al. (2022) confirm the benefits of metal-
impregnated biochar in restoring soil functionality and
supporting sustainable land use in industrial and peri-
urban landscapes. Key advantages of metal-impregnated
biochar include its enhanced adsorption capacity for
a range of environmental pollutants and its improved
reusability, particularly in aqueous environments, due to
increased material density from metal loading (Verma
et al. 2024). This added weight facilitates sedimenta-
tion and separation in water treatment systems, making
recovery and reuse more feasible. Nevertheless, the pro-
duction of metal-impregnated biochar involves higher
costs and technical complexity. Additionally, concerns
remain regarding the potential leaching of the impreg-
nated metals, which could cause secondary pollution
under specific soil or water conditions (Liang et al. 2021).
Therefore, careful assessment of environmental stability,
leaching behavior, and ecological risks is critical before
large-scale implementation. In addition, the long-term
stability of metal-impregnated biochar in soils with dif-
fering pH, texture, redox potential, and microbial com-
munities remains poorly understood (Table 4). Soil type
can influence not only the persistence of functional
groups and redox activity, but also the potential for unin-
tended metal remobilization over time (Rinklebe et al.
2020). For example, acidic sandy soils may accelerate des-
orption and metal leaching, whereas high-clay or alka-
line soils may enhance stability but reduce the mobility
of beneficial elements (Singh et al. 2023). This highlights
the need for tailored formulations and testing protocols
across diverse agroecological contexts. Ongoing research
is needed to refine synthesis protocols and ensure the
environmental safety of metal-impregnated biochars in
diverse field conditions, as well as to develop hybrid sys-
tems that combine redox-active biochars with microbial
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remediation. Nevertheless, the potential of field-based
application of engineered biochars is mentioned in vari-
ous studies as shown in Table 5. Conducting long-term,
soil-type-specific field trials to assess persistence, sorp-
tion behavior, and leaching risks under realistic environ-
mental fluctuations and performing their cost-benefit
analyses to guide region-specific adoption are required.

3.3.3 Microbial functionalized biochar
Microbial-functionalized biochar (MFB), also known
as biologically enhanced biochar (BEB), is biochar that
has been modified to enhance microbial activity (Bolan
et al. 2023a). MFBs play dual roles: improving plant—
microbe interactions in the rhizosphere and enhancing
biochar’s pollutant-remediation capabilities. Evidence
shows that it supports microbial colonization through
moisture retention and functional groups (e.g., hydroxyl,
carboxyl) that aid adhesion (Ajeng et al. 2020), enabling
it to harbor microbes, release enzymes, and shield them
from stressors (Dai et al. 2019). The production of micro-
bial-enhanced biochar primarily involves pyrolysis, a
cost-effective thermochemical process that decomposes
biomass in an oxygen-limited environment, optimizing
its porous structure and nutrient content for microbial
activity (Cho et al. 2024; Saif et al. 2021). Techniques
like slow and fast pyrolysis allow the tailoring of biochar
properties, such as surface area and pore size, which are
essential for supporting microbial communities (Osman
et al. 2022). Recent advancements show that adjusting
particle size and surface chemistry enhances bacterial
loading and the adsorption of pesticides and microbes,
improving biochar’s role as a microbial carrier and envi-
ronmental remediator (Xu et al. 2021).

Implications include replacing peat, remediating soils,
and sequestering carbon (Liu et al. 2016). It also boosts
methane oxidation in landfill covers, cutting emis-
sions (Zhang et al. 2023). It is also expected that micro-
bial biochar in coming years will be an effective tool to
overcome water stress among crops (UN-Water 2020)
Advantages of microbial-enhanced biochar include its
effective microbial carrier properties, such as high poros-
ity, which enhance crop yields and soil health (Murtaza
et al. 2023). Disadvantages involved in microbial inocu-
lation success can vary depending on biochar feedstock,
pyrolysis temperature, and post-treatment conditions.
There are inconsistent yields (negative to over two fold)
depending on biochar type and soil conditions (Chen
et al. 2022a, b), uncertain metal ion effects on microbial
activity, and high production costs that hinder scalabil-
ity (Breunig et al. 2019). Unlike activated carbon, bio-
char selectively adsorbs microbial precursors, with E.
coli biofilms underscoring its habitat role, while micro-
bial fuel cells achieve 95% COD removal and 73-88%
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nutrient reductions. The longevity of microbial activity
post-application also remains uncertain in field settings,
with microbial desiccation and competition from native
soil biota posing additional hurdles (UN-Water 2020).
Furthermore, MFBs’ field performance in different soils
(acidic, saline, or contaminated) is still underexplored,
and scalability remains a challenge due to high produc-
tion and formulation costs. There is a growing need to
establish standardized protocols for microbial loading,
biochar pre-conditioning, and evaluation of functional
stability under diverse environmental conditions. Moreo-
ver, assessing interactions with native soil microbial com-
munities to avoid ecological disruption should be the
focus of future studies.

4 Biochar based rhizosphere engineering for crop
production, crop protection and remediation
Engineered biochar is increasingly being used in rhizos-
phere engineering to enhance crop productivity, protect
plants from environmental stressors, and remediate con-
taminated soils. Unlike conventional biochar, engineered
biochar is tailored with specific properties to optimize its
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interactions with plant roots, soil microbiota, and envi-
ronmental pollutants. These engineered traits allow for
context-specific outcomes depending on the soil type,
crop system, and stress environment. The integration of
biochar in rhizosphere engineering leads to improved
soil structure, enhanced microbial activity, and increased
nutrient availability, ultimately supporting sustainable
agriculture and environmental restoration (Pathak et al.
2024). For instance, in sandy soils, engineered biochar
improves water retention and microbial colonization
due to increased porosity and surface roughness (Li et al.
2021a, b). In clayey soils, it modifies aggregation and ion
exchange, mitigating compaction and improving aeration
(Wong et al. 2022). In acidic soils, alkaline biochar raises
pH and fosters microbial consortia favorable to nutrient
cycling and metal detoxification (Lu et al. 2020). In cal-
careous soils, biochar functionalized with organic acids
can chelate nutrients and promote their availability to
plants (Mihoub et al. 2022; Lonappan et al. 2020).

Figure 2 compares a normal rhizosphere to an engineered
rhizosphere, highlighting the benefits of biochar-based inter-
ventions for three key focus areas: crop production, crop
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Fig. 2 Comparison of a normal and engineered rhizosphere under biochar application. While the normal rhizosphere suffers from poor soil
structure, low nutrient availability, pest pressure, and pollutant toxicity, the engineered rhizosphere enhances nutrient cycling, root growth,
microbial activity, pest suppression, and contaminant immobilization, ultimately improving crop yield and soil health
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protection, and soil remediation. In the normal rhizosphere,
poor soil structure, reduced nutrient availability, and low
water retention negatively affect plant performance. Addi-
tionally, pathogen pressure and contaminant mobility further
disrupt root function. In contrast, the engineered rhizos-
phere fosters better root growth, improves nutrient cycling,
enhances microbial activity, reduces pest attacks, and immo-
bilize contaminants, leading to a healthier and more produc-
tive plant system. The illustration also highlights reduced
harmful biodiversity, indicating a shift toward a more bal-
anced microbial community that supports plant health, sup-
ported by biochar’s ability to suppress soil-borne pathogens
through the activation of systemic resistance and the promo-
tion of antagonistic microorganisms (Dorjee et al. 2024). A
critical component of these improvements lies in the regula-
tion of the microbial community. Biochar modulates micro-
bial structure by altering the physicochemical environment
of the rhizosphere affecting pH, moisture, nutrient gradi-
ents, and redox conditions (Palansooriya et al. 2019; Wang
et al. 2024a, b). These shifts stimulate the growth of benefi-
cial taxa such as phosphate-solubilizing bacteria, nitrogen-
fixing microbes, and antagonists of soil-borne pathogens
(Yan et al. 2024; Chang et al. 2025). Moreover, root exudates
in the presence of biochar are differentially released, activat-
ing signaling pathways such as the jasmonic acid (JA) and
salicylic acid (SA) pathways that regulate systemic acquired
resistance (SAR) and induced systemic resistance (ISR) (Pei
et al. 2020; Arshad 2024). Engineered biochar, when com-
bined with plant growth-promoting rhizobacteria (PGPR),
enhances quorum sensing and biofilm formation, further
stabilizing beneficial microbial populations (Yan et al. 2024;
Wang et al. 2024a, b). Through these mechanisms, biochar
fosters a more stable and productive rhizosphere, making it
a key component in sustainable agriculture and soil reme-
diation. For instance, long-term field studies have shown that
biochar application can increase crop yields by an average
of 16% over extended periods, with benefits persisting even
after six years, largely due to enhanced soil organic carbon
and nutrient availability (Jiang et al. 2024). However, to fully
realize these benefits, it is necessary to tailor biochar formu-
lations according to specific soil types, crop needs, and target
functions whether productivity, protection, or remediation.
Figure 2 visually demonstrates these differences, emphasiz-
ing how engineered biochar transforms the limitations of a
conventional rhizosphere into a functionally enhanced, bio-
logically optimized environment capable of supporting long-
term agroecosystem resilience.

5 Mechanisms of engineered biochar-based
rhizosphere engineering for crop production
Engineered biochar-based rhizosphere mechanisms con-
tributing to enhanced crop productivity are illustrated in
Fig. 3. Engineered biochars specifically those modified
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through nutrient enrichment, biopriming, or surface
area enhancement interact with the rhizosphere via three
primary mechanistic pathways: modulation of microbial
activity, improvement of soil properties, and stimula-
tion of root architecture and plant physiological traits.
Biochar-modulated microbial activity includes nutri-
ent bio solubilization (P, K), N-fixation, siderophore and
enzyme production, and the release of phytohormones
such as IAA. These microbial processes improve nutrient
availability and suppress soil pathogens. Simultaneously,
biochar improves the soil environment by enhancing
structure, porosity, pH buffering, water retention, and
organic matter stabilization creating a favorable habitat
for microbes and roots. In turn, these changes stimulate
root and shoot responses, including greater root biomass,
exudation, leaf area, and photosynthetic efficiency. These
improvements collectively lead to better plant vigor,
stress resilience, and yield.

5.1 Nutrient availability and uptake enhancement
Enhanced nutrient availability and uptake in plants can
be achieved through nutrient enrichment (Brtnicky et al.
2023), retention (Borchard et al. 2012) and transforma-
tion (Blanco-Vargas et al. 2022) as illustrated in Fig. 3.

5.1.1 Supplementation of mineral and utilizable nutrient
forms

Biochar engineered through soaking in nutrient solu-
tions (Brtnicky et al. 2023; Latini et al. 2019) or surface
coating (Li et al. 2023b; Pogorzelski et al. 2020) increases
the availability of nitrogen, phosphorus, potassium, and
trace elements in the rhizosphere. These nutrients are
slowly released over time (Brtnicky et al. 2023), eventu-
ally transforming from organic to mineral forms as evi-
denced by enhanced enzyme activities (Ameur et al.
2018; Ducey et al. 2013)). This reduces leaching (Ducey
et al. 2013), promotes efficient nutrient uptake by roots,
and enhances plant growth and vigor, as demonstrated by
increased lettuce shoot and root dry biomass (Brtnicky
et al. 2023). Similarly, (Latini et al. 2019) reported bio-
char-mediated increases in microbiota richness, nutrient
availability and early-stage wheat growth.

5.1.2 Nutrient retention and slow release

Porous biochars activated via oxidation agents exhibit
higher cation (CEC) and anion (AEC) exchange capaci-
ties, enhancing nutrient binding and reducing leaching
(Borchard et al. 2012; Dey et al. 2023). For example,
eggshell-enriched biochar immobilized soil microbial P,
retained N in the soybean rhizosphere, and increased
plant height and biomass P (Li et al. 2023c). Thus, soil
nutrients are not leached, which decreases their uptake
by plant roots (Borchard et al. 2012; Paymaneh et al.
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Fig. 3 Multifunctional rhizosphere mechanisms driven by engineered biochar for improved crop productivity. Purpose-specific biochars enhanced
via nutrient enrichment, biopriming, or increased porosity activate soil microbial processes, improve soil health, and stimulate root architecture,
resulting in enhanced nutrient availability, stress tolerance, and overall plant vigor

2018). Conversely, steam-activated biochar increased
soil phosphorus and nitrogen availability but did not
translate into higher plant biomass yield (Borchard
etal. 2012).

5.1.3 Increased cation exchange capacity
Oxidation-activated biochars increase soil CEC by
introducing charged groups or aromatic organic com-
pounds, which reduce hydrophobicity (Khan et al
2023). These changes occur naturally as biochar ages in
soil and are also achieved through co-composting with
additives like seafood shell powder, peanut shell, or
commercial humates (Luo et al. 2017). Enhanced CEC
neutralizes rhizospheric pH, improves N availability
(e.g. reduced nitrate and increased ammonium), and
supports root architecture, but without an increase in
plant biomass yield (Luo et al. 2017). For instance, bio-
chars activated with H,0,, KOH, or H;PO, improved
rhizospheric traits (increased pH) and increased pho-
tosynthetic efficiency, leaf area and biomass of mint
(Mentha crispa L.) (Ghassemi-Golezani and Farhangi-
Abriz 2023).

5.1.4 Phosphorus availability

Phosphorus retention and improved use efficiency in
the rhizosphere are mediated through surface compl-
exation (i.e. chemisorption via —OH and C=0 groups),
ligand exchange, and controlled diffusion (Nardis et al.
2022). Digestate-soaked corncob or wood biochar
enriched with P through surface chemisorption (Kizito
et al. 2017) showed higher availability of P and N, lead-
ing to increased maize biomass (Kizito et al. 2019). How-
ever, Mg-complexed phosphorus in engineered poultry
litter biochar reduced P solubilization in the maize root
system, but still improved P and Mg uptake and shoot
biomass compared to triple superphosphate fertilizer
(Nardis et al. 2020). Additionally, biochar derived from
metal-enriched feedstock (Mg, Fe, Cu, and Zn) enhanced
grass growth and seed germination rates (Yao et al.
2013a).

5.2 Improvement of soil structure and water dynamics

The application of engineered biochar significantly
enhances soil physical properties, particularly soil struc-
ture, porosity, and water dynamics, as illustrated in Fig. 3.
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Modified biochars contribute to increased macro- and
microporosity, improved soil aggregation, and enhanced
water-holding capacity, all of which are crucial for main-
taining soil health and optimizing plant growth (Duan
et al. 2021). These improvements also support better aer-
ation, reduced compaction, and greater resilience to ero-
sion, ultimately fostering a more favorable rhizosphere
environment (Table 2).

5.2.1 Enhanced soil aggregation

Engineered biochars improve soil aggregation through
their influence on soil organic matter stabilization,
microbial activity, and physicochemical interactions.
Specifically, porous and high-surface-area biochars such
as those treated with sulfuric acid or finely ground to
increase reactivity enhance aggregate stability by increas-
ing cation exchange capacity (CEC) and promoting
the formation of oxygen-containing surface functional
groups that bind soil particles together (Duan et al. 2021;
Liu et al. 2020; Yakout et al. 2015).

These structural improvements also support carbon
sequestration through the physical occlusion of organic
carbon in microaggregates, thereby reducing carbon
mineralization and shifting microbial communities
toward taxa associated with recalcitrant carbon process-
ing (Liu et al. 2020). For instance, particle-size optimized
biochar has been shown to reduce soil bulk density,
enhance aggregate stability, and improve plant-avail-
able water, leading to enhanced root proliferation and
increased crop productivity (Obia et al. 2016).

5.2.2 Water-holding capacity

Improving soil WHC is achieved through reduction in
saturated hydraulic conductivity, soil bulk density, and
alterations in pore size distribution. Porous, chemically
modified biochars (H,0,, KOH, H;PO,) significantly
increase WHC (Ghassemi-Golezani and Farhangi-Abriz
2022). Biochar with coarser particles enhances water
retention, root biomass and OC content in soil aggre-
gates, as demonstrated in maize and soybeans trials
(Obia et al. 2016). Similarly, PGPB-bioprimed biochar
has shown improved WHC, enhanced nutrient trans-
formation in the rhizosphere, increased root growth and
greater nutrient uptake (Zafar-ul-Hye et al. 2019). By
retaining more water in the rhizosphere, biochar reduces
nutrient leaching, supports root growth and activity, pre-
vents anaerobic root respiration, and boosts plant bio-
mass yield (Ghazouani et al. 2023; Kumar et al. 2022).

5.2.3 Improved soil aeration

Biochar amendments improve soil aeration by reduc-
ing compaction and increasing porosity under field
applications (Karhu et al. 2011), decreasing soil bulk
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density thereby allowing better gas exchange (Ghas-
semi-Golezani and Farhangi-Abriz 2022). This leads
to higher oxygen saturation, which supports root res-
piration, growth, and the proliferation of the beneficial
rhizobiome (Tang et al. 2023). For instance, the appli-
cation of 4% acid-modified porous biochar reduced
bulk density in saline soils, enhancing spinach yield and
quality (Wang et al. 2023a, b, c). Improved aeration also
fosters optimal conditions for root development and
overall plant health.

5.3 Stimulation of beneficial microbial communities

Engineered biochar stimulates beneficial soil microbial
communities by providing spatial niches within inter-
pores and inner pores of biochar particles (Neuberger
et al. 2024; Solaiman et al. 2010) or by supplying rhizos-
pheric microbes with essential nutrients for growth (Car-
ril et al. 2024; Sales et al. 2020) (Table 2). In acidic soils,
microbial communities are shaped by low pH, aluminum
toxicity, and limited nutrient availability. Therefore acid-
tolerant taxa, such as certain fungi and acidophilic bac-
teria, dominate through stress-response genes, proton
efflux systems, and organic acid production to maintain
pH homeostasis and support survival under harsh condi-
tions (Wan et al. 2022). Alkaline soils favor microbial taxa
adapted to high pH, reduced metal solubility, and limited
P availability (Bacillus, Actinobacteria) through the regu-
lation of alkaline phosphatase activity, ion transporters,
and biosynthesis of siderophores for nutrient acquisition.

5.3.1 Habitat for beneficial microbes

Plant roots naturally offer a complex habitat for soil
beneficial microbes, partly due to nutrient availability.
Biochar surfaces mimic these conditions, particularly
porous and high surface area biochars (Neuberger et al.
2024; Paymaneh et al. 2018) or nutrient-enriched bio-
chars (Sales et al. 2020; Sun et al. 2016). These biochars
provide improved habitats for microbial colonization
compared to pristine biochars by increasing surface area
and nutrient availability. This leads to the proliferation
of introduced beneficial microbes such as Pseudomonas
putida UW4 (Sun et al. 2016), AMF inocula (Solaiman
et al. 2010) or soil-acquired taxa like ericoid mycorrhiza
(Sales et al. 2020). Bioprimed biochars further enhance
microbial habitability when enriched with organic matter
(Edenborn et al. 2017; Sales et al. 2020). Such increases
in microbial population enhance rhizospheric nutri-
ent fluxes, soil fertility (Azeem et al. 2021) and root and
plant growth, resulting in greater shoot and root biomass
(Sales et al. 2020) and higher crop yield (Azeem et al.
2021; Solaiman et al. 2010; Sun et al. 2016).
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5.3.2 Enhanced symbiotic relationships

Bioprimed biochars serve as inoculum carriers for plant-
beneficial microbes, such as PGPB, which perform vital
soil functions such as nitrification (Ortiz-Liébana et al.
2022; Sun et al. 2016) and P solubilization (Azeem et al.
2021; Ray et al. 2024). These microbes increase nutri-
ent availability and foster positive interactions with
plant roots. Key mechanisms include the production of
microbial products such as indole-3-acetic acid (IAA)
(Azeem et al. 2021; Ortiz-Liébana et al. 2022) or 1-ami-
nocyclopropane-1-carboxylate deaminase (ACC deami-
nase) (Ortiz-Liébana et al. 2022; Sun et al. 2016), which
promote root development (Pantoja-Guerra et al. 2023)
and enhance resilience to environmental stresses such
as drought or salinity (Sun et al. 2016). Moreover, sev-
eral PGPB synthesize auxins, further stimulating plant
growth (Kudoyarova et al. 2017). For instance, biochar
bioprimed with Bacillus cereus enhanced crop growth
and yield, increased soil P availability and microbial bio-
mass P, and demonstrated high phosphate solubilization
and IAA production (Azeem et al. 2021).

5.3.3 Increased microbial activity

By providing habitat and nutrients, biochar supports bac-
terial and fungal proliferation, increasing soil microbial
activity and nutrient transformation. Nutrient retention
in biochar (Ameur et al. 2018) induces microbial exoen-
zymes production, enhancing soil fertility (Azeem et al.
2019; Sanchez-Hernandez 2018). For example, biochar
activated with liquid vermicompost extracts increased
soil microbial enzyme activity by 38% and improved bio-
logical fertility index by 32% over a 21-day incubation
period (Carril et al. 2024).

5.4 pH regulation and alleviation of soil acidity

Biochar is widely reported to increase soil pH (Shi et al.
2019), with most types of pristine biochar effectively alle-
viating soil acidity upon amendment (Dai et al. 2014).

5.4.1 Soil pH buffering

Biochar buffers acidic soil pH through interactions with
its negatively charged surface, particularly in biochars
engineered via activation with alkalic materials (Hu et al.
2023; Wang et al. 2021b). For example, rice husk-derived
biochar modified with NaOH not only increased soil pH
and enzyme activity, but also reduced bioavailability of
heavy metals. This mitigated their harmful effect on plant
roots, ultimately improving plant growth (Wang et al.
2021b). Similarly (Geng et al. 2022) reported the alkaliz-
ing effect of modified (crashed and sieved) biochar, which
enhanced soil organic carbon availability by reducing the
mineral-bonded organic C fraction. This modification
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also increased microbial community diversity, posi-
tively impacted the rhizosphere, and promoted rapeseed
growth.

5.4.2 Liming effect

Biochar’s liming effect in soil is primarily attributed to
surface sorption and proton capture during the trans-
formation of carbon, nitrogen and sulphur compounds
(Bolan et al. 2023a), such as decarboxylation reactions
(Manso 2017). The most effective liming effects are
observed in biochars pyrolyzed at high temperatures,
as these possess multiple functional surface groups
(-COO7, and -O7) (Yuan et al. 2011), high CEC (Hu et al.
2023), and smaller particle sizes (Wang et al. 2014). For
instance, corn cob biochar charred at 700 °C demon-
strated a liming effect comparable to conventional lime
(CaCOs,), increasing the pH of acidic soil planted with
soybeans by up to 1.0 within six weeks (Manso 2017).
Mg-enriched biochar also exhibits strong liming poten-
tial (Hu et al. 2023). The amendment neutralized soil
acidity, enhanced enzyme activities, and increased soil
organic carbon content, demonstrating potential for car-
bon sequestration in a citrus orchard.

5.5 Promotion of root growth and function

Biochar improves soil structure through increased poros-
ity, aggregation, and reduced bulk density, thereby pro-
moting plant root growth and function (Ren et al. 2020;
Simiele et al. 2022). These benefits arise from enhanced
water retention (Ma et al. 2020) and physico-chemical
mechanisms such as the stimulation of growth-promot-
ing root exudates (Pei et al. 2020), adsorption of phy-
tostatic compounds and promotion of biostimulants
(Bonanomi et al. 2023).

5.5.1 Root architecture enhancement

Root architecture is strongly influenced by soil perme-
ability and bulk density. Biochar amendments enhance
these traits by supporting soil structure and aggregate
stability (Amendola et al. 2017). For example, (Chang
et al. 2021) demonstrated that engineered biochar
increased soil porosity by 50%, reduced bulk density
by 40% and improved WHC by 1.9 times compared to
sand soil. These changes facilitated greater soil perme-
ability, promoting muscadine root development, includ-
ing increased fine root length and branching (Fig. 3). In
vineyard soil, biochar derived from orchard pruning
residues enhanced macroaggregate formation, leading to
increased radial growth, fine root diameter and annual
biomass, which ultimately boosted wine grape produc-
tion (Amendola et al. 2017). Furthermore, this root
architecture improvement influenced soil nutrient con-
tent with higher ammonium availability (+84%), organic
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carbon content (+21%), and available water content
(+12%) compared to the control soils.

5.5.2 Stimulation of root exudation

Root exudation serves as a source of organic nutri-
ents and soil-conditioning compounds, facilitating the
recruitment of microbial symbionts such as Pseudomonas
sp. that enhance plant nutrient uptake such as P (Hao
et al. 2022). Symbiotic microorganisms stimulate root
exudation through bilateral host-plant quorum sensing
within the rhizosphere, mediated by signalling molecules
(Majdura et al. 2023). This enhanced exudation not only
recruits beneficial microbes but also leads to rhizodepo-
sition (Pausch et al. 2013), which can account for up to
21% of photosynthetically fixed C (Canarini et al. 2019).
The combined effect of biochar amendment and elevated
CO, levels have been shown to enhance root exudation,
stimulating root growth and formation in rice paddy (Pei
et al. 2020).

Engineered biochar
application
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Microbial signal molecules, such as auxin-like sub-
stances (Kudoyarova et al. 2017) and biostimulants for
root development (Bartolini et al. 2023) are produced by
PGPB and mycorrhizal fungi. These molecules also help
plants respond to environmental stresses. Bioprimed bio-
char serves as a delivery mechanism for such organisms,
enhancing resilience against harmful agents like Fusar-
ium wilt disease. Biochar-induced signalling between
plant and the rhizobium has been shown to reduce dis-
ease severity by stimulating root exudate production (Jin
et al. 2022).

5.6 Mitigation of soil toxicities and abiotic stresses

Biochar’s high surface area and sorption properties
enable it to mitigate soil toxicities caused by potentially
toxic elements such as heavy metals, pesticides, organic
pollutants as well as abiotic stress like heat, salinity and
drought (Arshad et al. 2024). Figure 4 shows the intricate
interactions between engineered biochar and rhizos-
phere engineering for stress tolerance by modulating root
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Fig. 4 Schematic showing the intricate interactions between engineered biochar and rhizosphere engineering for stress tolerance by modulating
root exudates and boosting microbial candidates for enhanced functions ultimately conferring resistance to soil toxicities
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exudates and boosting microbial candidates for enhanced
functions ultimately conferring resistance to soil toxici-
ties. The illustration clearly differentiates direct effects of
biochar (e.g., adsorption, thermal buffering) and indi-
rect effects (e.g., stimulation of root exudation, microbial
shifts, and rhizosphere remodeling), aligning closely with
current understanding of biochar-rhizosphere interac-
tions under abiotic stress.

5.6.1 Immobilization of heavy metals

Biochar immobilizes HM in soil by adsorption onto its
high surface area (Chen et al. 2023a, b), increased CEC
through charged functional groups (Duwiejuah et al.
2020), and complexation with nutrient-enriched biochar
components such as N, S, and P (Serrano et al. 2024).
Additionally, biochar-induced soil pH increases promote
HM precipitation (Schmidt et al. 2016). PGPB-bioprimed
biochar can further stabilize HM via microbial interac-
tions (Han et al. 2020) or by enhancing plant tolerance
and resistance to HM uptake (Pramanik et al. 2018). For
instance, P-loaded activated sugarcane leaf biochar com-
bined with ryegrass (Lolium perenne) improved soil pH
and electrical conductivity, reducing the bioavailability of
Cd, Cr, and Pb to levels below 1 mg kg™ (Serrano et al.
2024).

5.6.2 Reduction of salinity stress

Engineered biochars with enhanced CEC, porosity, and
WHC effectively alleviate salinity stress in plants (Huang
et al. 2023). They mitigate salinity toxicity by boosting
antioxidant responses (e.g. reduced ROS formation),
photosynthetic efficiency, osmolytes accumulation, and
the production of hormones and secondary metabolites
(Parkash and Singh 2020) (Fig. 4). For example, Chinese
cabbage grown in saline-alkali soil exhibited improved
germination (83%) and increased chlorophyll and solu-
ble protein content with the application of 5% humic
acid—magnetic biochar, which restored soil permeability
and water absorption (Li et al. 2023a). Similarly, Pseu-
domonas UW4 inoculated biochar relieved salinity stress
in maize by synthesizing of ACC deaminase, enhancing
root establishment and plant growth (Sun et al. 2016).

5.6.3 Drought mitigation

Biochar mitigates drought by enhancing WHC, aggre-
gate stability, and reducing bulk density, protecting soil
from water losses and desiccation (Ali et al. 2017; Paetsch
et al. 2018). Mycorrhiza and PGPB further strengthen
plant drought resilience, especially when delivered via
bioprimed biochar (Hashem et al. 2019). For example,
co-application of biochar and Bacillus amyloliquefa-
ciens increased wheat grain yield (+77%), straw yield
(+75%), and above- and below-ground biomasses (77%)
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compared to the control (Zafar-ul-Hye et al. 2019). Simi-
larly, biochar combined with AMF improved nitrogen
fixation in chickpea by increasing nodulation, leghemo-
globin and nitrate reductase activity under drought con-
ditions (Hashem et al. 2019). Algal biochar and PGPB
Serratia odorifera further enhanced maize growth,
increasing fresh and dry shoot and root weights and root
length under drought stress (Ullah et al. 2019).

5.6.4 Temperature regulation

Biochar regulates soil temperature by influencing CH,
and CO, emissions, soil organic carbon, dissolved
organic caron, and microbial biomass carbon content,
and water saturation (Qi et al. 2020). While biochar
mitigates drought effects on soil microorganisms under
warming conditions, its amendment can also initiate
fungal decomposition. As shown in Fig. 3, eengineered
biochar supports rhizosphere mechanisms that aid in
temperature regulation through a combination of physi-
cal, chemical, and biological interactions in the soil envi-
ronment. For instance, temperature stress is mitigated by
VOCs and isoprene from microbes, as well as increased
microbial thermotolerance via biochar (Pathak et al.
2024).

6 Mechanisms of biochar-based rhizosphere
engineering for crop protection

Figure 5 illustrates biochar-based rhizosphere engineer-
ing that enhances crop protection through a combina-
tion of direct and indirect mechanisms, including the
suppression of soilborne pathogens, induction of plant
systemic resistance, modulation of root exudates, and
stimulation of beneficial microbial communities that col-
lectively strengthen plant defense against biotic stressors.

6.1 Pathogen suppression through enhanced microbial
activity

6.1.1 Promotion of beneficial microbes

Engineered BC enhances soil microbial activity leading
to increased competition among soil micro-organisms
and the production of antimicrobial compounds which
collectively suppresses soil-borne pathogens (Chauhan
et al. 2023). This suppression is primarily due to the BC-
induced shift in the microbial community composition
and its impact on microbial functions (Wang et al. 2021a,
b, ¢; Chen et al. 2023a, b). As illustrated in Fig. 5, BC
provides a habitat for beneficial microbes and enhances
soil properties such as pH, water retention, and nutrient
availability, which together foster a more robust microbial
community capable of suppressing pathogens (Gorovt-
sov et al. 2020). In a study by Ali et al. (2023), it was vali-
dated that BC amended with Trichoderma spp. enhanced
organic matter, pH, and ammonia concentration in the
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soil, resulting in an effective reduction in the incidence
of Fusarium wilt infection by 37.5% in cucumber and
enhanced colonization of (Bacillus spp., Pseudoxan-
thomonas spp., Flavobacterium spp., Flavisolibacter spp.,
and Arthrobacter spp.) and (Trichoderma spp., Chaeto-
mium spp., Cladosporium spp., Psathyrella spp. and
Westerdykella) genera which were likely the potential
antagonists for various plant pathogens. Another study
concluded a significant decrease in the incidence of pow-
dery mildew on grapevines following the application of
BC engineered with phosphorus coating. This amend-
ment was found to enhance microbial activity and diver-
sity in the rhizosphere, leading to increased production
of natural antifungal compounds (Chen et al. 2023a, b)
(Table 3).

6.1.2 Induction of systemic resistance

Pathogen suppression via enhanced microbial activity
occurs when engineered BC is added to the soil, foster-
ing beneficial microbial communities that compete with
or inhibit harmful pathogens (Bolan et al. 2023c). This
microbial boost can lead to the induction of systemic
resistance (ISR) in plants by salicylic acid production

stimulated by ethylene and jasmonic acid pathways
which are responsible for inducing resistance and upreg-
ulation of defensive genes in a plant system, a state where
plants are primed to respond more effectively to patho-
gen attacks by activating their immune responses includ-
ing the production of antimicrobial compounds and
strengthening of cell walls (Das et al. 2022). Engineered
BC supports these mechanisms by providing a condu-
cive habitat for beneficial microorganisms due to its
porous structure high surface area and ability to retain
nutrients (Fig. 5). This environment enhances micro-
bial diversity and activity, promoting the suppression of
pathogens and the induction of systemic resistance in
plants (Zheng et al. 2022). Chen et al. (2023a, b) dem-
onstrated that the application of engineered BC, derived
from rice husks and enriched with Bacillus subtilis SL-44,
significantly reduced the incidence of Fusarium wilt in
radish plants. The BC-amended soil showed increased
microbial activity, leading to the suppression of disease
and the induction of ISR in radish, resulting in healthier
plants with lower disease symptoms. In a study by Fosu-
Nyarko et al. (2022) lettuce plants grown in soil amended
with BC derived from poultry litter and engineered with
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Pseudomonas fluorescens exhibited reduced infestations
of root-knot nematodes and enhanced soil microbial
diversity particularly beneficial bacteria that antagonize
nematodes leading to lower nematode populations and
healthier plant roots. Research by Ahmad et al. (2024)
explored the effects of leaf waste BC engineered with
Trichoderma harzianum on eggplants and found that the
BC-treated soil significantly reduced the severity of bac-
terial wilt disease. This was attributed to the enhanced
activity of Trichoderma, which not only suppressed the
pathogen but also triggered ISR by enhancing the pro-
duction of phenolics, flavonoids, and peroxidase activity
in the eggplant resulting in increased resistance to the
disease (Table 3).

6.1.3 Antibiotic production

Pathogen suppression through enhanced microbial activ-
ity involves the stimulation of beneficial soil microbes
which outcompete or directly inhibit harmful pathogens
(Fig. 5). This is achieved through mechanisms like the
production of antibiotic compounds and the enhance-
ment of plant immune responses (Niu et al. 2020). Engi-
neered BC provides a porous habitat that enhances
microbial colonization and activity. It also adsorbs
organic compounds which can serve as nutrients or sig-
nals for beneficial microbes further enhancing their abil-
ity to suppress pathogens by releasing various antibiotic
compounds in the rhizosphere as well as in plants (de
Medeiros et al. 2021; Poveda et al. 2021a, b; Awasthi
2022). A study by Jin et al. (2023a, b) investigated the use
of Streptomyces-enriched BC in potato which enhanced
the activity of Rhizobium spp., a bacteria known for its
nitrogen fixation properties and a significant reduction in
Potato late blight (PLB) caused by Phytophthora infestans
due to increased microbial activity and antibiotic produc-
tion against the pathogen, with Streptomyces-doped BC
amendment reducing disease incidence by 46.1%. Kumar
et al. (2021) explored that Bacillus subtilis enriched BC
facilitated the proliferation of PGPR in the rhizosphere
which produce antibiotics that target Pseudomonas syrin-
gae a pathogen responsible for bacterial speck in tomato
and reduce the disease severity by 50% (Table 3).

6.2 Pest suppression through alteration of rhizosphere
chemistry

6.2.1 Changes in root exudation patterns

The addition of engineered BC to soil can alter rhizosphere
chemistry leading to changes in root exudation patterns
that enhance the plant’s ability to suppress pathogens.
These alterations in exudate composition could inhibit
pathogen growth by enhancing the beneficial microbial
community that outcompete plant pathogens by directly
producing antimicrobial compounds (Sharma et al. 2021).
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Engineered BC provides a porous structure and surface
chemistry that adsorbs organic molecules, modulates soil
pH, and acts as a habitat for beneficial microbes. This
enhances microbial activity and diversity, which, in turn,
influences root exudation patterns and supports pest sup-
pression (Palansooriya et al. 2019; Zhao et al. 2022a, b).
A study by Wang et al. (2024a, b) demonstrated that the
application of KOH modified BC in soybean fields led to
a 22.17% reduction in root rot disease incidence caused by
Fusarium species. The BC-modified rhizosphere chem-
istry increased soil physicochemical properties and iso-
flavones signaling to rhizosphere beneficial bacteria and
increased their community, enhancing plant defense
mechanisms. Mondal et al. (2021) reported that 1.2% BC
and 5% vermicompost could alter root exudation patterns
in rice crops particularly increasing the release of organic
acids that deterred (Meloidogyne graminicola) and fos-
tered a microbiome hostile to nematodes. In a study by
Wang et al. (2023a, b, ¢), AMF and BC application in maize
fields resulted in a 54.2% reduction in pest infestation by
Spodoptera frugiperda. The treated soils showed altered
rhizosphere pH, leading to increased exudation of phe-
nolic compounds, which are known for their pest-deter-
rent properties (Table 3).

6.2.2 Enhancement of plant secondary metabolites
Modified BC alters rhizosphere chemistry by modulating
soil pH, nutrient availability, and microbial communities
leading to changes in root exudation patterns. This process
enhances the production of plant secondary metabolites
which act as chemical defense against pathogens reduc-
ing their ability to multiply or infect the plant (Cheng et al.
2018; Yang et al. 2024). BC provides a conducive environ-
ment for beneficial soil microbes, increases nutrient reten-
tion, and adsorbs harmful substances (Kocsis et al. 2022).
These properties facilitate the optimal production and
release of root exudates, including secondary metabolites,
which suppress pathogenic activity in the soil (Gorovtsov
et al. 2020). A study demonstrated that biocontrol-doped
organic waste BC increased the abundance of beneficial
microbes such as Pseudomonas spp. and Trichoderma spp.
in the rhizosphere of cotton plants. These microbes were
linked to enhanced production of phenolics and flavonoids
compounds that led to a reduction in Fusarium wilt inci-
dence caused by Fusarium oxysporum f. sp. vasinfectum
(Asif et al. 2023). In a field trial, plants treated with com-
post-enriched green waste BC enhanced the production of
flavonoids in the roots of tomato resulting in a significant
decrease in Fusarium oxysporum sp. lycopersici infesta-
tions. The BC'’s ability to improve root exudates and AMF
bio-protective potential of mycorrhization was evident in
treated plants (Akhter et al. 2015) (Table 3).
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6.2.3 Modulation of soil pH

The addition of engineered BC to soil alters rhizosphere
chemistry, primarily by modulating soil pH (Fig. 1),
which can inhibit pathogen growth and enhance plant
health (Das et al. 2022). This alteration in pH affects
the availability of nutrients and the activity of benefi-
cial microbes, ultimately suppressing pests and diseases
through induced systemic resistance and the production
of plant secondary metabolites (Bolan et al. 2023b). Engi-
neered BC supports this mechanism by providing a stable
matrix that adsorbs and releases ions thereby stabiliz-
ing soil pH. The surface chemistry and porous structure
enhance microbial habitat promoting beneficial micro-
bial activity and reducing the availability of nutrients that
pathogens rely on (Gao et al. 2022). A study found that
the application of organic amendments and BC altered
soil EC, pH, C: N, N and NO; and reduced the severity
of Fusarium oxysporum f. sp. lactucae in lettuce by 37%,
The BC amendment led to increased phosphorus avail-
ability enhancing plant defenses against the pathogen
(Bonanomi et al. 2022). A previous study demonstrated
that Zeolite-enriched spelt husk BC 5% (v/v) altered soil
pH and microbial activity which suppressed root lesion
nematode (Pratylenchus penetrans) infestations by 95%
and enhanced microbial populations that outcompeted
nematodes for nutrients and space leading to reduced
infestations rate in carrot (George et al. 2016). Another
study showed that Green-Nano BC amended soils had a
higher pH and functional groups (such as O-H, C=C,
S—-H, H-C=0, C-O, and H-O-H) which reduced root
knot nematode infection by 88.65% per 250 cm? soil in
tomato. The elevated pH and functional group levels
were toxic to the nematodes and inhibited them from
invading in roots while promoting plant growth (Khader
et al. 2023) (Table 3).

6.3 Biochar acts as a physical barrier

6.3.1 Reduction of pathogens and pest movement

BC acts as a physical barrier in soil impeding the move-
ment of pathogens and pests by creating a more porous
and heterogeneous soil structure. This barrier effect
reduces the ability of pathogens to spread and pests to
reach plant roots thereby dropping infection rates (Zheng
et al. 2022; Zhao et al. 2024). The porous structure and
high surface area of BC enhanced soil physical structure
improving its ability to trap and immobilize pathogens
and pests. Additionally, BC can upsurge soil microbial
communities, resulting from suppressing pathogen pro-
liferation and movement (Graber and Kookana 2015). A
study by Cao et al. (2018) demonstrated that BC enriched
compost had significantly altered soil structure, mini-
mized the potential leaching of nutrients and reduced
plant-parasitic nematodes infections in cucumber plants.
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The BC physical structure combined with manure anti-
microbial properties created a barrier that prevented
the nematodes from spreading through the soil. Like-
wise, AMF and Trichoderma asperellum consortium
with palm bunch BC applied to tomato fields effectively
reduced nematode infestation by 79.5%. The BC physi-
cal properties, coupled with the antagonistic nature of
biocontrol fungi obstructed nematode movement by col-
onizing thick mycelia in the rhizosphere thereby protect-
ing the cucumber roots from invading J, (Claudius-Cole
and Ajayi-Choco 2017). Mesquite (Prosopis juliflora) BC
infused with castor oil cake reduced Meloidogyne incog-
nita infestations in tomato fields. This might be attrib-
uted to increased surface area, acting as a barrier and
boosting the physiochemical properties of the soil which
could resist the root-knot nematode locomotion (Ikram
et al. 2024).

6.3.2 Root system protection

BC protects root systems from soil borne pathogens by
enhancing antagonistic microbial diversity creating unfa-
vorable conditions for pathogens to survive and multi-
ply and adsorbing allelopathic compounds produced by
pathogens. This improves soil health and plant resilience
effectively reducing pathogen colonization (de Medeiros
et al. 2021). BC supports these protective measures by
providing a porous structure that is capable of adsorbing
toxic compounds and keeping the soil detoxifyed (Anae
et al. 2021). The application of Pseudomonas putida 1.2
and Stenotrophomonas pavanii 1.8 along with maize BC
to Narrow-Leafed Lupin plants led to a reduction in
root rot disease incidence caused by Fusarium solani,
The BC elevated adsorption of fusaric acid produced
by E solani and increases PGPR diversity and reduced
pathogen invasion through roots (Egamberdieva et al.
2020) (Table 3). Wachira (2020) demonstrated that this
sugarcane bagasse-derived BC functionalized with pure
calcium carbonate and DAP significantly reduced root
rot (Fusarium oxysporum) infestations in soybean crops
by 90%. The functionalization with calcium carbonate
helped modulate soil pH making the environment less
conducive to fungi mycelia growth thereby protecting the
roots from damage.

6.4 Mitigation of soil-borne diseases

6.4.1 Reduction of phytotoxicity

BC mitigates soil-borne diseases by altering the soil
physiochemical attributes and improving soil beneficial
microbial diversity which reduces the stress on plants
and enhances immune responses. It also neutralizes
harmful substances in the soil decreasing the incidence
of diseases by limiting pathogen activity (Tikoria et al.
2023). BC’s porous structure and large surface area
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allow it to sorb allelopathic and phytotoxic metal pol-
lutant like arsenic (As), nickel (Ni), cadmium (Cd),
lead (Pb) chemicals in the rhizosphere, while its abil-
ity to enhance soil pH and nutrient availability creates a
more favorable environment for antagonistic microbes
that suppress pathogens (Kammann and Graber 2015;
Mansoor et al. 2021; Pathak et al. 2024). In a study on
American ginseng, the application of vermicompost
impregnated BC (VBC) significantly reduced the inci-
dence of Fusarium root rot by 80.96% compared to the
control. The VBC regulated the adsorbing potential of
phenolic acid produced by the friendly microbial com-
munity (Pseudomonas, Lysobacter, and Chryseolinea)
was highlighted as the primary mechanism (Tian et al.
2021). Similarly, the use of vermicompost enriched
BC in bean crops led to a 60% reduction in the occur-
rence of root rot caused by (Fusarium solani). BC
improved soil pH and nutrient cycling which promoted
the growth of disease-suppressive microorganisms

Plant derived

Engineered Biochar
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(Trichoderma and Paecilomyces lilacinus) thus mitigat-
ing the disease (Were et al. 2021).

6.5 Allelopathic suppression of weeds

6.5.1 Biochar and allelochemicals

Engineered biochar, through its tailored physicochemi-
cal properties can suppress weed growth through allelo-
pathic effects, where it releases bioactive compounds
that inhibit the germination and growth of weed seeds
(Fig. 6). Additionally, BC modifies soil pH and nutrient
availability, which can further affect weed seed viability
and growth (Eizenberg et al. 2017). Plant-derived allelo-
chemicals, such as phenolic acids (e.g., ferulic acid, caf-
feic acid) and terpenoids (e.g., sorgoleone), are exuded
by crops and can be adsorbed and stabilized by biochar,
thereby prolonging their bioavailability for weed sup-
pression (Fig. 6). It also enhances soil properties such as
increased cation exchange capacity (CEC), water hold-
ing capacity, functional group, C content, specific surface
area (SSA) and boosted potential of chemical herbicide
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Fig. 6 Mechanistic representation of engineered biochar in weed suppression through rhizosphere-mediated allelopathy. Engineered biochar
acts as a carrier for plant- and microbe-derived allelochemicals (e.g., terpenoids, phenolics, fusaric acid, DAPG, HCN) and supports antagonistic
microbial communities (e.g., Bacillus, Pseudomonas, Trichoderma spp.). By adsorbing and slowly releasing allelochemicals, biochar improves soil
properties and creates a non-host signaling environment. This leads to impaired weed growth and seed germination via altered soil pH, disruption
of mitochondria, reduced cell division, and stunted growth, ultimately strengthening crop competitiveness
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which can create less favorable conditions for weed
growth (da Silva Amaral et al. 2022). A previous study
investigated the use of glyphosate-isopropylammonium
and BC in suppressing broomrape weed (Orobanche cre-
nata Forsk.) growth in faba bean (Vicia faba L.) fields.
The engineered BC significantly diminished allelopathic
effects, reducing weed biomass by up to 44.7% compared
to control plots (Saudy et al. 2021).

El-Bially et al. (2023) assessed the impact of AMF
and peanut husk BC on broomrape weed management
in a two-year trial of faba bean crops. The engineered
BC showed a noticeable reduction in weed density and
improved faba bean upper and lower ground growth.
The study highlighted the role of AMF-BC in altering
soil nutrition and raising the tolerance degree of the crop
against weed, resulting in suppressing weed germination.
Green waste-derived BC had significantly enhanced soil
dehydrogenase activity, reduction in Hydrolytic enzyme
activity and decreased the Parthenium hysterophorus
weed growth in a maize field. The study emphasized
the capacity of BC to increase active microbial biomass
carbon and modify soil conditions creating an environ-
ment less conducive to weed growth (Kumar et al. 2013)
(Table 3).

6.5.2 Weed seed germination inhibition

BC inhibits weed seed germination primarily through
physical and chemical mechanisms (Fig. 6). It creates a
physical barrier by occupying the soil surface which can
prevent seed-to-soil contact necessary for germination.
Additionally, BC can alter soil pH and adsorb phyto-host
chemicals (such as flavonoids, sesquiterpenes, and str-
igolactones) that stimulate weed seed germination and
growth (Eizenberg et al. 2017; Joseph et al. 2021). BC
could support this mechanism by providing a nutrient
deficit and lack of host signaling environment for weed
seeds that physically obstructs seedling emergence. It
also affects soil chemistry by buffering pH changes and
adsorbing signaling compounds that may inhibit weed
seed germination (Thies et al. 2015). It was found that the
use of greenhouse compost with pepper-BC decreased
the root parasitic weed Egyptian broomrape (Phelipanche
aegyptiaca) seed germination percentage in the BC-
treated root and reduced weed biomass in a tomato field
and adsorbed synthetic weed seed stimulant GR-24 in-
vitro conditions. Particularly, the reason for the decrease
in germination percentage could be physical adsorption
of the stimulant molecule by the BC (Eizenberg et al.
2017) (Table 3, Fig. 6).
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7 Mechanisms of biochar-based rhizosphere
engineering for remediation

Biochar-rhizosphere mechanisms for the remediation
of contaminated sites involve using biochar to trans-
form the rhizosphere into a more favorable environ-
ment for detoxifying pollutants and enhancing plant
growth. These mechanisms target the immobilization of
contaminants, enhancement of microbial degradation,
and improvement of plant resilience, all within the engi-
neered rhizosphere (Table 4). These mechanisms with
a focus on rhizosphere engineering using biochar are
described in detail below.

7.1 Immobilization of heavy metals and other inorganic
contaminants

7.1.1 Adsorption and complexation

Engineered biochars adsorb the pollutants through
H-bonding, pore filling, electrostatic attraction, hydro-
phobic interaction, and van der Waals forces (Islam
et al. 2021) as illustrated in Fig. 7. The high aromatic-
ity and porosity of activated biochars are essential for
the sorption of these contaminants, along with enlarged
surface areas and pore structures facilitate these inter-
actions, enhancing their adsorption capacity for pollut-
ants (Braghiroli et al. 2018), i.e., clay-biochar composites
have shown good efficiency in removing antibiotics and
dyes from contaminated water (Murtaza et al. 2024).
Heavy metals are also remediated through ion exchange,
precipitation, electrostatic attraction, and complexa-
tion (Islam et al. 2021). The presence of O-containing
functional groups and optimum pH conditions also play
a major role in the sorption of heavy metals (Braghiroli
et al. 2018; Zhang et al. 2024). Viglasova et al. (2020)
compared pristine biochar with Fe- and Mg-biochar for
nitrate removal and reported that Mg- and Fe-biochar
had more efficacy (9.13 and 10.35 mg g~', respectively)
than pristine biochar (4.41 mg g™'). Similarly, biochar
composites also show promising results i.e., Wang et al.
(2015) reported that manganese-oxide/biochar increased
the lead(II) removal efficacy to 98.9%. Similarly, compl-
exation primarily involves the formation of stable com-
plexes between the pollutants and the biochar functional
groups located on the biochar surface, facilitated through
increased surface area and the presence of specific func-
tional groups, such as C=0, -COOH, -OH, and -NH,
(Islam et al. 2021; Chen et al. 2022a, b; Murtaza et al.
2024). Engineered biochars remediate organic pollutants
through hydrogen bonding, n-m electron donor—acceptor
(EDA) interactions, and hydrophobic interactions (Islam
et al. 2021). The engineered biochars have increased
aromaticity and specific functional groups, providing
higher pollutant removal efficiency (Qiu et al. 2022).
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Fig. 7 Rhizospheric mechanisms are driven by engineered biochar for soil remediation. Engineered biochar immobilizes heavy metals and organic
pollutants through surface adsorption, ion exchange, and redox reactions, reducing their bioavailability to plants. Simultaneously, it enhances root
exudation and supports pollutant-degrading microbial communities, accelerating bioremediation processes

For example, tetracycline remediation is accomplished
through the formation of bonds between the functional
groups on the engineered biochar surface and the polar
groups of tetracycline molecules (Xiong and Bi 2023).
Yang et al. (2024) reported Fe-Mn modified biochar
remediated Cd and Pb with an efficacy of 73.73% and
69.87%, respectively. Similarly, Ke et al. (2023) reported
up to 80% stabilization efficiency of magnetic biochar for
As and Pb.

7.1.2 pH modification and precipitation

Through pH modification, the solubility and mobil-
ity of organic and inorganic pollutants are altered and
facilitated their precipitation and effective immobiliza-
tion (Qiu et al. 2022; Zhang et al. 2024). As engineered

biochars have alkaline pH, they increase the pH of the
contaminated environment, leading to higher availabil-
ity and subsequent precipitation of heavy metals in the
form of metal hydroxides or carbonates (Zhang et al.
2024). For example, As interacts with higher pH engi-
neered biochar to promote the formation of less soluble
arsenic species, reducing their mobility in soil and water
(Zhang et al. 2024). This precipitation mechanism is fur-
ther enhanced by the presence of carbonates and phos-
phates in the ash content of engineered biochars, which
can form stable precipitates with heavy metals (Guo et al.
2020). Hussain et al. (2022) reported an effective reme-
diation strategy of rock phosphate loaded green coconut
shell biochar for heavy metals contaminated sites. Sun
et al. (2021) reported Fe-modified biochar restricted Cd
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entry (up to 76.64%) into maize crop due to increasing
its pH increasing and subsequent precipitation. Surface
complexation is another crucial mechanism for inorganic
pollutant remediation, which is significantly influenced
by pH. Engineered biochars with abundant oxygen-
containing functional groups i.e., -COOH, and -OH can
form strong complexes with metal ions, especially at
higher pH levels where these functional groups become
deprotonated and more reactive (Qiu et al. 2022). The
efficiency of this process depends on the cation exchange
capacity (CEC) of the applied biochar type, which is often
improved through modification techniques (Guo et al.
2020). Lee and Shin (2021) reported an effective strategy
of Zn, Cd, and Pb removal through MgO-impregnated
biochar up to>9.15 mg g~*. Li et al. (2022) reported that
Mg-Al modified biochar application remediated As, Pb
and Cd contaminated soils up to 100%. Similarly, Wang
et al. (2021a, b, c) reported that H,0, and 3-mercapto-
propyltrimethoxysilane thiolated pig manure biochar
effectively remediated Cd and Pb through enhanced sur-
face complexation of metals with biochar.

7.1.3 Formation of stable metal-biochar complexes

The remediation of heavy metals through stable
metal-biochar complexes is accomplished through ion
exchange, precipitation, electrostatic attraction, and
complexation due to higher surface area and functional
groups (Murtaza et al. 2024). For example, phosphate-
solubilizing bacteria (PSB)-modified biochar has been
shown promising results in enhancing the immobiliza-
tion of Pb?** (Chen et al. 2019). The addition of PSB to
biochar increased Pb** removal efficiency up to 60.85%
as PSB-biochar significantly enhanced the formation of
stable pyromorphite on the surface of PSB-biochar, due
to increased P release and regulated pH on the biochar
surface (Enaime et al. 2020). Dissolved organic matter
(DOM) released from biochars plays a significant role
in biochar-metals complexation, e.g., Liu et al. (2019)
reported>99% of Hg removal through metal-biochar
complexation through thiol groups in DOM. Amorphous
MnO-coated biochar also has the potential to remediate
heavy metals through metal-biochar complexation e.g.,
Trakal et al. (2018) reported that MnO-biochar com-
posite removed 99%, 91% and 51% of Pb, As and Cd,
respectively.

7.2 Enhancement of microbial degradation of organic
contaminants

Engineered biochars provide a suitable habitat for micro-

bial colonization due to their higher surface area and

porosity (Fig. 7). Moreover, they adsorb organic pollut-

ants, making them more bioavailable to microorgan-

isms for degradation. In addition, these biochars act as
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electron shuttles, facilitating direct interspecies electron
transfer and promoting microbial metabolism (Kong
et al. 2024; Liu et al. 2020).

7.2.1 Habitat for degrading microorganisms

The improved properties of engineered biochars, such as
increased specific surface area and uniform distribution
of pores, contribute to their effectiveness in supporting
microbial degradation of contaminants (Akhil et al. 2021).
These characteristics provide a larger surface area for
microbial colonization and create a more favorable envi-
ronment for microbial growth and activity. Furthermore,
engineered biochars can introduce exogenous micro-
organisms to the soil, further diversifying the micro-
bial community and potentially introducing specialized
degraders for specific contaminants (Fan et al. 2023). This
introduction of new microbial species can enhance the
overall degradation capacity of the soil microbial com-
munity. The presence of O,-containing groups (OCGs),
imperfections, and persistent free radicals (PFRs) on the
biochar surface also contributes to its catalytic activity in
advanced oxidation processes (AOPs) (Kong et al. 2024).
These reactive sites can generate active radical species,
leading to the enhanced degradation of organic contami-
nants through both radical and non-radical pathways.
Engineered biochars can also influence the biodegrada-
tion of organic pollutants by altering soil properties e.g.,
biochar amendment increased the surface area, pH, total
organic carbon, and dissolved organic carbon (DOC) of
paddy and red soils (Zhang et al. 2021). The immobiliza-
tion of microorganisms on engineered biochars further
enhances their potential for organic contaminant deg-
radation. Zeng et al. (2023) used Fe;O, nanomaterial-
modified pharmaceutical residue biochar to immobilize
Alcaligenes faecalis strains for phenol removal. Similarly,
Chang et al. (2021) used Fe-MnO-modified biochar for
the remediation of phthalate-contaminated soils and
reported that the addition of Fe-MnO-modified biochar
enhanced the relative abundance of Firmicutes sp. More-
over, the abundance of Sphenodons and Pseudomonas
effectively degraded phthalates. Ma et al. (2023) reported
that nanoparticles synthesized from wood and rice straw
biochar resulted in significant remediation capacity of
naphthalene, pyrene, trimethoprim, and ciprofloxacin in
sandy soil.

Furthermore, application of engineered biochars signif-
icantly alter the soil microbial communities, enhancing
the relative abundances of beneficial microorganisms e.g.,
biochar addition increases the presence of Acidobacte-
riota, Firmicutes, Basidiomycota, and Mortierellomycota
(Lei et al. 2023). These changes in microbial community
composition can have profound effects on the degrada-
tion of soil contaminants, as certain microorganisms are
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known to be more efficient in breaking down specific pol-
lutants. Engineered biochars also promote the growth of
potentially beneficial microbes, such as Gemmatimona-
detes, Microtrichales, Candidatus Kaiserbacteria, and
Pyrinomonadales, which are associated with improved
plant growth and enhanced soil nutrient cycling (Lei
et al. 2023). This enrichment of beneficial microorgan-
isms can contribute to the overall health of the soil
ecosystem and support the natural attenuation of con-
taminants. Gregory et al. (2015) reported that low- and
high-temperature biochar treatments resulted in a signif-
icant increase in soil microbial activity during 60 days of
treatment compared to the controls. Engineered biochars
can also alleviate the stress caused by co-contaminants,
allowing native soil microbial communities to thrive and
degrade pollutants more effectively. The same study also
reported that biochar addition led to a short-term reduc-
tion in soluble As concentration, which allowed native
soil microbial communities to overcome As-related stress
(Gregory et al. 2015).

7.2.2 Co-metabolism and synergy

Engineered biochars support co-metabolism and syn-
ergistic microbial degradation by enhancing microbial
activity and diversity in contaminated soils (Fig. 7). Bio-
char addition alter the composition, diversity, and struc-
ture of microbial communities through nutrient supply,
provision of colonization sites, immobilization of heavy
metal(loid)s, and introduction of exogenous microorgan-
isms (Fan et al. 2023). This enhanced microbial diver-
sity, and activity can lead to more efficient degradation
of contaminants through co-metabolic processes. The
application of low-temperature (300 °C) biochar has been
found to promote the biodegradation of organic contami-
nants such as neonicotinoid insecticides by 11.3-41.9%
(Zhang et al. 2020). This enhancement is attributed to the
biochar’s ability to provide more dissolved organic car-
bon (DOC) and available nitrogen for microorganisms,
creating favorable conditions for co-metabolic processes.
The increased availability of carbon and nitrogen sources
allows microorganisms to grow and maintain their meta-
bolic activities, which in turn supports the degradation of
contaminants that may not serve as primary substrates
for growth. Engineered biochars can also influence the
metabolic patterns of microbial communities, accelerat-
ing the utilization of various carbon sources, including
amino acids, carboxylic acids, polymers, and other plant
chemical compounds (Xu et al. 2021). Zhang et al. (2020)
used Fe-Mn-Ce modified biochar composite for arse-
nic remediation in paddy soil. They reported increased
urease, catalase, alkaline phosphatase, and peroxidase
enzymes activity along with higher relative abundance of
Proteobacteria, Acidobacteria, and Gemmatimonadetes,
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which play a crucial role in inducing heavy metal reme-
diation. This enhanced metabolic activity, and diversity
can lead to more efficient co-metabolic degradation of
contaminants, as microorganisms are better equipped
to break down a wider range of compounds simultane-
ously. The synergistic effects of engineered biochars on
microbial degradation are further supported by their
ability to modify soil properties. Zhou et al. (2023) used
PSB-biochar combination to remediate Pb and reported
71.30% efficacy. It was suggested that Pb remediation was
done through the action of strain combined with biochar
which regulated the microenvironment of the biochar
surface, enhanced phosphate release, and promoted sta-
ble pyroxite generation.

Biochar amendment has been shown to increase soil
pH, which can create more favorable conditions for cer-
tain microbial populations (Xu et al. 2021). Additionally,
the improved water holding capacity (WHC) and nutri-
ent retention properties of engineered biochars-amended
soils can support sustained microbial activity, leading to
more effective long-term degradation of contaminants
(Egamberdieva et al. 2021). Engineered biochars can also
enhance the interactions between microorganisms and
root exudates in the rhizosphere, which plays a crucial
role in the degradation of soil contaminants. Biochar pro-
vides electron transfer support between microorganisms
and exudates, regulates the secretion of enzymes to resist
oxidative stress stimulated by heavy metal(loid)s, and
promotes the activity of soil enzymes (Fan et al. 2023).
These interactions can lead to synergistic effects in the
degradation of contaminants, as plant-microbe-biochar
interactions create a more efficient and resilient remedia-
tion system.

7.2.3 Electron donor/acceptor provision

Engineered biochars possess enhanced electron stor-
age capacity (ESC), allowing them to serve as both elec-
tron donors and acceptors in redox reactions (Xin et al.
2023). This property is particularly important in anaero-
bic environments, where biochar can act as an alternative
electron acceptor, suppressing methanogenesis and pro-
moting the oxidation of organic pollutants. For instance,
air-oxidized biochar has been shown to support anaero-
bic oxidation of organic substrates, outcompeting meth-
anogens and reducing methane production (Xin et al.
2023). Souza et al. (2024) used MnO-impregnated sug-
arcane bagasse for the removal of 2,4-dichlorophenoxy-
acetic acid and reported 57.19 mg g~! adsorption due to
the action of hydrogen bonding. Zhao et al. (2022a, b)
used CuO-biochar for peroxydisulfate removal from soil
and reported that the pollutant was removed through
the formation of surface-bonding active complexes
via an outer-sphere interaction between CuO-biochar
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contaminant as well as the continuous generation of 'O,
through the cycling of the Cu(I)/Cu(ll) redox couple.
Engineered biochars can also be designed to generate
reactive oxygen species (ROS) upon exposure to light,
which can contribute to the degradation of organic pol-
lutants (Wan et al. 2021). These ROS can rapidly degrade
organic pollutants through various oxidation mecha-
nisms. The activation of persulfate by biochar-supported
catalysts represents another mechanism for pollutant
degradation. Tao et al. (2022) reported that application of
wood chips biochar coated with Sphingobium yanoikuyae
B1 effectively removed naphthalene, phenanthrene, and
pyrene. The suggested mechanisms proposed for this was
that extracellular OH™ was produced through a Fenton-
like reaction involved siderophore, H,O,, and Fe ions,
which significantly enhanced pollutants removal. Tian
et al. (2020) reported that Ferrate biochar removed sul-
famethoxazole effectively through the action of inter-
mediate Fe species during the oxidation process. This
approach shows high selectivity towards electron-rich
pollutants and effectively inhibits the formation of toxic
byproducts (Guo et al. 2020).

7.3 Reduction of contaminant phytotoxicity

Engineered biochars reduce contaminants phytotoxicity
through their immobilization or decreasing their bio-
availability to plants (Guo et al. 2020; Akhil et al. 2021; Yu
et al. 2019). For instance, engineered biochars can signifi-
cantly alleviate cadmium damage to plants by reducing
its uptake and migration in the soil-plant system (Jiang
et al. 2022). This is accomplished through the alleviation
of phytotoxicity, increased support for plant vigor, and
stimulation of plant defense mechanisms against pollut-
ants (Guo et al. 2020; Wang et al. 2020).

7.3.1 Alleviation of phytotoxic effects

The mechanisms by which engineered biochars allevi-
ate metal phytotoxicity include surface complexation,
electrostatic attraction, ion exchange, adsorption, and
co-precipitation. For instance, acid-modified biochar
effectively reduces soil pH and CEC, which can help
in immobilization of heavy metals (Pan et al. 2022).
In another study, ZnCl, and thiourea co-modified
biochar was used for the removal of quinclorac and
reported an adsorption capacity of 235.9 mg g~* along
with plant growth promotion due to less phytotoxic-
ity in Tobacco plants (Ouyang et al. 2024). Similarly,
Rafique et al. (2022) reported that Cr toxicity was alle-
viated after the application of polymer-modified bio-
char in wheat. The shoot length was increased up to
150%, while dry biomass was increased by 250%. Simi-
larly, Dai et al. (2022) used magnetic Enteromorpha
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prolifera biochar for the alleviation of Cr phytotoxic-
ity and reported that Cr uptake in barley plant was
reduced up to 53.22%. Naeem et al. (2022) used FeO
nanoparticles doped biochar for reducing metals toxic-
ity in tomato. It was reported that As, Cr, Pb, and Cd
availability in soil was reduced up to 78%, 58%, 46%,
and 50%, thereby reduceding phytotoxicity chances to
tomato plants. Similarly, Naeem et al. (2024) also used
silicon-nanoparticles loaded biochar for As immobili-
zation in soil during Barley production. It was reported
that up to 71% reduced As movement was recorded
in barley shoots, due to which, 94% higher yield was
achieved. Wen et al. (2021) reported up to 60% increase
in rice grain yield through Fe-modified biochar appli-
cation in As, Cd and Pb contaminated soil, while
Kang et al. (2024) reported that Cd and Zn uptake by
foxtail millet decreased by 96.44% and 32.08% due to
KMnO,-hematite modified biochar application. A sum-
mary of such studies with specific mechanisms is given
in (Table 4).

7.3.2 Retrieval of plant vigor

The application of engineered biochars improve retrieval
of plant vigor in soils polluted with metals and organic
contaminants. This adjustment in the soil environment
not only reduces the metal’s mobility and availability but
also enhances the overall soil health through synthesiz-
ing a more favorable environment for plant growth. As
a result, plants grown in engineered biochars amended
soils often exhibit improved growth, increased biomass,
and reduced metal accumulation in their tissues (Zhang
et al. 2021). For example, the application of Fe-modified
biochar improved the wheat crop growth and productiv-
ity. It was reported that dry matter production of roots,
shoots, husk and grains were enhanced by 148.2%, 53.2%,
64.2% and 148%, respectively. It was noted that Cd lev-
els were decreased in roots, shoots, husk, and grains by
23.7%, 44.5%, 33.2%, and 76.3%, respectively. The reason
behind the improvements came out as soil enzymes mod-
ulation and increased nutrients availability e.g., soil ure-
ase, CAT and acid phosphatase activities were enhanced
by 48.4%, 74.4% and 117.3%, respectively. Similarly, the
soil nutrients availability e.g., N, P, K, and Fe to plants
increased up to 22%, 25%, 7.3%, and 13.3%, respectively
(Algethami et al. 2023). Han et al. (2023) reported that
application of phosphorus-modified biochar to lettuce
crop caused significant reduction in Pb and Cd uptake
to lettuce plants along with improvements in lettuce
productivity. It was reported that Lettuce biomass pro-
duction was increased by 53.3%, while Pb and Cd concen-
trations were reduced by 56.79% and 44.56%, respectively.
Ajmal et al. (2023) used magnetite nano-rods-modified
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biochar for Pb mobility and its transfer to soil and rice. It
was reported that the application of magnetite nano-rods
modified biochar reduced Pb toxicity in roots and shoots
by 48.6% and 60.2%, respectively. It was noted that mag-
netite nano-rods modified biochar application to crop
increased plant physiological attributes i.e., photosyn-
thetic rate increased by 65.9%, while stomatal conduct-
ance by 138.7% due to chlorophyll contents increased up
to 71.5%.

7.3.3 Stimulation of plant defense mechanisms

The application of engineered biochars signifi-
cantly improves the plant tolerance to metal stress by
strengthening the plant’s antioxidant defense system
e.g., upregulation of genes, increased activity of the gly-
oxalate system, and antioxidant enzymes (Zhou et al.
2023). This enhanced antioxidant capacity protects
membrane lipids from oxidative stress caused by heavy
metals. Additionally, engineered biochars can increase
the expression of genes related to proline metabolism,
such as P5CR and PRP5, which helps in maintain-
ing osmotic balance and protecting cellular structures
under metal stress (Zhou et al. 2023). Furthermore,
engineered biochars also play a crucial role in improv-
ing photosynthetic efficiency in plants exposed to metal
stress. By increasing the expression of Rubisco-S and
Rubisco-L genes, they also help maintain higher lev-
els of photosynthetic pigments and protect the photo-
synthetic apparatus (Zhou et al. 2023). This protective
effect minimizes the negative impact of toxic metals on
leaf function and overall plant growth. The immobiliza-
tion of heavy metals in soil is another key mechanism
through which engineered biochars alleviate phyto-
toxicity. They also effectively reduce the bioavailabil-
ity of metals through various processes, including ion
exchange, precipitation, electrostatic attraction, and
complexation (Islam et al. 2021; Zhang et al. 2021). Raz-
zaq et al. (2022) used nanoscale zerovalent-Fe-enriched
biochar for Cd removal in maize contaminated soil.
They reported enhanced maize growth (57%), chloro-
phyll contents (65%), intracellular permeability (61%),
and plant biomass production (76%) through reduc-
ing Cd uptake through regulating Cd homeostasis in
soil by 92%. The plant defense against Cd toxicity was
regulated by 11.4% higher catalase, 10.7% SOD, and
ascorbate peroxidase activity up to 31% in nanoscale
zerovalent-Fe-enriched biochar. Irshad et al. (2022)
used goethite-modified biochar to reduce As toxicity in
rice crop. This treatment restricted the As movement to
plants by 174% through promoting soil enzyme activi-
ties e.g., peroxidase (POD) and catalase (CAT) by 90%
and 40%, respectively. Huang et al. (2023) also reported
that ammonium polyphosphate modified biochar also
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reduced 2.57-fold Cd contents in soybean grains. Ghas-
semi-Golezani and Farhangi-Abriz (2023) reported that
chemically modified biochar application in mint plants
reduced Zn, Fe, Mg, and Ca concentrations in plants
through the biochar addition triggered-activation of
reduced pollutant entry in plant root cells via blocking
apoplastic pathways. Biochar treatment increased the
root cells viability and reduced fluoride (F), Cd con-
tents, and oxidative damage.

7.4 Reduction of organic contaminant mobility
Engineered biochars reduce organic contaminant’s
mobility through enhanced adsorption mechanisms due
to their higher surface area, improved pore structure,
and modified surface chemistry (Akhil et al. 2021; Pan-
war and Pawar 2022). The primary mechanisms include
pore-filling, partition, hydrophobic effects, H-bonding,
and electrostatic attraction, and promotion of microbial
activity (Guo et al. 2020).

7.4.1 Adsorption of organic pollutants
Engineered biochars exhibit enhanced adsorption capac-
ity for organic contaminants due to their improved
physicochemical properties, enhanced surface areas
of more than 400 cm® g™! to 1215 m? g™! (Grimm et al.
2024) provides more adsorption sites for organic con-
taminants, enhancing the overall removal efficiency. The
adsorption of organic contaminants by engineered bio-
chars is influenced by several factors, including the bio-
char’s surface chemistry, pore structure, and the nature
of the contaminant. Nonpolar organic compounds are
primarily adsorbed through pore-filling, partition, and
hydrophobic effects, while polar organic compounds are
adsorbed via H-bonding, electrostatic attraction, specific
interaction, and surface precipitation (Guo et al. 2020).
The high aromaticity and porosity of engineered biochars
are essential for the sorption of organic contaminants
(Braghiroli et al. 2018). The effectiveness of engineered
biochars in reducing organic contaminant mobility is
demonstrated by their high adsorption capacities. For
example, activated biochar derived from hardwood
spent mushroom substrate showed a maximum adsorp-
tion capacity of 236.8 mg g~! for acetaminophen (Grimm
et al. 2024). Similarly, reed-based biochar activated with
KOH exhibited a significant improvement in tetracycline
adsorption capacity, increasing by more than 20 times
compared to non-activated biochar (Zhao et al. 2020).
The adsorption process of organic contaminants
on engineered biochars typically follows pseudo-sec-
ond-order kinetics and can be well-represented by
models such as the Freundlich isotherm (Zhao et al.
2020). This indicates that the adsorption is primarily
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driven by chemical interactions between the contami-
nant and the biochar surface. Engineered biochars
also demonstrate the ability to adsorb a wide range
of organic contaminants simultaneously. A study on
GO-functionalized biochars showed removal rates of
39.9-98.3% for six different organic micro-pollutants in
water and treated wastewater (Regkouzas et al. 2023).
This versatility makes engineered biochars particularly
useful for addressing complex contamination scenarios.
The effectiveness of engineered biochars in reducing
organic contaminant mobility can be further enhanced
by tailoring the activation process to target specific
pollutants. For instance, the presence of oxygen-con-
taining functional groups on the biochar surface can
be optimized to improve the adsorption of certain
organic contaminants (Xiong and Bi 2023). Chen et al.
(2023a, b) reported > 95% removal efficacy of malachite
green, bisphenol A, methylene blue, sulfamethoxa-
zole, tetracycline, and thiacloprid from contaminated
environments through MnFe,O, modified biochar.
It was revealed that contaminants were adsorbed on
biochar doping sites, which were created after biochar
treatment with Peroxymonosulfate activation using
MnFe,O,. Song et al. (2022) used H;PO,-modified
TiO, nanoparticles anchored on biochar for dyes
removal and reported similar results. Similarly, Liang
et al. (2022) used Fe—~Mn-modified biochar for atra-
zine removal in soil and reported 79.5% efficacy due to
the formation of oxygen functional groups (OH, C=C,
and C=0) and Fe;0,, Mn;0,, and FeMnO; on modi-
fied biochar which facilitated that enhanced atrazine
removal.

7.4.2 Hydrophobic interaction

Engineered hydrophobic biochars demonstrate a higher
affinity for organic pollutants. The addition of engi-
neered biochars significantly increased the adsorption of
organic pollutants through the hydrophobic interactions,
i.e., hydrophobic surfaces of engineered biochars attract
and retain organic contaminants, effectively removing
them from the soil solution (Islam et al. 2021). Similarly,
the increased porosity and specific surface area of engi-
neered biochars allow for the physical entrapment of
organic pollutants within their pore structures (Guo et al.
2020; Islam et al. 2021). Partitioning is another mecha-
nism, while weak intermolecular forces contribute to the
adsorption of organic pollutants onto the hydrophobic
biochar surfaces (Islam et al. 2021). Qiu et al. (2022) used
biochar-based asymmetric membrane for mixed organic
pollutants remediation through hydrophobic interaction
and reported 78.85% removal efficacy. Le and Hwang
(2023) reported that alkali-activated rice husk biochar
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usage in soil polluted with multiple organic contaminants
through hydrophobicity activated sorption mechanism.
Similarly, Fe-MnO modified biochar was used by Gao
et al. (2021) for phthalate pollution remediation in wheat
cultivated soil and reported its effectiveness for phthalate
entry into the wheat plant along with improving its grain
yield by 208.7%. Gao et al. (2023) used carboxymethyl
cellulose-modified FeO-biochar for PAHs removal form
soil and reported up to 100% pyrene removal, while total
pollutants removal rate was achieved up to 61.1%.

7.5 Facilitation of phytoremediation processes
Engineered biochars can effectively reduce the bioavail-
ability of heavy metals and organic pollutants in soil,
thereby decreasing their uptake by plants. For instance,
UV-modified biochars have shown significant reductions
in CaCl,-extractable Cd and plant Cd uptake (Zhang
et al. 2021). Additionally, engineered biochars can
enhance soil pH and electrical conductivity, promotion of
phytoextraction, phytostabilization, and enhanced roots
growth (Zhang et al. 2021).

7.5.1 Promotion of phytoextraction

Phytoextraction is a key mechanism of phytoremedia-
tion in which plants uptake contaminants from the soil
and accumulate them in above and belowground bio-
mass. Engineered biochars facilitate this process by
improving contaminant bioavailability, enhancing plant
growth, and modulating soil microbial activity to opti-
mize heavy metal and organic pollutants uptake (Mur-
taza et al. 2024). Moreover, through modulation of soil
pH and redox conditions, biochars also influence metal
speciation, such as FeO-enriched biochars facilitated
conversion of As into its more mobile form As(III), i.e.,
up to 7.72 mg g~' As(IIl), thereby improving its uptake
and subsequent removal from contaminated soil (Xu
et al. 2021). Similar results were reported by Zhang et al.
(2021) when they used UV-modified biochar for Cd
remediation in Coriandrum sativum L. cultivated soil.
They reported up to 51.4% Cd remediation efficacy dur-
ing the plant life cycle. Similarly, phosphorus-loaded bio-
char was used by Serrano et al. (2024) and they reported
that up to 11.6% of the metals (Cd, Cr, and Pb) were
extracted in the plant tissues after biochar application
than respective control.

Additionally, biochars doped with nitrogen and phos-
phorus compounds supply essential nutrients, promoting
root elongation and increasing root surface contact with
contaminants, thereby facilitating additional capacity of
pollutants translocation from soil to plant tissues (Zhang
et al. 2021). Ding et al. (2022) also reported that phospho-
rus loaded biochar application enhanced phytoextraction
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by restricting Cd, Pb, Zn, and Cu entry in tomato fruit
and soil by 58% and 72%, respectively. Some biochars are
infused with plant growth-promoting bacteria (PGPB)
or mycorrhizal fungi, which enhance nutrient acquisi-
tion and stress resilience, enabling plants to accumulate
higher contaminant loads. Moreover, biochar-mediated
changes in soil microbial diversity further enhance con-
taminant breakdown and mobilization. Moreover, func-
tionalized biochars can host microbial consortia capable
of degrading organic pollutants or mobilizing metals
through biosurfactant production, improving phytoex-
traction efficiency. Shi et al. (2023) reported that bio-
char loaded with bacteria (Burkholderia contaminans
ZCC) enhanced the potential of Cd and Zn accumula-
tion in the plant Sedum alfredii by 230.13% and 381.27%,
respectively. Song et al. (2022) reported that biochar-
immobilized Bacillus sp. KSB7 application effectively
immobilized the PAHs and metals (Zn, Pb, Cr, Cu) by
94.17%, 58.46%, 53.42%, 84.94%, and 83.15% in polluted
soil of coking plant. PGPR-augmented biochar also reme-
diated Cd stress on sunflowers (Helianthus annuus 1.) in
saline-alkali soil. It was reported that biochar application
enhanced soil enzyme activities which in turn reduced
soil EC which reduced Cd in plant by 92.5%.

7.5.2 Support for phytostabilization

Engineered biochars facilitate phytostabilization through
enhancing soil structure, adsorbing and stabilizing con-
taminants, modulating microbial communities, and
improving plant stress tolerance (Zhang et al. 2021).
Naveed et al. (2021) reported that co-composted bio-
char helped in the stabilization of Cr in Brassica grown
on Cr-contaminated soil. It was reported that brassica
plant growth was enhanced i.e., plant height (75.3%),
root length (151.0%), shoot dry weight (139.4%), root dry
weight (158.5%), and photosynthetic rate (151.0%) along
with reduced Cr accumulation in grain, shoot, and roots
by 4.12, 2.27, and 2.17 folds, while enhanced Cr accu-
mulation in soil by 1.52-fold. Zhang et al. (2021) studied
the effects of applying Enterobacter sp. YG-14 combined
with sludge biochar on Robinia pseudoacacia L. growth
in Cd contaminated soils. It was reported that Cd pol-
lution was reduced by 69.01%, while phytostabiliza-
tion capacity of the system was recorded as 81.42% and
72.73% reduction in Cd movement from to root—shoot
system. Similarly, engineered biochars enriched with
minerals, i.e., Ca, Mg, and Fe promote the formation of
stable metal precipitates, such as carbonates and oxides,
further reducing contaminant mobility. Chelator-mod-
ified biochar was used in a field experiment to evaluate
the stabilization effects by different plants (Achnatherum
splendens, Puccinellia chinampoensis, and Chinese
small iris). It was reported that up to 49.8% stabilization
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effect was recorded for As, Cu, Pb, and Zn after biochar
application (Liu et al. 2022). Zanganeh et al. (2022) also
reported similar results after use of cyanobacteria and
biochar inoculation with up to 90% phytostabilization
efficiency of purslane (Portulaca oleracea L.). Similarly,
engineered biochars inoculation with beneficial micro-
bial consortia capable of producing extracellular poly-
meric substances (EPS) further stabilize heavy metals by
forming insoluble complexes in the rhizosphere. Addi-
tionally, biochars doped with phosphate-solubilizing
bacteria (PSB) facilitate the precipitation of toxic metals
as metal-phosphate complexes, reducing their bioavail-
ability. Biochar synergized with Bacillus cereus PSB-2
was used to remediate Pb and Cd. It was reported that Pb
and Cd extractable forms were decreased up to 65.06 and
71.26%, indicating their stabilization in soil (Zhang et al.
2025). Anbuganesan et al. (2024) reported that biochar
augmented with PGPR Bacillus pseudomycoides strain
ARNY7 during maize growth in Ni and Zn contaminated
soil maize growth, physiology and yield after PGPR aug-
mented biochar was applied. It was recorded that up to
58% Ni and Zn concentrations were reduced in plant tis-
sues compared to control.

7.5.3 Enhanced root growth and function
Engineered biochars facilitate roots growth and their
functioning through augmenting soil properties for their
growth i.e., reducing bulk density, loosening the soil
matrix and allowing roots to penetrate deeper and spread
more extensively (Naveed et al. 2021). The enhanced
porosity also improves oxygen diffusion in the rhizos-
phere, which is essential for root respiration and micro-
bial activity. Han et al. (2023) reported that enhanced soil
porosity and WHC due to P-modified biochar addition,
which promoted roots growth and functions in Pb and
Cd contaminated soils. Additionally, biochars enriched
with essential macronutrients such as N, P, and K, as
well as micronutrients like Fe, Zn, and Mg, enhance root
growth by providing readily available nutrients that sup-
port cell division, elongation, and overall plant vigor
(Zhang et al. 2021), which mitigates nutrient deficien-
cies commonly found in contaminated or degraded soils,
ensuring that plants establish robust root systems capable
of sustaining high biomass for phytoremediation. Wang
et al. (2023a, b, ¢) reported that P-modified biochar addi-
tion to Cd contaminated soil under wheat production. It
was reported that P-modified biochar addition increased
the roots growth and diameter (0.338 mm), which pro-
moted higher Cd remediation through EPS secretion and
Cd stabilization in soil.

Additionally, engineered biochars enhance root exu-
dation, which stimulate the production of organic acids,
chelating agents, and signaling molecules that mobilize
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metals, degrade organic pollutants, or recruit beneficial
microbes (Naveed et al. 2021). El-Desouki et al. (2025)
reported that P-laden biochar addition in aluminum
contaminated soil under Pakchoi (Brassica chinensis L.)
and reported up to 83.88% reduced aluminum toxicity,
which was attributed to soil enzymes activities enhance-
ment due to biochar addition and root exudates secre-
tion. Thus, through integration of engineered biochars
with phytoremediation strategies, contaminated sites can
be restored through an efficient way, making this a valu-
able tool for sustainable soil remediation and rhizosphere
engineering.

8 Challenges and opportunities in the tripartite
nexus

The application of engineered biochar in the tripartite
nexus of crop production, crop protection, and envi-
ronmental remediation presents a unique set of chal-
lenges and opportunities (Table 6). While biochar offers
immense potential to address multiple agricultural and
environmental issues, its implementation is often hin-
dered by technical, economic, and practical constraints.
At the same time, the synergistic effects of biochar, inno-
vative applications, and its role in climate change miti-
gation provide significant opportunities for sustainable
development.

8.1 Challenges

8.1.1 Balancing multiple objectives

One of the primary challenges in using biochar for the
tripartite nexus is achieving synergy across diverse objec-
tives of enhancing crop productivity, suppressing pests
and pathogens, and remediating contaminated soils
(Table 6). Biochar must simultaneously enhance crop
productivity, protect crops from pests and diseases, and
remediate contaminated soils. Biochar’s efficacy in these
roles depends on competing physicochemical proper-
ties, necessitating careful trade-off management. How-
ever, the properties of biochar that benefit one objective
may not always align with those required for another.
For example, highly adsorptive or metal-impregnated
biochars optimized for heavy metal immobilization may
limit nutrient bioavailability, adversely affecting crop
growth (Lwin et al. 2018). Similarly, optimizing biochar
for crop production may prioritize nutrient availabil-
ity, while remediation might require immobilization of
contaminants, potentially limiting nutrient accessibility.
While biochar enhances nutrient retention (e.g., NH,",
PO,*) through cation exchange and surface adsorption
(Dey et al. 2023), its efficacy in immobilizing contami-
nants (e.g., heavy metals, organic pollutants) depends
on feedstock and pyrolysis conditions. For instance,
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high-temperature biochars (> 600 °C) exhibit greater aro-
maticity and surface area, favoring contaminant sorption,
but may reduce nutrient availability due to decreased
functional groups (e.g., -COOH, -OH). As recently
reviewed by Wang et al. (2020) that biochars pyrolyzed
at 400-500 °C retained ~60-80% of cationic nutri-
ents while immobilizing>50% of Cd/Pb, whereas 700 °C
biochars sequestered >90% of metals but retained <40%
of NH,". This necessitates a tailored approach to biochar
engineering, where specific modifications are made to
address the unique needs of each application and prevail-
ing site conditions. Balancing these objectives requires a
deep understanding of the interactions between biochar,
soil, plants, and microorganisms. The amount of biochar
required to effectively remediate a contaminated site
might differ from what is optimal for crop production
or protection. High biochar concentrations could immo-
bilize contaminants effectively but might also alter soil
pH or nutrient dynamics, leading to potential nutrient
deficiencies or imbalances (Hossain et al. 2020). Further-
more, the effects of biochar in the rhizosphere are not
uniform over time or space. For example, biochar might
initially enhance nutrient availability but later reduce it
as its sorption sites become saturated with contaminants
or nutrients (Ahmad et al. 2017). This variability makes
it challenging to design a one-size-fits-all approach for
the tripartite nexus. Furthermore, biochar stability varies
significantly by soil type. In sandy or acidic soils, biochar
may degrade faster or leach metals, while in alkaline or
clay-rich soils, it may persist longer but alter microbial
composition (Hossain et al. 2020). These soil-specific
responses complicate standardization and highlight the
need for long-term field trials to evaluate biochar per-
sistence and effectiveness under real-world conditions
(Wang et al. 2021a, b, c). To mitigate conflicts between
functions, systems-based solutions such as the co-appli-
cation of multiple engineered biochars (e.g., microbial-
enhanced +adsorptive biochar) or composite biochars
(e.g., nanocomposite ISR biochars) can be used. These
combinations can align agronomic and environmen-
tal goals more effectively than single-function biochars.
Finally, a practical decision-making framework, such as
that presented in Fig. 8 and Table 6, can aid in select-
ing suitable biochar types for specific objectives and site
conditions.

8.1.2 Complexity of rhizosphere interactions

The introduction of biochar into the rhizosphere can
have unpredictable effects on microbial communities. For
instance, while biochar can enhance microbial activity in
some soils, it may suppress beneficial microbes in others
due to changes in pH or nutrient availability (Palansooriya
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Fig. 8 Purpose-specific engineering and application of biochar: a practical guide for crop production, protection, and soil remediation

et al. 2019). While some microbes may thrive, others could
be inhibited, leading to changes in nutrient cycling, dis-
ease suppression, or contaminant degradation that are
difficult to predict and manage (Table 6). Understand-
ing these complex interactions is critical for optimizing
biochar applications, but it remains a major research gap.
Moreover, the presence of mixed contaminants in soils,
such as heavy metals, organic pollutants, and salts, adds
complexity to remediation efforts (Chirakkara et al. 2016).
Biochar’s ability to simultaneously immobilize multiple
contaminants while supporting plant growth and protec-
tion may be limited by these complex interactions.

8.1.3 Economic constraints, policy implications
and socio-economic factors

Producing and applying biochar at scales large enough
to impact all three goals can be cost-prohibitive (Pierson,
et al. 2024). As shown in Table S1, the cost of biochar pro-
duction can be high, particularly for engineered biochar
with specific properties (e.g., nutrient-enriched or nano-
composite biochar). While biochar’s economic viability
is often debated (Campion et al. 2023; Meyer et al. 2011),
our study focuses on the functional potential of engi-
neered biochar in the rhizosphere for tripartite benefits
(crop production, protection, and remediation). Existing
analyses highlight that profitability depends on highly vari-
able factors (e.g., feedstock, scale, and local policy frame-
works), making generalized cost—benefit assessments

challenging. For instance, Campion et al. (2023) note that
private investment is hindered by case-specific uncer-
tainties, while Meyer et al. (2011) emphasizes the lack of
standardized profitability comparisons across technolo-
gies. However, these broader economic considerations,
though critical for large-scale adoption, are secondary to
our goal of demonstrating engineered biochar’s agronomic
and environmental efficacy. Therefore, the cost and ben-
efit ratio of engineered biochar usage is the least discussed
here due to several earlier works such as (Campion et al.
2023). Additionally, the scalability of biochar applications
is often limited by logistical challenges, such as the avail-
ability of feedstock, transportation costs, and the need for
specialized equipment (Pierson et al. 2024). Strategies such
as co-utilization of agricultural waste, low-cost biochar
engineering techniques, and public—private partnerships
could help scale adoption sustainably. Farmers and stake-
holders may also lack the knowledge or resources to imple-
ment biochar-based solutions effectively, further hindering
their adoption. Policy support is thus critical to promote
biochar integration into climate-smart agriculture and cir-
cular bioeconomy frameworks. For example, biochar can
be integrated into carbon credit schemes or incentivized
through subsidies for sustainable soil amendments. How-
ever, clear regulatory guidelines are often lacking, particu-
larly concerning biochar classification, quality assurance,
and application rates, which hinders farmer confidence
and market growth. Furthermore, the economic benefits



Mustafa et al. Biochar (2026) 8:3

of using biochar for crop production and protection may
not immediately offset the costs associated with reme-
diation, particularly in low-value agricultural lands. It has
been estimated that biochar production cost ranges from
448 to 1847 Mg~ but can be reduced if a circular bioec-
onomy has been set up. Moreover, to cure the production
costs, biochar production and use should be at the nearest
to avoid its transportation costs. The nearness of the place
with ample supply of biomass for biochars production is
also a plus (Nematian et al. 2021). Furthermore, consider-
ing its zero global warming potential and reducing green-
house gas emissions up to 54%, it could earn economic
return through carbon credits (Saharudin et al. 2024).
Furthermore, increase in yield, decreased input costs in
terms of fertilizers, pesticides, and water also yield good
economic returns. But the long-term impact of biochar on
soil health and its effectiveness in maintaining the balance
between crop production, protection, and remediation
under long-term studies are needed to assess the sustain-
ability of biochar-based interventions.

8.2 Opportunities

8.2.1 Synergistic effects

Despite these challenges, biochar offers synergistic
effects that can simultaneously address multiple objec-
tives in the tripartite nexus (Table S1). Biochar can be
used as part of an integrated management strategy that
simultaneously addresses crop production, protec-
tion, and remediation. For example, biochar’s ability to
improve soil structure and water retention can benefit all
three areas by enhancing root growth, reducing erosion,
and facilitating contaminant immobilization (Kamali
et al. 2022; Qian et al. 2023). The use of biochar to cre-
ate favorable conditions for beneficial microbes offers
the potential to simultaneously improve crop productiv-
ity, protect against soil-borne diseases, and enhance the
degradation of organic contaminants (Abid et al. 2023;
Shanmugaraj et al. 2024). Leveraging these microbial
synergies can lead to more effective and efficient man-
agement practices. Moreover, advances in biochar pro-
duction techniques could lead to the development of
biochars with tailored properties that address multiple
objectives simultaneously. For example, biochars engi-
neered with specific functional groups could enhance
nutrient availability for crops while immobilizing heavy
metals and promoting microbial degradation of organic
pollutants (Xiang et al. 2022).

8.2.2 Innovative applications

The development of innovative applications for biochar
further expands its potential in the tripartite nexus. The
use of precision agriculture technologies, such as tar-
geted biochar application and real-time monitoring of
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soil conditions (Fan et al. 2022), offers opportunities
to optimize biochar use for achieving multiple goals.
Developing biochar blends or composites with other
soil amendments, such as compost, lime, or fertilizers,
could enhance their multifunctionality. These compos-
ites could be designed to simultaneously improve soil
fertility, reduce pathogen loads, and immobilize contami-
nants, offering a more holistic approach to soil manage-
ment. Similarly, bioprimed biochar, which is enriched
with beneficial microbes, can improve crop productivity
and protection by enhancing symbiotic relationships and
inducing systemic resistance in plants (Singh et al. 2015).
These innovative applications demonstrate the potential
for biochar to address complex agricultural and environ-
mental challenges.

8.2.3 Climate change mitigation

The use of biochar for soil improvement also contributes
to carbon sequestration, offering an additional benefit
of mitigating climate change (Mekuria and Noble 2013).
This dual role of biochar in both improving soil health
and sequestering carbon provides an opportunity to align
agricultural practices with broader environmental goals
(Wang et al. 2023a, b, c). The stable carbon structure of
biochar makes it resistant to decomposition, allowing it
to store carbon for hundreds to thousands of years (Spo-
kas 2010; Chen et al. 2019). Biochar’s ability to improve
soil water retention and nutrient availability can enhance
the resilience of crops to climate-induced stresses, such
as drought and extreme temperatures (Murtaza et al.
2025). This resilience is particularly important in contam-
inated sites, where stress factors are often exacerbated.
Additionally, biochar can reduce emissions of nitrous
oxide (N,0) and methane (CH,) from agricultural soils,
further contributing to climate change mitigation (Kam-
mann et al. 2017). These climate benefits, combined with
the potential for carbon credits, provide economic incen-
tives for biochar adoption.

9 Practical guides to biochar selection

Based on the discussions above, a practical guide for
selecting, engineering, and applying biochar in crop pro-
duction, crop protection, and remediation is presented
(Fig. 8). This section emphasizes the need for a tailored,
context-specific approach, as applying a one-size-fits-all
biochar often leads to suboptimal or even counterpro-
ductive outcomes.

Despite the broad recognition of biochar’s benefits,
applying a single biochar formulation across different
agricultural and environmental contexts often fails to
optimize its potential. The amount, type, and modifica-
tion of biochar must be carefully designed for specific
functional goals, as trade-offs exist between maximizing
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nutrient availability for crops, suppressing pathogens,
and remediating contaminated soils. For example, crop
production requires biochar that enhances nutrient avail-
ability (e.g., nutrient-enriched or microbial-activating
biochar), while remediation often demands biochar with
strong contaminant immobilization properties, which
may reduce nutrient bioavailability (Li et al. 2019; Beesley
et al. 2011). Nutrient-enriched biochar may be unsuitable
for remediation sites, where nutrient solubilization could
increase contaminant mobility rather than reduce it. Sim-
ilarly, water-retaining biochar is essential in arid regions
but may contribute to waterlogging in high-rainfall areas,
adversely affecting plant growth (Li et al. 2021a, b) Its
applications should thus be avoided in poorly drained
or flood-prone regions, as it may exacerbate waterlog-
ging and root diseases. Additionally, antimicrobial bio-
char designed for crop protection against pathogens may
also reduce beneficial microbial communities, leading
to unintended soil fertility issues (Tsang and Ok 2022).
Thus, one should be cautious to use antimicrobial bio-
char in soils where beneficial microbial diversity is cru-
cial for nutrient cycling or symbiotic root interactions, as
it may suppress both harmful and helpful organisms.

Such trade-offs must be carefully managed. For exam-
ple, while metal-rich biochars are effective in immo-
bilizing contaminants, they may also limit nutrient
bioavailability. Similarly, disease-suppressing biochars
may disrupt plant-beneficial microbial populations.
Integrating different biochar types such as combining
adsorptive with microbial biochar can help balance com-
peting goals. Therefore, a tailored approach is required,
considering biochar properties, application rates, soil
conditions, and intended outcomes for long-term sus-
tainability and effectiveness. In conclusion, the selection
of purpose-specific biochar is essential for achieving
optimal outcomes in crop production, crop protection,
and environmental remediation. The key to successful
implementation lies in matching biochar properties with
specific agro-environmental goals nutrient supply, dis-
ease resistance, or pollutant immobilization while con-
sidering local soil characteristics, climate, crop type, and
management constraints. Figure 8 serves as a visual tool
for guiding biochar selection and application in a goal-
oriented and site-specific manner.

10 Conclusion

Engineered biochar has emerged as a multifunctional,
purpose-specific amendment that plays a transforma-
tive role in rhizosphere engineering by enhancing
crop production, crop protection, and environmental
remediation. Unlike conventional biochar, engineered
biochars are tailored through nutrient enrichment,
microbial priming, nanoparticle incorporation, or surface
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activation to optimize specific soil-plant-microbe inter-
actions. In crop production, engineered biochar enhances
nutrient availability, water retention, and microbial activ-
ity, leading to increased plant productivity. It stimulates
beneficial microbial communities, such as mycorrhi-
zal fungi and plant growth promoting rhizobacteria,
which improve nitrogen fixation, phosphorus solubili-
zation, and organic matter decomposition. The rhizo-
sphere engineering potential of nutrient-enriched and
microbial-activating biochars ensures that crops receive
sustained nutrient supply, optimizing plant health and
yield via multifaceted mechanisms. In crop protection,
biochar-based rhizosphere engineering suppresses soil-
borne pathogens, enhances plant immunity, and repels
pests. Antimicrobial biochars enriched with functional-
ized nanoparticles or natural plant defense compounds
create a rhizosphere that is less hospitable to pathogens.
Additionally, defense-elicitor biochars can activate plant
immune responses, reducing dependency on chemi-
cal pesticides. This approach reinforces plant resilience
against diseases while minimizing environmental risks.
In soil remediation, biochar-based rhizosphere engineer-
ing facilitates contaminant immobilization, microbial
degradation, and pH regulation. Contaminant-immobi-
lizing biochars effectively bind heavy metals and organic
pollutants, reducing their bioavailability. Additionally,
microbial enhancing biochars support degrading consor-
tia, which can accelerate the breakdown of contaminants
in polluted soils. This ensures the long-term restoration
of soil health and functionality.

This review consolidates current advances, illustrat-
ing how engineered biochar enhances nutrient avail-
ability, stimulates beneficial microbial communities,
suppresses pathogens, and immobilizes contaminants
through finely tuned rhizospheric mechanisms. How-
ever, one-size-fits-all applications remain ineffective due
to inherent trade-offs such as nutrient availability and
contaminant immobilization, and the strike between the
balance of harmful and beneficial soil microbes. These
complexities are further compounded by biochar’s vari-
able performance across soil types, temporal shifts in
effectiveness due to aging, and microbial adaptation in
the rhizosphere. Therefore, the widespread application
of biochar requires a nuanced, context-specific approach
rather than a universal prescription. Practical implemen-
tation must consider soil pH, texture, crop demand, local
environmental stressors, and socio-economic viability.
While the benefits of engineered biochar are well docu-
mented, yet, challenges remain, including: (i) the need for
long-term field studies across agroecological zones, (ii)
mechanistic insights into rhizosphere modulation, (iii)
economic and logistical barriers to large-scale adoption,
(iv) the development of policy frameworks to regulate
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and support engineered biochar applications, and (v)
the development of predictive models to match biochar
types with intended functions. Moving forward, a sys-
tems-based approach integrating biochar engineering
with precision agriculture, microbial biotechnology, and
climate-resilient cropping systems, alongside supportive
policy frameworks, will be critical to unlocking biochar’s
full potential. As agriculture faces mounting pressure
from climate change, resource limitations, and pollution,
engineered biochar offers a promising pathway to sus-
tainably manage soils, secure yields, and restore degraded
ecosystems.
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