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Abstract

As environmental pollution becomes an increasingly severe issue, the technology of enzyme immobilization on bio-
char has emerged as a promising solution for water and soil pollution remediation due to its efficiency, cost-effec-
tiveness, and environmental friendliness. This review systematically examines the preparation methods, adaptation
mechanisms, and applications of biochar-immobilized enzymes for pollutant removal. It focuses on the interaction
between enzymes and biochar carriers, the selection of immobilization techniques, and the stability of immobilized
enzymes. Biochar, as a carrier, offers advantages such as low cost, high specific surface area, and a variety of surface
functional groups, which can be further enhanced through modification techniques to optimize its compatibility
with enzymes. The review also discusses the strengths and weaknesses of various immobilization strategies, high-
lighting the high stability of covalent binding and the cost-effectiveness of adsorption methods. In the field of envi-
ronmental remediation, biochar-enzyme composites have demonstrated synergistic effects in efficiently degrading
organic pollutants, decoloring dyes, and remediating soil contaminants. While significant progress has been made
in laboratory studies, the large-scale application of biochar-immobilized enzymes still faces numerous challenges,
including raw material heterogeneity, enzyme deactivation, and ecological safety concerns. Future research should
focus on developing intelligent design platforms, optimizing biochar-enzyme compatibility, overcoming the limita-
tions of multifunctional synergistic remediation, and evaluating the long-term ecological impact. By integrating mul-
tiple technologies, biochar-immobilized enzymes hold great potential for widespread application in environmental
remediation, advancing green and low-carbon technologies.

Highlights

- Biochar surface functionalization and hierarchical pore engineering enable precision matching with enzyme
active sites.

- Synergistic adsorption-enzyme catalysis degrades pollutants, enhancing soil carbon sequestration and ecological
restoration.

-+ Modular systems and smart materials address scalability issues, such as enzyme loss and waste variability.
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1 Introduction

The accelerating pace of global industrialization has exac-
erbated environmental pollution, posing severe threats
to ecosystems and human health (Sabouni and Gomaa
2019). Organic pollutants in water, heavy metals, and
persistent soil contaminants require efficient and cost-
effective remediation technologies (Bharagava et al
2018). Conventional waste treatment methods, such as
landfilling and incineration, suffer from high costs, ineffi-
ciency, and secondary pollution risks (Zhang et al. 2019).
Consequently, developing remediation technologies that
balance efficacy, affordability, and environmental com-
patibility remains a critical global challenge.

Compared to traditional chemical catalysts, enzyme
catalysis exhibits distinctive advantages: high substrate
specificity, mild reaction conditions, and minimal sec-
ondary pollution (Mishra and Maiti 2019). However, free
enzymes exhibit limitations in practical applications,
such as poor stability and difficult recovery. Enzyme
immobilization technology addresses these constraints

by confining enzymes onto carrier surfaces or within
matrices, facilitating industrial-scale applications (Zhang
and Wang 2021). Moreover, immobilized enzymes can
be rapidly separated from the reaction system, thereby
minimizing or eliminating product-induced enzyme con-
tamination. This feature significantly enhances enzyme
recovery efficiency (Gao et al. 2018). Traditional car-
rier materials such as synthetic polymers, silica gels,
and metal-organic frameworks (MOFs) exhibit critical
limitations. These materials often incur high production
costs due to energy- and reagent-intensive manufacturing
processes, particularly for synthetic polymers. Addition-
ally, their poor biocompatibility can suppress enzymatic
activity or induce immune responses, as observed in
silica gel-based systems. Furthermore, synthetic carriers
pose environmental risks through microplastic release
or toxic byproduct generation during degradation. These
challenges highlight the urgent need to develop sustaina-
ble and eco-friendly alternatives (Rajeev et al. 2022; Wan
et al. 2020).
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Biochar, a carbon-rich material produced through
biomass pyrolysis, has gained increasing attention in
environmental remediation due to its low cost, renew-
ability, high surface area, and tunable surface chemistry
(Wan et al. 2020). Early studies focused on its adsorp-
tion capabilities for heavy metals and organic pol-
lutants (Tan et al. 2015). However, advancements in
modification techniques have expanded its applications
to catalysis, microbial support, and enzyme immobiliza-
tion (Franssen et al. 2013). Biochar feedstocks include
agricultural residues (straw and wood chips), organic
waste (manure and food scraps), and industrial byprod-
ucts (sewage sludge) (Aqdas and Hashmi 2023). By
optimizing pyrolysis temperatures and modification
methods, the pore structure, surface charge, and func-
tional groups of biochar can be tailored to meet specific
enzyme immobilization requirements (Bijoy et al. 2022).
Biochar-enzyme composites demonstrate multifaceted
synergistic effects in environmental remediation. Firstly,
the adsorption-catalysis synergy arises as the porous
structure of biochar concentrates pollutants, prolong-
ing enzyme-substrate interactions. Secondly, enhanced
enzyme stability is achieved through the confinement
effect of biochar, which shields enzymes from proteo-
lytic degradation while improving mechanical resilience
under extreme pH and high-temperature conditions.
Finally, these composites improve ecological functions
by increasing soil water retention capacity and providing
microbial habitats, thereby accelerating pollutant bio-
degradation (Zdarta et al. 2018, 2019). The application of
biochar-immobilized enzyme technology has expanded
from conventional water purification to soil remediation.
Despite the demonstrated advantages of biochar-enzyme
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composites in environmental remediation, their large-
scale implementation confronts three critical challenges:
(1) Performance variability stemming from composi-
tional heterogeneity in agricultural and forestry waste
feedstocks, which necessitates standardized pretreat-
ment protocols; (2) Operational enzyme leaching rates
requiring stabilization strategies like cross-linking agents
or nanoencapsulation techniques to mitigate inactivation
risks; and (3) Potential ecological impacts on soil micro-
bial diversity due to long-term retention of biochar-
immobilized enzymes, demanding systematic evaluation
through metagenomic analysis. Future research should
integrate multidisciplinary approaches to address these
limitations, such as applying machine learning for pre-
dicting pyrolysis parameters, developing multifunctional
composites (Fe;O,/TiO, hybrids) for smart catalysis and
recovery, and establishing circular economy models for
cost reduction.

According to data from Web of Science, publications
related to biochar-immobilized enzymes for environ-
mental remediation are still limited, with the majority
concentrated between 2017 and 2025 (Fig. 1). There
is significant potential for future research in this field.
This review summarizes the application of biochar-
immobilized enzymes in environmental remediation,
with a focus on the enzyme-biochar carrier interac-
tion mechanisms, the selection of immobilization tech-
niques, and their effectiveness in pollutant removal. It
integrates the latest research progress and discusses the
challenges and future directions. The main topics cov-
ered include: (1) Enzyme-biochar carrier interaction
mechanisms: examining how the catalytic activity of dif-
ferent enzymes is influenced by the functional groups

Fig. 1 Publication trends (a) and application domains (b) of biochar-immobilized enzymes in environmental remediation technologies (January

2017-April 2025). Data sourced from Web of Science
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and spatial configurations of the enzyme active site, and
analyzing how biochar surface functional groups opti-
mize enzyme immobilization efficiency; (2) Selection
of immobilization techniques: comparing in detail the
advantages and disadvantages of adsorption, encapsula-
tion, covalent bonding, and crosslinking methods, and
analyzing their applicability and effectiveness in differ-
ent enzyme immobilization processes; (3) Environmental
remediation applications: analyzing case studies of water
and soil pollution remediation to assess the effectiveness
of immobilized enzymes in multi-scenario collaborative
governance; (4) Technological bottlenecks and innovative
pathways: proposing solutions for standardized prepara-
tion, functional composite development, and ecological
safety evaluation, and exploring the challenges related
to cost control, reactor design, and lifecycle assessment
for large-scale applications. The biochar-immobilized
enzyme technology demonstrates high efficiency and
environmental friendliness in pollutant degradation and
soil remediation through a "carrier engineering-enzyme
adaptation-multi-mechanism synergy" strategy. Future
research should focus on integrating intelligent design,
developing multifunctional materials, and constructing
a circular industry chain, while rigorously controlling the
ecological risks associated with biochar application. This
will help advance the technology from laboratory studies
to large-scale environmental remediation applications.

2 Bioenzyme conformation and biochar surface
functional group matching strategies
2.1 Characteristics of functional groups at the active site
of bioenzymes

The catalytic function of extracellular enzymes is highly
dependent on the spatial conformation of their active
sites and the chemical characteristics of the surface
functional groups. Laccase, as a key enzyme in environ-
mental remediation, has a T1 copper site surrounded by
histidine (His) imidazole groups and cysteine (Cys) thiol
groups, which are directly involved in the electron trans-
fer process (Khatami et al. 2022). The surface-exposed
lysine (Lys) e-amino and aspartic acid (Asp) carboxyl
groups form the primary binding sites for carriers, and
their spatial orientation directly affects the immobiliza-
tion efficiency (Brugnari et al. 2021). Peroxidases depend
on a proton transfer network formed by His imidazole
groups and arginine (Arg) guanidine groups adjacent to
the heme iron (Fu et al. 2025). Surface-exposed tyros-
ine (Tyr) phenolic hydroxyl groups and glutamic acid
(Glu) carboxyl groups provide natural anchoring sites for
immobilization. Cellulases have a catalytic domain with
a pB-folded barrel topology, where the substrate binding
pocket is rich in hydrophobic regions formed by trypto-
phan (Trp) indole rings and Tyr phenolic rings (Ranjan
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et al. 2023). The amide groups of asparagine (Asn) and
glutamine (Gln) on the surface enhance carrier affinity
through hydrogen bonding (Zou et al. 2022). Representa-
tive enzymes from the protease family (Bacillus pro-
tease) exhibit hydrophobic pockets near their catalytic
triad (serine, His, and Asp), with adjacent Lys e-amino
groups often serving as preferred sites for covalent bind-
ing (Frigerio et al. 1996). The ionization state and spatial
accessibility of these functional groups jointly determine
the binding mode and subsequent catalytic behavior
between the enzyme and biochar carrier.

2.2 Engineering control of surface functional groups
on biochar

The surface chemical properties of biochar can be pre-
cisely controlled through directed modification strategies
to create an ideal interface for enzyme immobilization.
Oxygen-containing functional group engineering is a
core approach to enhancing the hydrophilicity and reac-
tivity of biochar. Acid treatment of straw biochar intro-
duces carboxyl groups on its surface, which doubles the
surface area compared to untreated biochar, significantly
enhancing the immobilization efficiency of laccase, with
immobilization rates reaching 66% (Imam et al. 2021).
Alkali activation, through potassium hydroxide (KOH)
etching, simultaneously expands pore size and modifies
functional groups (Herath et al. 2021). After KOH acti-
vation, the surface area of pine biochar increases from
84.16 m?/g to 221.35 m?/g, and the oxygenated functional
groups on the surface provide abundant electron-medi-
ated sites for laccase (Ren et al. 2020; Wang et al. 2022b).
Nitrogen-containing functional groups are introduced
primarily through amination treatment or co-pyroly-
sis with nitrogen-containing precursors. In a nitrogen
atmosphere at 400 °C, amination of sugarcane bagasse
biochar increases the surface nitrogen content from 0.92
at% to 13.99 at%, raising its isoelectric point from pH 3.0
to pH 6.5, allowing efficient electrostatic adsorption of
laccase (pI 4.5) (Yang et al. 2025b). This charge inversion
characteristic provides new insights into the electrostatic
compatibility between the enzyme and the carrier.

2.3 Mechanisms of enzyme-carrier interaction matching
2.3.1 Covalent binding: high-stability anchoring

Covalent immobilization achieves long-term sta-
ble loading by forming irreversible chemical bonds
between the active groups on the biochar surface and
specific residues of the enzyme molecule. The two pri-
mary methods are classic carboxyl-amino coupling and
Schiff base formation via imine bonds. In carboxyl-
amino  coupling, 1l-ethyl-(3-dimethylaminopropyl)
carbodiimide (EDC) first activates the biochar surface
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carboxyl groups to form an unstable intermediate. Sub-
sequently, N-hydroxysuccinimide (NHS) converts it
into a stable active ester, which eventually reacts with
the lysine e-amino group of the enzyme molecule to
form a high-strength amide bond (Prabhakar et al.
2025). The NHS ester is highly reactive and can form
amide bonds under mild conditions, eliminating the
need for acidic pH. Compared to Schiff base bond-
ing, this method offers superior strength and stability.
For instance, researchers have successfully covalently
immobilized horseradish peroxidase onto multi-walled
carbon nanotubes, maintaining 90% enzyme activ-
ity even after 10 weeks (Feizabadi et al. 2019). In con-
trast, Schiff base fixation relies on aldehyde groups
reacting with the primary amino groups of the enzyme
to form imine bonds (—C=N-). While this method is
cost-effective and does not require additional reagents,
the resulting imine bonds are thermodynamically less
stable and may undergo reversible hydrolysis in acidic
media (pH<4) (Fabbrizzi 2020). In practical applica-
tions, glutaraldehyde, a bifunctional crosslinking agent,
is widely used. Its aldehyde groups at both ends con-
nect the carrier and enzyme amino groups, optimizing
enzyme flexibility by adjusting the organic arm length
(Fabbrizzi 2020). However, this method carries risks
such as cytotoxicity and enzyme self-crosslinking side
reactions, which may reduce activity (Bonetti et al.
2023). For example, in the study by Sulek, the activ-
ity retention of cholesterol oxidase was only 50% after
immobilization (Sulek et al. 2010). Direct immobili-
zation methods, such as the approach developed by
Manoj et al. fixing glucose oxidase onto an aldehyde-
functionalized carrier, preserved 91% activity after
30 days, but the intrinsic instability of imine bonds
limited performance (Manoj et al. 2018). In practical
applications, pine sawdust magnetic biochar fixed with
glutaraldehyde improved the Cr (VI) removal rate by
2.7 times and 2.1 times compared to free enzyme and
biochar, respectively, through a synergistic mechanism
of enzyme catalysis and biochar surface persistent free
radical oxidation (Han et al. 2022). In summary, the
carboxyl-amino coupling method excels in long-term
stability and reaction specificity, but involves higher
reagent costs. The Schiff base method is simple and
economical, suitable for short-term systems, but care
must be taken to avoid glutaraldehyde toxicity and to
maintain pH>4 to ensure bond strength. Alterna-
tive crosslinking agents, such as aldehyde-modified
polysaccharides, polyethylene glycol dialdehyde (PEG-
(CHO),), and bis-sulfosuccinimidyl suberate (BS3), are
gradually being applied to balance biocompatibility and
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immobilization efficiency, providing optimized options
for different scenarios (Prabhakar et al. 2025).

2.3.2 Electrostatic adsorption: dynamic balance of charge
complementarity

Electrostatic adsorption relies on the complementary
interaction between the enzyme and the carrier surface
charges, and the binding strength can be dynamically
regulated by pH. Low-temperature pyrolyzed biochar,
rich in carboxyl groups, exhibits a negative charge at
pH>4.5, making it suitable for immobilizing positively
charged laccase. However, excessive electrostatic inter-
action may compress the enzyme conformation, and the
addition of 0.1 M NaCl can mitigate this negative effect
(Wan et al. 2024). Recent research has shown that pH-
responsive designs can further enhance electrostatic
adsorption. For example, a novel pH-responsive Pick-
ering interfacial biocatalysis system physically adsorbs
lipase onto methylmethacrylate dimethylaminoethyl
ester-modified hollow mesoporous silica spheres. Over
a pH range of 3.0-11.0, the zeta potentials of the carrier
and enzyme show opposite charges and near-mirror sym-
metry, ensuring continuous electrostatic attraction dur-
ing emulsification/anti-emulsification. This significantly
enhances enzyme loading, thermal stability, and catalytic
activity (Zhong et al. 2025).

2.3.3 Physical adsorption: spatial compatibility

Physical adsorption relies on the precise matching of
the pore size of the carrier with the molecular size of
the enzyme (Chen et al. 2022). Studies show that when
the carrier pore size is 1.2—1.7 times the hydrated size
of the enzyme molecule, the enzyme activity recovery
rate typically reaches its maximum. This range is con-
sidered the optimal balance between allowing enzyme
molecules to enter confined spaces while maintain-
ing their conformational flexibility (Mo et al. 2020). For
instance, the hydrated size of laccase is approximately
6.5 nmx5.5 nmx4.5 nm, with the optimal pore size
range for the carrier between 7-11 nm (Al-sareji et al.
2024). Experimental results have shown that by modify-
ing straw biochar with cetyltrimethylammonium bro-
mide and KOH solution, a pore size of 7.64 nm can be
achieved. Its maximum laccase adsorption capacity
reached 57.5 mg/g, and the enzyme activity remained
at 45.1% after six cycles (Wang et al. 2021a). To over-
come the limitations of a single pore size and optimize
mass transfer efficiency, gradient pore design has been
widely applied. This design typically includes: micropo-
res (<2 nm) that provide high-density anchoring points
to enhance initial adsorption; mesopores (2-50 nm) that
provide the primary space for enzyme molecules and
significantly accelerate substrate and product diffusion;
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and macropores (>50 nm) that serve as material trans-
port channels to effectively reduce overall mass transfer
resistance. The synergistic effect of these multi-level pore
structures has been shown to significantly improve the
catalytic efficiency of immobilized enzymes. For example,
activated carbon with phosphoric acid achieves an opti-
mized balance of loading, activity, and stability through
a micropore anchoring-mesopore reaction-macropore
mass transfer mechanism, enabling reuse for at least 10
cycles (Mota et al. 2025).

2.3.4 Hydrophobic interactions: gentle anchoring
through microenvironment compatibility

Hydrophobic interactions achieve mild enzyme immobi-
lization through van der Waals forces between the hydro-
phobic pockets of the enzyme and the graphite domains
of the biochar. Enhanced graphitization during high-tem-
perature pyrolysis (H/C atomic ratio 0.05-0.20) creates
hydrophobic microzones, significantly improving biochar
hydrophobicity (Rodrigues et al. 2019). This facilitates
effective binding and stable immobilization of enzymes
such as lipase. Hydrophobic immobilization enhances
enzyme reusability while conferring stability across broad
pH ranges and elevated temperatures, thereby expanding

Cross-linking
* Requires preparation of complex reagents
* Loss of enzyme activity
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scalability (Mokhtar et al. 2020). Furthermore, reducing
aqueous phase polarity through interfacial water layer
modulation and polyol additives (glycerol) enhances
hydrophobic interactions. Systems with 15% glycerol
demonstrate markedly improved hydrogen peroxide
enzyme immobilization stability, indicating that rational
microenvironment design optimizes both activity and
stability of immobilized enzymes (Ait Braham et al
2021).

3 Immobilization techniques and biochar
compatibility strategies

Free enzymes face industrial application limitations
due to poor stability and non-reusability, which enzyme
immobilization addresses by anchoring enzymes onto
carriers. However, conformational changes during
immobilization may reduce enzyme activity, necessitat-
ing strategy optimization based on enzyme characteris-
tics and application scenarios. Current methodologies
are categorized into physical (adsorption and encapsula-
tion) and chemical (covalent bonding and cross-linking)
approaches, differentiated by enzyme-carrier interaction
modes (Fig. 2).

Adsorvption
*  Weak interaction
* Easy leaching

Covalent
* Requires activation step
* Harsher reaction conditions
» Strongly immobilized enzyme

Embedding
* Prevents leaching

* Suitable for small molecule substrate enzyme catalysis

Fig.2 Biochar-based enzyme immobilization methodologies
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3.1 Adsorption immobilization

Adsorption leverages weak interactions (hydrogen
bonding, hydrophobic forces, van der Waals forces) for
enzyme fixation, offering operational simplicity without
chemical modification (de Oliveira et al. 2000). This mild
process preserves enzyme active sites and tertiary struc-
tures. The pore characteristics of biochar critically gov-
ern enzyme immobilization efficacy, particularly through
pore size distribution that dictates enzyme adsorption
capacity and activity retention. Systematic investigations
demonstrate that optimal catalytic performance occurs
when the average pore diameter of the carrier material
ranges between 1.2-1.7 times the hydrodynamic diam-
eter of the enzyme, facilitating conformational optimiza-
tion and enhanced catalytic activity (Chen et al. 2022).
However, structural heterogeneity in pore microenvi-
ronments imposes kinetic limitations on enzyme mobil-
ity and flexibility, rendering a substantial fraction of
adsorbed enzymes catalytically inactive (Masuda et al.
2014). Strategic modulation of synthesis parameters—
specifically pyrolysis temperature (500-700 °C) and
activating agent concentration—enables the engineer-
ing of open-pore architectures to mitigate these limita-
tions. As evidenced by previous research (Mo et al. 2020),
optimized magnetic porous biochar with high specific
surface area achieved a cellulase adsorption capacity of
266 mg/L while maintaining 73.6% residual enzyme activ-
ity, attributable to its hierarchical pore structure combin-
ing mesopores (2-50 nm) and macropores (>50 nm).
Although physical adsorption offers cost-effective immo-
bilization with minimal activity loss, its reliance on weak
interfacial interactions leads to significant enzyme leach-
ing (30-50%) in dynamic operational environments such
as wastewater treatment systems (Pandey et al. 2020).
To address these limitations, emerging hybrid strategies
integrate physical adsorption with covalent conjugation
methods through rationally designed biochar carriers
featuring gradient-distributed surface functional groups.
This dual-mode immobilization mechanism synergisti-
cally combines electrostatic preconcentration with local-
ized strong binding, significantly enhancing operational
stability without compromising enzyme functionality.
Future research should prioritize the development of
standardized protocols for pore structure characteri-
zation and systematic evaluation of long-term enzyme
leaching kinetics under industrially relevant conditions.

3.2 Encapsulation immobilization

The encapsulation method immobilizes enzymes by
encapsulating them within a three-dimensional poly-
meric matrix, offering distinct advantages such as mild
operating conditions and maximal preservation of native
enzyme conformation (Ratanapongleka and Punbut
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2018). This approach leverages the physical barrier of the
carrier material to shield enzymes from mechanical stress
and chemical interference, while the confined porous
structure effectively prevents enzyme leaching. For
instance, p-galactosidase entrapped in hydrogels demon-
strated enhanced immobilization efficiency, thermal sta-
bility, and storage stability, maintaining catalytic activity
over seven consecutive cycles at 75 °C (Jose Fabra et al.
2021). The performance of carriers has been optimized
by recent advancements in composite materials. A study
showed that a copper-alginate/biochar hybrid carrier
improves laccase immobilization efficiency by increasing
surface area and enriching functional groups, with the
additional benefit of enhanced thermomechanical, opti-
cal, and electrical properties (Zhou et al. 2021). However,
conventional encapsulation methods face inherent limi-
tations due to restrictive pore sizes (<5 nm), rendering
them unsuitable for macromolecular substrates. Stud-
ies reveal that substrates exceeding 20 kDa experience
40-60% catalytic efficiency loss due to diffusion resist-
ance (Li et al. 2025). To address this bottleneck, hierar-
chical porous carriers with multiscale pore architectures
have emerged as a promising strategy, significantly boost-
ing enzymatic reaction efficiency.

3.3 Covalent bonding

The covalent binding method immobilizes enzymes via
irreversible chemical bonds formed between functional
groups on enzyme surfaces (amino, carboxyl, and thiol
groups) and activated functional groups on biochar car-
riers (Gu et al. 2021). This technique is distinguished by
its robust binding strength and exceptional operational
stability, effectively preventing product contamination
during catalytic reactions (Mohamad et al. 2015). Mecha-
nistically, non-essential residues in enzymes (e-amino
groups of lysine) react with epoxy or aldehyde groups
introduced onto biochar surfaces through chemical
modifications. For instance, glutaraldehyde serves as a
bifunctional crosslinker, bridging enzyme amino groups
and biochar hydroxyl groups to form Schiff base struc-
tures. While covalent binding significantly enhances
enzyme stability, the harsh reaction conditions typically
induce 30-50% activity loss, primarily attributed to con-
formational changes in catalytic centers or occupation
of critical functional groups (Zhou et al. 2021). Notably,
trypsin covalently immobilized on carboxylated biochar
exhibited 1.2-fold higher proteolytic activity compared
to adsorption-based methods (Souza Junior et al. 2020).
However, crosslinker concentration (1-5%) requires
precise optimization to balance binding strength with
activity retention (da Silva et al. 2022). In practical appli-
cations, chromium reductase covalently immobilized on
pinewood-derived magnetic biochar via glutaraldehyde
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coupling demonstrated 2.7- and 2.1-fold increases in
Cr(VI) removal efficiency compared to free enzymes and
bare biochar, respectively. This enhancement arises from
synergistic effects between enzymatic catalytic reduction
and persistent free radical-mediated oxidation on the
biochar surface (Han et al. 2022). In summary, covalent
binding reduces the conformational mobility of immobi-
lized enzymes, thereby improving stability. However, the
method suffers from high operational costs and demand-
ing immobilization conditions, necessitating further
optimization for deployment in complex wastewater
treatment systems.

3.4 Cross-linking
The cross-linking method immobilizes enzymes by
forming covalent bonds between enzyme molecules or
between enzymes and carriers using bifunctional or mul-
tifunctional crosslinkers, creating a three-dimensional
networked structure. While the covalent bonds gener-
ated during cross-linking enhance enzyme stability and
reusability, the harsh reaction conditions often lead to
significant enzyme inactivation, resulting in suboptimal
immobilization efficiency when used alone (Rafiee and
Rezaee 2021). Consequently, this method is typically
combined with other techniques to minimize enzyme
leaching and maximize loading capacity. For instance,
laccase immobilized on alkali-modified biochar through
a hybrid approach (adsorption, adsorption-cross-link-
ing, and covalent binding) exhibited improved stability
and reusability compared to free enzymes. Notably, the
adsorption-cross-linking strategy achieved the highest
immobilization efficiency (67.40%) and enzyme loading
capacity (180.81 mg/g) (Wang et al. 2022b). In summary,
cross-linked enzymes demonstrate reduced detach-
ment, but the high inactivation rate during cross-linking
remains a critical limitation. To preserve catalytic activ-
ity, reaction time and crosslinker concentration should be
minimized while maintaining immobilization efficacy.
Compared to non-biochar immobilization methods,
biochar-based enzyme immobilization offers signifi-
cant advantages. Unlike traditional methods without
carriers, biochar provides a more stable environment
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for enzyme immobilization, enhancing reusability and
catalytic activity, especially in dynamic conditions.
Additionally, the porosity and surface functional group
modifications of biochar optimize its compatibility with
different enzymes, thereby improving enzyme stability
and catalytic efficiency. Compared to common carriers
like polymers and metal oxides, biochar is more cost-
effective and adaptable, maintaining high enzyme activ-
ity even under extreme conditions (Mota et al. 2025).
Immobilized enzyme technologies exhibit distinct
advantages and limitations, necessitating scenario-
specific selection based on application requirements
(Table 1). The adsorption method is suitable for bio-
chars with high surface area (> 500 m?/g) and mesopore
dominance (2-50 nm), where surface charge modula-
tion enhances binding. However, it requires glutaral-
dehyde crosslinking to strengthen the immobilization
and prevent enzyme leakage. Encapsulation utilizes
macroporous biochar (>50 nm) or biochar-polymer
composites, with hierarchical pore engineering and sur-
face-localized enzyme loading mitigating mass trans-
fer constraints. For covalent binding, biochar requires
a high density of functional groups to enable precise
directional conjugation (carboxyl-amine/aldehyde-
amine coupling). Concurrently, strategies such as low-
temperature processing or protectants are necessary to
maintain 50-85% of the enzyme activity. Crosslinking
serves as an auxiliary approach requiring mechanically
robust biochars, where stepwise low-concentration glu-
taraldehyde or bio-based crosslinkers synergistically
enhance stability. Performance benchmarking reveals
the distinct advantages of each method: adsorption
achieves the highest activity retention (>85%) but has
the poorest recyclability (3—-5 cycles); covalent bind-
ing offers optimal stability, sustaining over 10 cycles;
encapsulation performs best in extreme environments;
and cross-linking is most effective for extending the
operational lifetime under high shear stress. In conclu-
sion, the engineering design of biochar—such as pore
regulation, surface functionalization, and composite
structures—is crucial for achieving efficient enzyme
immobilization (Wang et al. 2021b).

Table 1 Comparative analysis of enzyme immobilization techniques

Method Adsorption Encapsulation Covalent Bonding Cross-Linking
Preparation complexity Easy Moderate Difficult Moderate
Immobilization strength Weak Strong Strong Strong
Enzyme activity High High Low Moderate
Production cost Low Low High Moderate
Substrate specificity Unaltered Unaltered Modifiable Modifiable
Applicability Broad enzyme compat-  Small-molecule substrates, thera- ~ Wide Wide

ibility

peutic enzymes
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4 Enzyme immobilization in biochar: deactivation

mechanisms and engineering strategies

for suppression
While Sect. 3 established optimization strategies for
immobilization techniques, maintaining enzymatic activ-
ity requires addressing deactivation mechanisms inher-
ent to biochar carriers. Although biochar supports offer
advantages such as high specific surface area, tunable
pore structures, and low cost, they frequently induce
irreversible activity loss due to inherent impurities, sur-
face chemical characteristics, and hydrophobic adsorp-
tion effects. Consequently, a thorough understanding of
these deactivation mechanisms and the development of
targeted suppression strategies are imperative for effi-
cient enzyme immobilization.

4.1 Impurity-induced deactivation mechanisms
and suppression strategies

The impurities in biochar primarily include metal ions
(Fe**/Cu®") and aromatic compounds, which can induce
enzyme deactivation through various pathways. Metal
ions in biochar catalyze the generation of hydroxyl radi-
cals, which directly oxidize the thiol groups and aro-
matic amino acid residues in the active site of the enzyme
(Wang et al. 2007). Metal cations, through competitive
binding or synergistic effects in alkaline environments
(pH > 10), significantly inhibit immobilized enzyme activ-
ity (Rodrigues et al. 2019). Polycyclic aromatic hydro-
carbons (PAHs) and other aromatic compounds often
remain in biochar due to incomplete carbonization. Their
planar aromatic structures can clog the substrate-binding
pockets of the enzyme via m—m stacking interactions, pre-
venting the dynamic changes of enzyme catalytic confor-
mations (Lammirato et al. 2011). To address these issues,
excess metal ions can be removed by acid washing, and
pyrolysis device designs can be modified to minimize
steam condensation and prevent PAHs accumulation
(Yang et al. 2025a).

4.2 Surface acid-base group disruption
and microenvironment regulation

Another significant cause of enzyme deactivation is
the disruption of the microenvironment of the enzyme
by surface acid—base groups on biochar. For instance,
acidic groups, such as carboxyls, can negatively affect
the activity of immobilized enzymes, especially in lipase
catalysis. This occurs because non-specific binding to
multiple sites on the enzyme changes its structure or
obstructs substrate access to the active site (Hernandez
and Fernandez-Lafuente 2011). These effects can also
influence the optimal pH and temperature of the enzyme.
The presence of these groups alters the surface pH of the
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biochar, which can cause enzyme denaturation and activ-
ity loss under in extreme acidic or alkaline conditions (Yu
et al. 2025). To mitigate this, surface modification tech-
niques can be used to adjust the functional groups on
biochar and optimize enzyme-carrier interactions. Add-
ing co-solvents such as glycerol or polyols, or using dou-
ble-layer protection and hydrophilic modifications, can
further stabilize the enzyme and reduce environmental
fluctuations that affect enzyme activity. These approaches
enhance enzyme stability and reusability, improving
catalytic performance in real-world applications. Addi-
tionally, amyloglucosidase (AMG) immobilized on super-
paramagnetic nanoparticles has shown that magnetic
fields can dynamically and reversibly regulate biocatalytic
activity. The applied magnetic field can trigger the aggre-
gation of magnetic particles, thereby changing the local
pH of enzymes (urease or esterase) functionalized on the
surface of the particles. These enzymes further regulate
the catalytic activity of AMG by altering the pH of their
surroundings, thus providing a flexible and controllable
strategy for the regulation of enzyme activity (Szekeres
etal. 2021).

4.3 Hydrophobic adsorption-induced conformational
disruption and immobilization optimization

Hydrophobic adsorption is another major cause of
enzyme activity loss. Research shows that enzymes
immobilized via hydrophobic adsorption, such as laccase,
pepsin, and glucanase, exhibit lower enzyme activity and
kinetic performance compared to those immobilized by
electrostatic attraction or covalent bonding. Hydropho-
bic interactions force the enzyme to expose its hydro-
phobic core, disrupting its natural folding structure. This
increases mass transfer resistance when hydrophilic sub-
strates interact with hydrophobic membranes. Addition-
ally, the hydrophobic regions around the active site of the
enzyme are covered by the membrane carrier, obstruct-
ing substrate binding (Zhang et al. 2018). To address this,
polydopamine (PDA) coatings offer a dual optimization
mechanism (Lee et al. 2007). PDA reduces the contact
angle of membrane, forming a hydrophilic interface,
while the dynamic hydration layer (10-20 nm thick)
weakens the strong interaction between the enzyme
and hydrophobic ligands, reducing conformational
disturbances. PDA also precisely grafts hydrophobic
ligands through Schiff base reactions, preventing ran-
dom enzyme binding to the carrier, which could obscure
the active site of the enzyme in traditional hydrophobic
adsorption (Zhang et al. 2018).

In summary, an effective engineering approach should
integrate pre-treatment, surface engineering, and immo-
bilization adaptation. The pre-treatment phase includes
acid washing and thermal purification processes. Surface
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engineering should be tailored based on enzyme char-
acteristics—acid-resistant enzymes (pepsin) could
be adapted to sulfonated surfaces, while pH-sensitive
enzymes (hydrogen peroxide enzyme) could be adapted
to carboxybetaine buffer layers. Immobilization pro-
cesses should also be optimized, for instance, adding
NaCl to weaken electrostatic adsorption or using poly-
ethylene glycol diamine long-chain crosslinking agents
to maintain enzyme flexibility in covalent binding. Future
research should focus on developing intelligent carri-
ers, integrating industrial-scale purification processes,
and exploring multi-enzyme synergistic immobiliza-
tion technology. By combining material science, enzyme
engineering, and process control, biochar-based enzyme
immobilization technology holds great potential for
breakthrough advances in environmental remediation
and biomanufacturing.

5 Applications and mechanisms

of biochar-immobilized enzymes

in environmental remediation
In recent years, with increasingly severe environmental
pollution, biochar-enzyme complexes have attracted sig-
nificant research interest due to their high efficiency and
environmental friendliness. By immobilizing enzymes
onto biochar carriers, this technology synergistically
combines the adsorption capacity of biochar with enzy-
matic catalytic activity, significantly enhancing enzyme
stability and reusability. These systems have demon-
strated remarkable success in mitigating water and soil
contaminants (Table 2).

5.1 Water remediation

5.1.1 Antibiotic and pharmaceutical residue removal
Antibiotics and pharmaceutical residues, as emerging
micropollutants in aquatic environments, pose sig-
nificant risks to ecosystems and human health (Zhang
et al. 2015). B-lactam antibiotics, tetracyclines, and
sulfonamides enter water systems through medical
wastewater and agricultural discharges, facilitating
the spread of antibiotic resistance genes (Tian et al.
2019). To address this, recent studies propose a waste-
to-resource strategy that employs biochar produced
from penicillin fermentation waste (SAMB). Specific
enzymes were immobilized on this biochar to enable
the rapid degradation of high concentrations of penicil-
lin G sodium. This composite achieves 99.84% removal
of 900 mg/L PGNa within 20 min, degrading -lactam
rings via cleavage, decarboxylation, and demethylation
pathways to yield low—toxicity intermediates (Fig. 3)
(Zhang et al. 2025a). In addition, electrospinning tech-
nology further enhances practicality by embedding bio-
char into polyacrylonitrile nanofibers via amidoxime
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bonds to immobilize laccase, achieving an enzyme
loading of 10.1 U/g and retaining >50% activity after
7 reuse cycles in chlortetracycline-laden wastewater
(Taheran et al. 2017). This approach not only stabilizes
enzymes but also mitigates leakage issues common in
conventional immobilization methods.

Diclofenac, a widely used nonsteroidal anti—inflam-
matory drug, accumulates alarmingly in water bodies.
The homogeneous monolayer adsorption of crude lac-
case onto pinewood, swine manure, and almond shell
biochar achieves near—complete removal of 500 pg/L
diclofenac within 5 h, with immobilized enzymes exhib-
iting threefold higher storage stability than their free
counterparts (Lonappan et al. 2018a). Citric acid pre-
treatment of swine manure biochar enhances laccase
loading, enabling full diclofenac degradation within
2 h and retaining 40% activity after 5 cycles (Lonappan
et al. 2018b). Further research has revealed that degra-
dation pathways involve hydroxylation to 3—hydroxy-
diclofenac and 4-hydroxydiclofenac, followed by
ring-opening mineralization into CO,, NH;, and H,O
(Lonappan et al. 2017), eliminating ecotoxicity and sec-
ondary pollution risks. Despite this progress, a primary
obstacle is the lack of universal applicability. Current
biochar—enzyme systems require tailored carriers and
immobilization strategies for specific drugs, enzymes,
and reaction conditions. Future efforts must prioritize
developing versatile, industrially scalable composites,
potentially through modular biochar designs or multi-
functional surface engineering, to address diverse phar-
maceutical contaminants efficiently.

5.1.2 Decolorization and degradation of synthetic dyes

Azo and anthraquinone dyes discharged from textile
industries are major contributors to aquatic coloration,
posing ecological threats due to their carcinogenicity and
mutagenicity (Ai et al. 2020). Pine needle biochar—immo-
bilized laccase achieves>85% decolorization of 50 mg/L
malachite green within 5 h, generating less toxic metab-
olites such as leuco malachite green and methanone (Ai
et al. 2020). The mechanism involves laccase—catalyzed
cleavage of azo bonds (-N=N-), disrupting chromo-
phores and yielding low-molecular-weight byproducts.
In contrast, laccase immobilized on mesoporous carbon
derived from pecan shell effectively decolorizes acid dyes
but shows negligible activity toward Reactive Black 5
(Ramirez—Montoya et al. 2015). This finding underscores
that enzyme-substrate specificity is a critical determinant
of efficiency. To enhance versatility, researchers propose
developing a biochar—enzyme—dye compatibility data-
base to optimize immobilization strategies for targeted
dye removal.
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Table 2 Performance metrics of biochar-immobilized enzymes in pollutant removal
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Immobilized enzyme

Pollutant

Removal efficiency

Reusability

Reference

Amine-functionalized magnetic
biochar-laccase

Bamboo biochar-laccase

Antibiotic fermentation residue
immobilized multi-enzyme

Acid-modified cherry stone—
laccase

Magnetic pine biochar-laccase
Pistachio shell biochar-laccase

Mushroom substrate biochar—
laccase

Magnetic biochar-PET hydro-
lase

Alginate—biochar-
laccase

Chestnut shell biochar-crude
enzyme

Rapeseed straw—laccase

Pine needle biochar-laccase
Magnetic biochar-laccase
Coconut shell biochar-laccase
Orange peel biochar-laccase

Corn stalk biochar—laccase

Pomegranate peel biochar-lac-
case

Rice straw biochar- Horseradish
peroxidase

Magnetic biochar-haloalkane
dehalogenase

Pine needle biochar-laccase
Modified biochar-laccase

Alkali-modified biochar-laccase

Magnetic biochar-chromate
reductase

Halloysite nanotube-laccase

Bisphenol A (water)

Bisphenol A, malachite green,
methyl orange (water)

Penicillin G sodium (water)
Dyes (water)
Trichloroethylene (water)

Diclofenac, carbamazepine,
ciprofloxacin (water)

Aflatoxin B1 (water)
Microplastics (soil)
Chloroform (soil)

Polycyclic aromatic hydrocar-
bons (soil)

24-Dichlorophenol (water)
Mixed dyes (water)
Quinolones (water)
Pharmaceuticals (water)

Carbamazepine, diclofenac
(water)

Petroleum hydrocarbons
(water)

Pharmaceuticals (water)
Phenol (water)

Halogenated hydrocarbons
(water)

Malachite green (water)

Polycyclic aromatic hydrocar-
bons (soil)

Malachite green (water)
Cr(VI) (water)

Bisphenol A (water)

60 min; 20 mg/L; 100%

2 h; 50-60 mg/L; 74.72-94.53%
20 min; 900 mg/L; 99.84%
4 h; 50 ma/L; 92%

48h; 10 mg/L; 92.1% 48 h;
10 mg/L; 92.1%

60 min; 50 mg/L;>99%

5 h; 80 pg/kg; >90%

90 d; 200 mM; 71.5%

5 h; 1000 ppb; 96.32%

10 days; 37%

6 h; 50 mg/L; 99%

5h; 50 mg/L; 59.3-88.1%

48 h; 10 mg/L; 65.4-93.7%
120 min; 50 mg/L; 100%
24h; 25 mg/L; 73.34-82.51%

7 days; 3687.44 pug/L; 41.4%
2 h; 50 mg/L; 37.2-90.4%

1 h; 188 mg/L; 80%

7 h; 5 mM; 100%

5 h; 50 mg/L; 85%
40 days; 110 ppb; 90%

300 min; 100 mg/L;>90%
30 min; 200 puM; 98%

12 h; 40 mg/L; 87.31%

6 cycles; 90%
5 cycles; 79.48-86.82%

5 cycles; 51.94%

10 cycles; 48.5%
10 cycles; 35.29%
5 cycles; 85%

5 cycles; 58.5%

5 cycles;
>50%

5 cycles; 42%

7 cycles; 42.1-48.4%
3 cycles;>90%
6 cycles; 48.2%

6 cycles; 40.9%

6 cycles; 11.6-47.9%
7 cycles; 60%

30 cycles; 70%

6 cycles; 53%
5 cycles; 80%

10 cycles; 85.97%
5 cycles; 68.3%

8 cycles; 44.24%

Yang et al(2025b)

Zhang et al. (2025b)
(Zhang et al. 2025a)
Antanaskovic et al. (2024)
(Yang et al. 2024b)
(Al-sareji et al. 2024)
Rasheed et al. (2024)
(Han et al. 2024)

Zheng et al. (2024)

Zhao et al. (2024)

Xie et al. (2023)
Pandey et al. (2023)
Zou et al. (2023)
Al-sareji et al. (2023¢)
Al-sareji et al. (2023a)

Zhou et al. (2023)
Al-sareji et al. (2023b)
Liu et al. (2023)

Jiang et al. (2022)

Pandey et al. (2022)
Zheng et al. (2023)

Wang et al. (2022¢)
Han et al. (2022)

Wang et al. (2022a)

5.1.3 Catalytic transformation of phenolic and polycyclic

aromatic hydrocarbons

Phenolic wastewater, characterized by high toxicity,
recalcitrance, and complex composition, presents signifi-
cant challenges in water treatment. Bisphenol A (BPA),
a representative endocrine-disrupting phenolic pollut-
ant, induces long-term biological harm through hormo-
nal interference (Moradi et al. 2021). Nano-magnetic
biochar—-immobilized laccase demonstrates exceptional
potential for such contaminants. This system achieves
complete removal of 25 mg/L BPA within 75 min via

synergistic adsorption and enzymatic oxidation, with an

enzyme activity reaching 2.251 U/mg (Zhang et al. 2020).

The catalytic mechanism involves laccase-mediated oxi-
dation of phenolic hydroxyl groups into phenoxy radicals,
which dimerize via ether or carbon-—carbon bonds to
form diphenyl ether or biphenyl derivatives. Subsequent
oxidation generates semiquinone and para-quinone
intermediates, ultimately mineralizing into CO, and H,O
through ring-opening reactions (Hautphenne et al. 2016).

PAHs, persistent organic pollutants with high stabil-
ity, carcinogenicity, and bioaccumulation potential,
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Fig. 3 The synergistic mechanism of multienzyme complex immobilization on antibiotic fermentation waste-derived biochar and its catalytic

degradation pathway for penicillin G sodium (Zhang et al. 2025a)

severely threaten ecosystems. Among the 16 US EPA
priority PAHs, anthracene and benzola]pyrene are the
most readily oxidized by laccase due to their low ioni-
zation energies. Acid-treated rice straw biochar immo-
bilized with ligninolytic enzymes completely degrades
50 mg/L anthracene within 24 h, retaining 40% activity
after 6 cycles (Imam et al. 2021). For high-ring PAHs
like benzo[a]pyrene, a nano-biochar—chitosan co—
immobilized dual-enzyme system (catechol 1,2—dioxy-
genase and toluene/o—xylene monooxygenase) achieves
85% degradation of 200 mg/L aromatic hydrocarbons
in groundwater through efficient aromatic ring cleav-
age (Miri et al. 2021). However, current literature lacks
detailed mechanistic explanations, which is a key area
for future research. Current challenges include enzyme
inhibition by high-concentration chlorophenols and
steric hindrance limiting degradation of bulky PAHs.
Surface sulfonation modifications enhance anti—inter-
ference capacity of biochar, while nanoconfined reac-
tion carriers show promise in overcoming spatial
constraints, offering pathways to advance practical
applications of immobilized enzyme systems in com-
plex pollutant remediation.

5.2 Soil pollution remediation

5.2.1 Enzymatic degradation of pollutants

The enzymatic degradation of recalcitrant soil con-
taminants—such as chloroform, PAHs, and microplas-
tics—has gained prominence due to its efficiency and
environmental compatibility. Immobilizing enzymes on
biochar carriers enhances catalytic efficiency and sta-
bility while synergizing with soil microbiota to achieve
pollutant transformation and ecological restoration. In
a case study of contaminated soil at a Taizhou chemical
plant, a sodium alginate—biochar—laccase composite
(SA-BC-LAC) demonstrated remarkable remediation
efficacy through combined chemisorption and enzy-
matic catalysis. The addition of 5% (w/w) SA-BC-
LAC reduced chloroform levels by 88.9% within 1 h,
with adsorption and enzymatic degradation contrib-
uting 31.3% and 68.7% to total removal, respectively.
The multilayered porous architecture of the com-
posite not only enhanced laccase loading but also
enriched dechlorinating Pseudomonas species, pro-
moting co-metabolic dechlorination pathways. Nota-
bly, SA—-BC-LAC retained 48% residual activity after
50-days storage, highlighting its long-term remediation
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potential (Zheng et al. 2024). For PAHs—contaminated
soils, acid-modified chestnut shell biochar immobi-
lized with white-rot fungal enzymes degraded 37%
of benzo[a]pyrene over 10 days via hydroxylation and
radical-mediated oxidation, culminating in mineraliza-
tion to CO, and H,O (Hussain et al. 2024). Glutaralde-
hyde-crosslinked laccase on 30-mesh biochar achieved
64.6% degradation of 2,4-dichlorophenol, with effi-
ciency strongly dependent on biochar particle size and
porosity. Smaller particles increased enzyme loading
by >30% due to higher surface area (Wang et al. 2021b).
In addition, magnetic biochar further simplifies catalyst
recovery via external magnetic fields, reducing opera-
tional costs. For instance, magnetic biochar—immobi-
lized polyester hydrolase (MB-LCC-FDS) degraded
polyethylene terephthalate microplastics through an
“adsorption—hydrolysis—metabolism” cascade, con-
verting them into mono(2-hydroxyethyl) terephtha-
late (MHET), which soil microbes metabolize into
non-toxic byproducts. This approach also modulated
microbial communities, increasing Skermanella abun-
dance while enhancing nitrogen fixation and phospho-
rus transport (Han et al. 2024). These biochar—enzyme
systems operate via a tripartite mechanism—adsorp-
tion, catalysis, and microbial synergy—to degrade chlo-
rinated hydrocarbons, PAHs, and microplastics while
restoring soil ecological functions. Implementation
requires tailored carrier—enzyme combinations based
on pollutant characteristics and careful assessment of
intermediate metabolite risks, offering innovative solu-
tions for industrial-scale soil remediation.
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5.2.2 Soil amendment and carbon sequestration

Biochar exhibits multidimensional synergies as a soil
amendment, enhancing soil health and carbon seques-
tration while restoring ecological functions through
microbial community regulation and enzyme activ-
ity modulation. Its porous architecture provides physi-
cal refuges for soil microbes, mitigating environmental
stressors like drought and extreme pH. Low—tempera-
ture pyrolyzed biochar (<500 °C), rich in labile carbon
and nitrogen, significantly increases microbial biomass
and diversity. In controlling soil-borne diseases, bio-
char adsorbs pathogen-secreted enzymes (pectinase and
cellulase) and toxins (Fusarium mycotoxins), reducing
their bioavailability. Immobilization decreases pecti-
nase activity by 57% and reduces tomato wilt incidence
by 40%, mediated by electrostatic interactions and steric
hindrance between biochar functional groups (-COOH)
and enzyme active sites (Yang et al. 2024a). While labora-
tory models validate these adsorption mechanisms, field
dynamics—particularly competitive adsorption with soil
organic matter—require further exploration. Biochar—
enzyme composites concurrently degrade pollutants and
sequester soil organic carbon via physical adsorption
and chemical bonding, establishing a dual'remediation—
sequestration"mechanism. For example, biochar—immo-
bilized carbonic anhydrase enhances CO, absorption in
potassium carbonate solutions while leveraging the sta-
ble carbon matrix of biochar for long-term sequestration,
which merges ecological restoration with climate regula-
tion (Fig. 4) (Shen et al. 2025). This triad mechanism—
enzyme immobilization, carbon locking, and pollutant

Micro-scale o o 0
_—
Area-dependence ° o o

Fig. 4 Synergistic CO, capture mechanisms of immobilized enzymes (Shen et al. 2025)
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passivation—enables synergistic soil improvement and
carbon management. Future research should prioritize
multifunctional designs, such as pH-responsive smart
biochar coatings, to simultaneously suppress pathogens,
stabilize heavy metals, and optimize carbon sequestra-
tion efficiency, accelerating the translation from labora-
tory innovations to large-scale agricultural remediation.

6 Discussion: challenges and future perspectives
6.1 Breakthroughs in the intelligent design paradigm

to overcome the carrier-enzyme matching bottleneck
The primary challenge of biochar—-immobilized enzyme
systems lies in precisely matching the carrier and enzyme
molecules, which requires overcoming multi-scale design
barriers from molecular recognition to macroscopic
structural alignment. Traditional trial-and-error meth-
ods are time-consuming, costly, and fail to reveal the
underlying mechanisms of carrier—enzyme interactions,
leading to issues such as active site shielding or confor-
mational distortion. To enhance design efficiency and
overcome these challenges, machine learning, a powerful
optimization tool, has been widely applied in parameter
optimization, pattern recognition, and predictive model
development. By integrating machine learning with
molecular simulations, researchers can efficiently predict
the interactions between biochar and enzymes and select
the best carrier—enzyme pairing from various design
options. This approach breaks through the limitations of
traditional methods and provides innovative solutions for
enzyme immobilization systems.

6.1.1 Molecular simulation—-driven functional group
matching

By utilizing artificial neural networks (ANN) and ran-
dom forest algorithms to construct predictive models, it
is possible to precisely calculate the binding free energy
(AG) between biochar surface functional groups and
enzyme active sites, thereby enabling the rational selec-
tion of physical adsorption and covalent binding sites.
For example, research by Sankar and Achary showed that
this method increased lipase loading to 255 mg/g of car-
rier, enhanced enzyme-specific activity to 5808 U/myg,
and retained 69% activity after 15 reaction cycles (Sankar
and Achary 2020). The random forest model, which inte-
grates soil properties (metal types and clay content),
biochar attributes (pyrolysis temperature), and crop
parameters, successfully predicted the uptake of heavy
metals by crops (R>=0.73), revealing that soil features
contributed 79.7% to heavy metal absorption. This new
paradigm provides insights for tailoring biochar design to
enhance heavy metal remediation (Li et al. 2024).
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6.1.2 Biomimetic mineralized pore design

Inspired by natural biomineralization processes, a bio-
mimetic method has been used to synthesize MOFs
with adjustable mesopores by using bovine serum
albumin as a template. This design achieves a syner-
gistic effect of micropores, mesopores, and macropo-
res. Micropores (<2 nm) serve as enzyme anchoring
sites, providing a stable immobilization interface,
while mesopores (2-50 nm) accelerate substrate dif-
fusion, improving diffusion efficiency. Macropores
(>50 nm) significantly reduce mass transfer resistance.
Proper matching between the carrier pore size and
the enzyme molecular dimensions molecule greatly
enhances the stability and catalytic efficiency of the
immobilized enzyme. Notably, the substrate affinity
of the immobilized HRP@UIO-66 is similar to that of
the free enzyme, indicating that the optimized pore
structure effectively prevents blockage of the substrate
mass transfer channel after enzyme adsorption, thereby
improving catalytic efficiency (Wu et al. 2022).

6.1.3 Multi-modal intelligent design platform driving
industrial transformation

The preparation parameters of biochar, including pyrol-
ysis temperature, feedstock type, and modifying agent
concentration, significantly influence its pore structure
and surface chemistry. Recently, machine learning mod-
els (such as ANN and support vector machines) have
been used to predict the optimal preparation conditions
for biochar. For example, using a database of pyroly-
sis temperature (300-700 °C), feedstock ash content
(5-30%), and modifier concentration (0.1-5 mol/L), the
ANN model can predict the specific surface area with an
error rate of less than 10%, significantly shortening the
experimental optimization cycle (Luo et al. 2023b). Fur-
thermore, a bibliometric analysis reveals that research
on optimizing biochar—enzyme composite systems using
machine learning has increased by 3.5 times since 2020.
Future research can combine high-throughput character-
ization techniques (in situ X-ray diffraction and synchro-
tron radiation spectroscopy) to create a multi-modal
data-driven predictive platform (Luo et al. 2023a; Yang
et al. 2021).

6.2 Multi-technology synergy for complex functional
systems

Single remediation techniques often fail to address com-

plex pollution scenarios effectively, and multifunctional,

synergistic systems are emerging as a future development

trend. By integrating processes such as adsorption, catal-

ysis, and electrochemical reactions, biochar—immobilized
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enzyme systems can simultaneously remove multiple
pollutants.

6.2.1 Nanomaterials for enhanced synergy

MOFs combined with biochar carriers enhance cata-
lytic efficiency. For instance, a MOF-biochar compos-
ite increased the catalytic efficiency of f-lactamase by
six times compared to free enzymes (Yang et al. 2021).
Additionally, polymer-assisted nanoflowers loaded with
glucose oxidase and horseradish peroxidase improved
enzyme activity by 2-3 times with no activity loss after
six cycles, while significantly enhancing heat stability and
pH tolerance (Pomini et al. 2023). Future research may
explore combining biochar with magnetic nanoparti-
cles (Fe;O,) or conductive polymers (polyaniline) to cre-
ate composite systems that enable multi-stage pollutant
removal through adsorption, enzyme catalysis, and elec-
trochemical oxidation.

6.2.2 Closed-loop resource recovery process
Biochar—immobilized enzymes extend beyond pol-
lutant degradation to enable resource recovery. In the
paper recycling industry, laccase plays a crucial role in
removing ink and lignin, contributing to fiber resource
regeneration. The enzyme oxidizes lignin to release ink
captured on the fiber surface, replacing toxic chemical
bleaching agents and significantly reducing wastewater
toxicity. Although this process can maintain the quality
of recycled fibers under optimized conditions, challenges
remain, such as high enzyme production costs and insuf-
ficient stability. Immobilization on biodegradable carriers
enhances enzyme reusability and resistance to tempera-
ture and pH, driving the paper industry towards a "zero
chemical input — biobased economy" transition (Pandey
and Gupta 2024).

6.3 Key challenges in engineering application conversion
Despite breakthrough progress in laboratory research,
the large-scale application of biochar—immobilized
enzyme technology still faces multiple challenges.

6.3.1 Innovation in continuous flow reactors

Traditional batch processing methods are inadequate for
large-scale remediation needs. Continuous-flow immo-
bilized enzyme membrane reactors are critical for scal-
ing up the application. Research has shown that by using
thermal conversion technology to combine wood biochar
with polyvinylidene fluoride, a high-throughput multi-
functional membrane can be created. The biochar mem-
brane flux reached 6895 + 72 L/(m?-h), which is 460 times
greater than traditional copper alginate membranes, mak-
ing it suitable for high-flow wastewater pre-treatment.
This membrane demonstrated an adsorption capacity of
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187 mg/g for rhodamine B dye, achieving a 93% reten-
tion rate for Escherichia coli through pore size screen-
ing. This design enables sequentially integrated pollutant
removal via adsorption, sieving, and enzymatic catalysis
(Ghaffar et al. 2018). In another case, after immobilizing
laccase on pine and pig manure biochar, a continuous
fixed-bed column was constructed with a removal rate of
88% for bisphenol A, and the fixed-bed biochar column
was successfully scaled up using the Thomas and Yoon—
Nelson models (Lonappan et al. 2019). Future research
should focus on optimizing reactor fluid dynamics, such
as introducing microchannel structures or 3D-printed
porous supports, to reduce mass transfer resistance and
improve treatment efficiency.

6.3.2 Breakthroughs in cost control technology

Raw material costs and energy consumption are key con-
straints for large-scale applications. In-situ conversion
technologies for agricultural and forestry waste (straw
and rice husks) can reduce raw material costs by 30-50%
(Gross et al. 2021). For example, in-field preparation
devices for straw biochar have achieved precise control
of pyrolysis temperature (+10 °C), reducing energy con-
sumption for processing per ton of raw material to 200
kWh (Luo et al. 2023a). The reuse of biochar—enzyme
composites is economically feasible. Future research
should focus on developing low-energy modification
technologies, such as photocatalytic activation or plasma
treatment, to further reduce costs.

6.4 Development directions for life cycle management
The sustainable development of biochar—immobilized
enzyme technology requires a systematic evaluation from
a life cycle perspective, covering preparation, application,
and regeneration.

6.4.1 Construction of a carbon-neutral closed-loop industry
chain

The life cycle assessment (LCA) consensus of bio-
char derived from waste pyrolysis indicates a net car-
bon reduction range of —0.2 to —0.9 t CO,e/t, primarily
from carbon sequestration (>50%), byproduct energy
substitution, and the inhibition of N,O/CH, in soil (19—
52%) (Zhu et al. 2022). Moving forward, a "waste—bio-
char—enzyme-carbon credit" high-value chain should
be developed. This model efficiently degrades pollut-
ants (petroleum hydrocarbons) through immobilized
enzymes, reducing remediation energy consumption,
while enhancing soil carbon sequestration to generate
carbon benefits from remediation. By integrating biochar
carbon sequestration and supply chain emissions, net
negative emissions can be systematically achieved (Hus-
sain et al. 2024). The current bottleneck lies in energy
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consumption during enzyme fermentation, chemical
modification emissions of carriers, and the costs associ-
ated with magnetic recovery and carbon regeneration.
There is an urgent need to develop low-temperature
mineralization modifications and in-situ regeneration
technologies for flow-bed systems. Resolving these limi-
tations will enhance the carbon-neutral industry lifecy-
cle efficiency of the chain, advancing waste valorization,
environmental remediation, and carbon neutrality goals.

6.4.2 Long-term ecological risk assessment
The widespread use of biochar could pose several risks,
including:

(D Toxicant leaching: feedstock-derived heavy metals,
PAHs, and dioxins may contaminate ecosystems. Sewage
sludge-derived biochar leaches PAHs at concentrations
up to 11.75 pg/L in leachates (Chen et al. 2019).

@ Soil microbiome disruption: biochar amendments
reduce abundance and activity of Microbacteriaceae and
Aeromicrobium, impairing soil ecosystem functionality
(Qiu et al. 2019).

@ Environmental toxicity: environmentally persis-
tent free radicals in biochar exhibit neurotoxicity to soil
biota, inhibiting their survival and reproduction (Xiang
et al. 2021).

@ Nanoparticle hazards: small biochar particles are
more readily ingested by organisms, thereby amplifying
the adverse effects of pollutant adsorption on organisms
(Peng et al. 2024).

Given these risks, the use of biochar, especially at high
concentrations, should be carefully evaluated for its long-
term impact on the environment and ecosystem.

7 Conclusions

Biochar—immobilized enzyme technology combines the
adsorption capacity of biochar with enzymatic catalysis,
offering an efficient and environmentally friendly solu-
tion for the remediation of water and soil pollutants.
This review synthesizes the application mechanisms,
emphasizing enzyme-—carrier interactions, the selection
of immobilization techniques, and remediation efficacy.
Biochar, as a carrier, offers advantages such as low cost,
high specific surface area, and abundant surface func-
tional groups. Through pyrolysis and surface modifica-
tion, biochar can optimize its compatibility with various
enzymes, significantly enhancing enzyme stability, activ-
ity, and reusability. Biochar—enzyme composites exhibit
significant synergy in removing diverse contaminants—
including organic pollutants, pharmaceuticals, dyes in
water, and organic compounds along with microplas-
tics in soil-enabling versatile remediation. Furthermore,
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biochar contributes carbon sequestration and soil
enhancement, amplifying its dual role in ecological res-
toration and carbon neutrality. Despite promising lab-
scale results, field deployment faces challenges such as
feedstock variability, enzyme deactivation, and long-term
ecological safety. Future research must prioritize intel-
ligent design platforms for optimized carrier—enzyme
compatibility, multifunctional composites, and rigorous
ecological risk assessments. The large-scale application
of biochar-immobilized enzyme technology requires
addressing challenges such as raw material cost, energy
consumption, and ecological safety. However, its poten-
tial in environmental remediation remains immense.
Through interdisciplinary innovation and technological
optimization, biochar—immobilized enzymes are poised
to provide significant solutions for global environmental
pollution control and sustainable industrial applications,
contributing to the advancement of green and low-car-
bon technologies.
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