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Abstract
Prolonged consumption of excess fluoride concentration (>1.5 mg/L) from

groundwater notably poses serious health effects, including dental and skeletal
fluorosis in the Rift Valley area of Ethiopia. In this study, a zeolite A supported
magnetite biochar composite (Z-A/M-BC) was synthesized through a pyrolysis
method for the removal of fluoride from groundwater. The as-synthesized adsorbent
was characterized using FT-IR, PXRD, SEM-EDX, PZC, and BET analysis to identify
the functional group, phase structure, surface morphology, elemental composition,
surface charge distribution, and surface area, respectively. The pHzpc determination
for Z-A/M-BC is found to be 6.75, suggesting a large portion of the adsorbent with
DPH less than this value becomes protonated and positively charged and thus is
favorable for fluoride removal through electrostatic attraction. Interestingly, the
BET analysis results also exhibited that the synthesized Z-A/M-BC composite had a
high surface area of 496.17 m?%qg, which is accessible for capturing fluoride from
groundwater. The adsorption study was commenced via optimization of reaction
parameters: pH, adsorbent dose, initial concentration (C,), and contact time. The
highest fluoride removal efficiency (95.80%) and capacity (6.39 mg/g) were recorded
at pH 5, 1.2 g/L of adsorbent dose, 6 h of contact time, and 10 mg/L of C, The

removal performance of the Z-A/M-BC composite was also tested in a real sample of
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groundwater having 12.25 mgy/L of fluoride C, which was collected from Kenteri
town, Ethiopia. It was found to be 88.98% removal efficiency and 7.27 mg/g capacity,
respectively. At last, the reusability study was conducted for 5 successive runs and
found 95.80%, 90.40%, 87.30%, 85.40%, and 70.20% removal efficiency for the first,
second, third, fourth, and fifth cycles, respectively. These confirm that the Z-A/M-
BC adsorbent is promising for the removal of fluoride from groundwater at a large

scale.
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Introduction

Fluorine is well known for its high electron affinity and reactivity and is
frequently found as fluoride ions. Fluoride is present in various minerals such as
fluorite, fluorapatite, biotite, cryolite, and topaz [1]. Wastes discharged into surface
and groundwater from various industries, such as fertilizer, electroplating,
semiconductor, glass, and ceramics industries, also increase the amount of fluorides
in surface and groundwater above the permissible level set by the World Health
Organization (WHO) [2]. According to the WHO guidelines, the maximum acceptable
limit of fluoride in drinking water is 0.5 to 1.5 mg/L [3]. Within the limit, fluoride is
vital for the prevention of tooth decay and supports the proper growth of bone
structure in human beings [1,4]. However, beyond the threshold limit, fluoride leads
to various diseases, including skeletal and teeth fluorosis [3], joint stiffness [5],
paralysis, thyroid dysfunction, and other gum diseases [1, 6, 7]. The problem spreads
throughout the globe, specifically in many tropical and subtropical countries,
including Libya, Iran, China, Iraq, South Africa, Kenya, and Ethiopia. In Ethiopia [7],
particularly in the Rift Valley areas, the problem is getting worse. For instance, the
research work conducted by Ebsa, G. [8] shows the high fluoride concentration
ranging from 3.8 mg/L to 12.7 mg/L in the Ziway district. According to Fito, J., et al.
report [9], the concentration of fluoride in the Rift Valley of Ethiopia also ranges
from 5 to 26 mg/L, which is significantly higher than the limits set by WHO.
Similarly, contemporary research conducted by Goémez-Hortigiiela and his co-
workers also confirms the presence of high fluoride concentrations (> 5 mg/L) in the
Rift Valley and lowland areas of Ethiopia [1]. Accordingly, reducing the fluoride
concentration in potable water below WHO guidelines is being demanded and due

substantial attention.



To date, numerous removal methods, including chemical precipitation [10],
membrane separation [11,12], ion exchange [13], and adsorption [14], are widely
used for the removal of fluoride. Most of them suffered with high costs, complicated
procedures, usage of toxic chemicals, and low recovery [10, 14]. For instance, the
chemical precipitation consumes large chemicals and generates secondary
pollutant (sludge) which has adverse effects on human health and aquatic life
[12,15]. An ion-exchange is vulnerable to the interference of other ions [16,
17]. Besides, it is relatively costly, and mostly limited on isoelectronic ions
[14]. Membrane-based methods such as reverse osmosis, electrodialysis, and
nanofiltration are highly effective for the removal of contaminates, however
the method is complicated, costly, and suffers from membrane fouling, which
is impractical for developing countries and rural areas [12, 18]. Consequently,
adsorption is found to be desirable for developing countries owing to its cost-
effectiveness, simplicity to operate, and environmental friendliness [1, 11, 15].
Moreover, it uses a wide range of adsorbent materials such as zeolite, activated
carbon, biochar, polymer, hydroxyapatite, and metal-organic frameworks (MOFs) for
the defluoridation of groundwater [6, 15, 16]. Herein, the Z-A/M-BC composite and

its pristine adsorbents were tested for the removal of fluoride from groundwater.

Zeolites are crystalline aluminosilicates, which consist of aluminum and silicon
atoms bonded through bridging oxygen atoms to adopt a tetrahedral framework
(TO4, T=Si, or Al) [17]. The structure and porosity (Fig. 1a) of zeolites provide a good
occasion for further modification with suitable motifs to develop efficient adsorbents
for various applications [1]. Zeolite-A (Z-A) is the most common zeolite family, having
high Al content and high cationic exchanger ability [18]. Due to its extensive sources,
stability, large surface area, and obtainability, Z-A is used for the adsorption of
cationic pollutants like heavy metals [18]. However, Z-A has a net negative charge
at the Al metal center (Fig. 1b), which rendered the application of Z-A for the
removal of fluoride from contaminated water [1, 18,19] due to columbic repulsive
force.



Fig. 1 porosity of Z-A (a), and electrostatic repulsion between zeolite surface

charge and fluoride (b) drawn by Adobe Photoshop [20].

Biochar (BC) is one of the most popular environmentally friendly and low-cost porous
materials for the adsorption of pollutants [22, 23]. BC has received much attention
owing to its high carbon content, surface-enriched chemistry, and stable structure
[12,19, 20]. Nevertheless, it possesses disordered structures, non-uniform sizes, and
lacks recyclability, which creates secondary pollutants after adsorption [13, 22].
These downsides will greatly limit the applications of BC for the removal of fluoride,
which needs magnetization with magnetic materials. Magnetite (FesO4) is an
inverted spinel possessing high chemical stability, high coercivity, excellent
chelation behavior, and high selectivity towards fluoride adsorption [20, 23]. Thus,
designing adsorbent materials with high adsorption efficiency and

recyclability is highly demanded.

In the present study, a Z-A/M-BC composite was synthesized for the removal of
fluoride from groundwater. In the Z-A/M-BC composite, Z-A provides structural
stability of the synthesized adsorbent [18]; FesO, enhances the recovery and the
defluoridation efficiency of the Z-A/M-BC composite. BC also conveys the
functionality and active sites for fluoride removal in Z-A/M-BC composite. Thus,
compositing Z-A and M-BC enhances the defluoridation efficiency of Z-A/M-BC
composite. The defluoridation studies were commenced by optimization of sorption

factors such as pH, adsorbent dose, C,, and adsorption time. Besides, the Box-



Behnken model was also applied using Design Expert 13 software to study the
mutual interaction effects of contact time, C,, and adsorbent dose during

defluoridation of groundwater.

Materials and Method
Chemicals and Reagents

Analytical graded chemicals: FeCl;.4H,0, 99% and FeCl;.6H,0, 97% was
supplied by Sisco Research Laboratories Pvt. Ltd., Delhi, India. C,HgO (96%, Sigma-
Aldrich), NaOH (98%, Merck), DMF (99%, Merck), CH3;COOC,H;5 (99%, Merck), HCI
(37%, Sigma- Aldrich), NaCl (99.5%, Maharashtra, India), NazCgH507.2H20 (98%,
UDYOG, India), C;H40, (99.8%, Pentokey Organy, India), and NaF (99%, Sigma-
Aldrich) were obtain from central laboratory, AASTU, Ethiopia. The corn (source of
corn cob) was purchased from a street market in Addis Ababa city, Ethiopia.
Furthermore, kaolin was collected from western Homa near Hossana, Ethiopia,
which was used as raw material for the synthesis of Z-A. Groundwater sample was

collected from Kenteri town, Bora woreda, Ethiopia.

Instruments

The phase structural and crystallinity of the synthesized adsorbent was
examined by X-Ray Diffraction Spectroscopy (XRD, Bruker-AXS D8, Advance Type,)
at Cu ka radiation (A =1.54 A°, 40 kV, 44 mA). The functional groups were analyzed
using Transform-Infrared Spectroscopy (F7-IR, iS50 ABX, Germany). The surface
area of synthesized adsorbent was scrutinized using Brunauer-Emmett-Teller (BET,
Quantachrome AUTOSORB-1, USA). The surface morphology and elemental
composition of synthesized adsorbent were also characterized by Scanning Electron
Microscopy coupled with energy dispersive spectroscopy (SEM-EDS, JEOL JSM-
6500F, Japan). The concentration of fluoride was measured using fluoride ion
selective electrode (Metrhom-6.0502.150, Germany).

Adsorbent Synthesis
Synthesis of magnetite (Fe3z04)
The FeszOs was synthesized through the co-precipitation method [24] at a 2:1

molar ratio of FeCls.6H20 to FeCl2.4H20 using as a precursor and NaOH as a



precipitating agent. To describe briefly: 4 g of FeCl..4H20 and 8 g of FeCls.6H20
were dissolved in 180 mL of distilled water and stirred for 2 h at 70 °C. The 4 M
NaOH solution was added dropwise into the solution till the pH reached 10 [20, 25].
The solution was allowed for 12 h to precipitate at room temperature. The
precipitate was separated via magnetic bar and washed with distilled water and
acetone [20, 26]. Hereafter, the precipitate was oven-dried at 60 °C for 6 h.

Synthesis of BC and M-BC composite

Initially, the BC was synthesized through pyrolysis of corn cobs according to the
procedure [27, 28] with a little bit of modification. The corn cob was dried and
crushed into powder. 5 g of powder was pyrolyzed in a muffle furnace at 450 °C for
3 h under a 5 °C min~! N2 gas flow rate [29]. Afterward, the BC was ground and
sieved using 100 mm Mesh sieve. Secondly, the BC was magnetized by dispersing
10 g of BC in 200 mL of distilled water with continuous stirring for 30 min [30]. In
another beaker, 7 g of FeS0O4.7H20 and 14 g of FeCls.6H20 were dissolved in 100
mL of distilled water and stirred for 1 h at 60 °C. This solution was transferred into
BC suspension and stirred for another 1 h at 60 °C. Then, 4 M of NaOH solution was
added dropwise at ambient temperature to adjust the pH to 10 [25]. Then, the
solution was allowed 12 h to co-precipitate. The precipitate was collected by
magnetic bar and dried for 12 h at 60 °C.

Synthesize of Z-A

Z-A was synthesized through the hydrothermal method according to the
procedure reported previously [18, 20]. To describe briefly: 40 g of raw kaolin was
soaked with 400 mL of distilled water for 4 days with continuous stirring. The
suspension was centrifuged and dried. The treated kaolinite was calcined at 700 ¢C
for 3 h. Fine powder metakaolin was treated with 4 M NaOH-hot water (1:5 m/v
ratio) and heated in a water bath for 1 h at 70 °C for gel formation (Scheme 1). The
gel was aged for 12 h at room temperature and heated at 110 2C for 12 h in a Teflon-
lined steel autoclave. The product was centrifuged, washed many times with

deionized water, and dried in an oven at 80 2C.
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Scheme 1 Synthesis of Z-A through hydrothermal method.

Synthesis of Z-A/M-BC composite

Z-A/M-BC composite was synthesized by the pyrolysis method [18,31]. Typically:
3.6 g of Z-A and 7.2 g of M-BC were dispersed in 150 mL of deionized water [32].
The mixture was stirred for 3 h and allowed to react at ambient temperature for 24
h. The suspension was centrifuged and dried at 80 °C in an oven for 6 h [26]. The
dried solid was pyrolyzed (5 °C/min) at 450 °C for 3 h [33]. The crucible was

desiccated and the resulting composite material was ground.

Adsorption Studies
Determination of zero-point charge (pHpc)
The zero-point charge of Z-A/M-BC absorbent was investigated at 3, 5, 7, 9, and
11 pH using 05 M HCl and 0.05 M NaOH [20, 34]. 1.5 g of the synthesized adsorbent
was added into each 50 mL of the pre-pH adjusted solution. The solution was shaken
for 90 min using an orbital shaker and allowed for 20 h. Hereafter, the adsorbent
was separated by an external magnetic bar and the pH values of each filtrate were
recorded. The pHzpc of the adsorbents was identified from a common intersection
point of the curve of initial pH and their corresponding ApH change [35].
Parameters optimization
Firstly, ionic strength adjustment buffer type I (TISAB-I) was prepared
according to the procedures reported by Gao, Y. et al. and Teju, M. et al. [7,20,



36]. To describe briefly: 58 g of NaCl and 7 g of NazCgHsOH.nH,O were dissolved
in 500 mL distilled water. And then 57 mL. CHsCOOH was added to the solution.
The pH of solution was maintained to 5.3 using 0.5 M NaOH. The standard solutions
(2, 4, 6, 10, and 14 mg/L) were also prepared through serial dilution from the stock
solution for sketching of the calibration curve (Fig. S1). Then after, the removal
study was commenced by optimizing the removal parameters such as pH,
adsorbent dose, C,, and contact time [3, 16, 37].

The impact of pH on the removal test was studied at pH values of 3, 5, 7, 9, 11,
and 13 using 0.05 M HCI and 0.05 M NaOH solutions at 1.5 g/L of adsorbent dose,
10 mg/L of C,, and 6 h of contact time [35]. The effect of C, was examined at 5, 10,
15, 20, 30, and 40 mg/L [9] (contact time = 6 h, pH = 5, adsorbent dose = 1.5 g/L).
The effect of adsorbent dose on fluoride removal efficiency was studied at
adsorbent doses of 0.5, 1, 1.5, 2, and 2.5 g/L (C, = 10 mg/L, contact time = 6 h, pH
= 5). The impact of contact time was also studied by varying the adsorption time
from 3 to 15 h (3, 6, 9, 12, 15 h) at a pH of 5, 1.5 g/L of adsorbent dose, and 10
mg/L of C,. The mixture was shaken at 160 rpm for 90 min, equilibrated for 6 h,
and then separated by an external magnet. After a while, 10 mL of TISAB was
added to a polyethene bottle containing 20 mL filtrate, and the removal test was
measured using FISE [20,38]. A real water sample analysis was also carried out by
taking groundwater having 12.25 mg/L an C, from Kenteri town, Bora Woreda,
Ethiopia, at confined conditions. The removal capacity (Qe), and efficiency (R) were

evaluated using Equations (1) and (2), respectively [9,20].
— (Co 'Ce)V

Qe = 2
(1)

%R = 22 x 100%

(2)

Where, Cy and C, represent the initial and equilibrium fluoride concentration (mg/L),

respectively, V (mL) is the volume of solution, W (g) is the amount of the adsorbent.

Reusability test
The reusability of Z-A/M-BC was commenced by dispersing of fluoride exhausted
adsorbent in 50 mL of 0.05 M NaOH solution and was shaken using an orbital shaker

at 160 rpm for 90 min for desorption of fluoride [20, 39]. The adsorbent was



separated and an oven dried at 60 °C overnight. Thereafter, the activated Z-A/M-BC
was reused for five successive removal tests at optimum conditions (contact time =
6 h, pH = 5, adsorbent dose = 1.5 g/L, C, = 10 mg/L).

Results and Discussion
Characterization of Adsorbents
PXRD analysis

The PXRD peak in the range of 26 = 10-30° was observed, which confirms the
formation of amorphous BC (Fig. 2a). The PXRD peaks for FesOs at 20 = 30.33°,
35.53°, 43.42°, 57.08°, and 63.02° corresponded to (220), (311), (440), (511), and
(440) the lattice planes, respectively (Fig. 2a). This result closely coincided with
PXRD data reported by [20, 40] and verified the formation of FesO4. The broad peak
from 20-30° and at 18.36°(111), 30.33°(220), 35.47°(311), 43.02(400), 57.14°(511),
and 62.59°(440) indicate the coexistence of FesOs and BC in the M-BC composite
(Fig. 2a); the peak location of FesO4 did not alter after loading of FesO4 onto BC [20,
31]. Besides, the presence of new peaks at 7.16° 10.16°, 13.92°, and 21.71°
suggests the formation of new interactions between FesOs4 and BC in the M-BC
composite [18,20]. The existence of a peak at 20 = 30° indicated the existence of Z-
A, which played a major role in the Z-A/M-BC composite formation [26]. Besides, the
PXRD peaks of FesOs and M-BC also appeared in their composite Z-A/M-BC
composite, demonstrating the co-occurrence of Z-A and M-BC in the Z-A/M-BC
composite material (Fig. 2b). Additionally, the occurrence of an intensified peak at
23.72° indicated the strong interaction between Z-A and M-BC, while the presence
of new peaks at 69.10° and 77.42° suggested the formation of new bonds between
Z-A and M-BC in the Z-A/M-BC adsorbent [41].

The average particle size of the Z-A/M-BC composite was s estimated [20, 42]
using Scherer’s Equation (3) and found to be 27.98 nm. The BET result also indicates
the porous nature of the synthesized Z-A/M-BC adsorbent with 496.17 m2/g surface
area and 0.08936 cm3/g pore volume (Fig. S2 and Table S1).
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Where D is the crystallites™ size, k is Scherer’s constant depending on the shape
of particles (0.94), //wavelength of the X-ray radiation (0.15418 nm for CuK[), [J is

the full width of half maximum (FWHM) intensity (in degree which converted to
radian), and [] is the diffraction (Bragg) angle.
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Fig. 2 PXRD results of synthesized adsorbents.
FT-IR analysis

The representative peak of BC at 3209 cm~! corresponded to the -OH stretching
vibration, which is ascribed to water molecules [43]. Peaks at 3040 and 2912 cm™!
are attributed to stretching variations of =C-H and -C-H (Fig. S3a), respectively [18,
29]. Peaks at 1574 and 1157 cm~! correspond to C=C stretching variations in
aromatic groups and C-O stretching vibration, sequentially [41]. Peaks at 871, 805,
and 750 cm~! reveal the existence of inorganic impurities (Si-O/Fe-O bonds), which
are already shown in the EDX result (Fig. 4a). Peaks at 971 and 781 cm™! are
attributed to the symmetric and asymmetric vibration bands of the TO4 tetrahedron
(Fig. S3b) (where T = Si or Al), respectively [26]. Wavenumbers at 542 and 458 cm™!
are attributed to asymmetric external and symmetric internal vibrations of the
double ring of Si and Al TO4 [18, 44]. Wavenumbers around 3400 and at 1648 cm~?
suggested the stretching and bending vibration of H20 molecules in the Z-A
framework, respectively [45].

The FT-IR peaks at 430, 538, 794, and 889 cm~! are attributed to Fe-O bond
formation in Fe3Os. Wavenumbers at 1629 and 3367 cm~! also signify the bending

and stretching vibration of the -OH on the surface of FesOs sequentially (Fig. S3c).



The FT-IR peak at 580 cm~! (Fe-O) in the M-BC composite also confirmed the
presence of FeszOa4 in the modified M-BC composite [40]. Attenuation of -OH intensity
in the M-BC composite (Fig. S3d) proved the importance of hydrogen bonding in M-
BC composite formation [31]. The prominent peak of Z-A/M-BC at 1438 cm™! is
ascribed to the symmetric stretching vibration of the carboxylate ion. Peaks around
3357 and at 1638 cm~! corresponded to the stretching and bending vibration of O-
H sequentially. The peak at 2359 cm~1 is associated with the C-O stretching vibration
[46]. Peaks at 972, 553, and 488 cm~! reveal the presence of M-O bonds (M = Si, Fe,
Al) (Fig. S34d).

SEM analysis
The SEM images of synthesized adsorbents were shown in Fig. 3a-d. The SEM

result of Z-A revealed the presence of a cubic crystal structure with a size in the
0.565-4.25 pm range (Fig. 3a). The SEM image of pristine BC is noticed to be rough
and irregular with average sizes of 8.74 pm (Fig. 3b). The SEM image of the M-BC
composite shows them stuck to each other because of the presence of large surface
energy [44] and spherical-shaped particles of FesO4 (Fig. 3c). The average size of M-
BC was found to be 0.47 ym. The SEM image of Z-A/M-BC (Fig. 3d) is observed as
nearly spherical with an average size of 0.098 pm [47].
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Fig. 3 SEM images of Z-A (a), BC (b), M-BC (c) and Z-A/M-BC (d).
EDX results

The EDX band of pristine BC contains the anticipated elements of C and O, which
are the main components of a distinctive BC material (Fig. 4a). The %weight of
elemental composition of Z-A is found to be 20.84% Si, 17.46% Al, 48.58% O, and
12.85% Na, which confirms the purity of the synthesized material (Fig. 4b). As
anticipated, the ratio of Si/Al for the as-synthesized Z-A was found to be 1.19, which
is close to 1. This is further used to support the formation of pure Z-A [20]. The M-
BC adsorbent encompasses 52.28% C, 22.07% 0O, 4.78% Al, 5.90% Si, 1.97% Ca, and
12.49% Fe [18] as it demonstrated in Fig.4C. The anticipated elemental
compositions of the Z-A/M-BC composite were found to be 47.25% C, 31.55% O,
3.03% Na, 2.62% Al, 3.65% Si, and 11.88% Fe (Fig. 4d). The elemental mapping

distribution of synthesized adsorbents was illustrated in Fig. S4.
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Fig. 4 Elemental analysis of BC (a), Z-A (b), M-BC (c), and Z-A/M-BC (d).

Adsorption Study

Determination of zero-point charge

In this work, the surface zero-point charge of Z-A/M-BC is determined and
found to be 6.75 (Fig. 5). In this regard, when the solution pH is less than the

pHZPC values, the net surface charge of the synthesized adsorbent becomes

protonated and positively charged, having a greater attraction with fluoride. When
the pH is above the PZC value, the surface of synthesized adsorbents is

deprotonated (hydroxyl groups developed), which results in low removal capacity

owing to their electrostatic repulsion force [18, 20].
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Fig. 5 Zero-point charge of Z-A/M-BC composite.

Adsorption factors

The impact of pH on fluoride removal efficiency was investigated at different pH
values (3, 5, 7, 9, 11, and 13) and resulted in 90.20%, 89.90%, 81.30%, 64.50%,
54.10%, and 51.10%, respectively (Fig. 6a). The highest removal efficiency was



obtained at pH of 3 and 5, respectively. However, pH 3 is inadequate for the practical
removal of fluoride from groundwater. To offset this, all fluoride removal tests were
conducted nearly neutral (pH = 5). After a while, the removal efficiency is decreased
due to competition between OH- and fluoride ions for adsorption sites and coulombic
repulsion force. The removal efficiency of Z-A/M-BC was found to be 75.00%,
88.91%, 91.50%, 93.80%, and 94.40% at 0.5, 1.0, 1.5, 2, and 2.5 g/L adsorbent doses
(Fig. 6b), respectively, which increased with adsorbent dose. This is possibly due to
the increment of free active sites on the adsorbent surface [1, 48]. Nevertheless, the
removal efficiency shows a negligible increment after 1.5 g/L; this may be due to the
saturation of adsorbent sites [48].

The influence of C, on the removal efficiency of Z-A/M-BC was executed at 5, 10,
15, 20, 30, and 40 mg/L and resulted in 83.60%, 92.80%, 90.53%, 78.75%, and
67.63%, respectively (Fig. 6¢). The maximum adsorption efficiency (92.20%) was
attained at 10 mg/L C, of fluoride. However, exceeding 10 mg/L, the removal
efficiency decreased. This may be due to the competition among adsorbates for fixed
active sites of the synthesized adsorbent [20]. The removal efficiency of Z-A/M-BC
was found to be 80.30%, 92.20%, 93.10%, 93.80%, and 95.60% at contact time of 3,
6, 9, 12, and 15 h, respectively (Fig. 6d). The adsorption efficiency shows a slow
increment after the optimum adsorption time (6 h). Consequently, the adsorption

efficiency of synthesized increased contact time [1,16,50].
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Fig. 6 Impacts of (a) pH, (b) adsorbent dose, C, (c), and contact time (d) on

removal efficiency and capacity of Z-A/M-BC composite.

Adsorption isotherms

The adsorption isotherm is used to indicate whether the adsorbent surface is
homogeneous or heterogeneous in which the adsorbate molecules are distributed
over the surface [1]. The adsorption isotherm was tested using the Langmuir and
Freundlich isotherms (Fig. 7). The linear form of Langmuir and Freundlich
isothermal models were displayed using Equations (4) and (5), respectively [19,39].
Ce 1

Qe ~ K.Qm
Ce

+Q_m

log Qe = logKr
1
+ ﬁlog Ce (5)

where C, is the equilibrium concentration of F- in the solution (mg/L); Q. is the
amount of fluoride adsorbed per unit weight of Z-A/M-BC (mg/g), Qmn is the maximum
adsorption capacity (mg/g) and Kp is the Langmuir constant related to energy
(L/mg), Kr and n are dimensionless constants which are relative adsorption capacity
and intensity of adsorption, respectively.

The values of Qm and KL of the linear expression of the Langmuir adsorption
isotherm were calculated from the slope and intercept of the linear plot of Ce versus
Ce/Qe. The small values of KL (0.2754 L/mg) indicate the weak interaction of



adsorbate with the Z-A/M-/BC surface. Besides, the low value of (R?2 = 0.86777)
doesn’t explain the defluoridation activities adequately. In the Freundlich adsorption
isotherm, the values of 1/n (0.4829) lying between 0.1 and 1.0 and n (2.071) lying in
10 > n > 1 (Table S2) imply that the adsorption of fluoride on the Z-A/M-BC surface
is privileged. Nevertheless, the values of KF and R? were found to be 5.416 mg/g
and 0.6334, respectively [39], which is far from the model. Unfortunately, neither
the Langmuir nor the Freundlich isotherm model was well fit to express the

defluoridation activities.
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Fig. 7 Langmuir adsorption isotherm model (a), and Freundlich adsorption
isotherm model (b).

Kinetic Models

The pseudo-first-order and pseudo-second-order use to familiar with the
adsorption mechanisms and adsorption rate [51]. The fitness of pseudo-first order
and pseudo-second order were evaluated using Equations (6) and (7), respectively.

pseudo - first order : log(Qe - Qt)

Kyt
2.303

= logQe - (6)

t
pseudo - second order :ﬁ

1 t 4
mK;Qe +@ (7)

where Q. is the amount of fluoride adsorbed per unit weight of Z-A/M-BC at
equilibrium (mg/g), Q; is the amount of fluoride adsorbed per unit weight of Z-A/M-



BC (mg/g) at time t (min), and k; and k; is the first and second pseudo-order rate
constant for the adsorption (min'!), respectively.

The sketch of log (Qe-Qt) against time (Fig. 8a) gives a linear relationship of the
pseudo-first-order rate. The correlation factor (R?) of both pseudo-first-order
(0.9515) and pseudo-second-order kinetics (0.999) are fitted (Table S3). However,
the pseudo-first-order model is not appropriate to describe the adsorption kinetics
since the theoretical adsorption capacity (Qm fit = 4.44 mg/g) was far from the
experimental value (Qm exp. = 6.147 mg/g). On the other side, the linear plot of t/Qt
versus time shows a higher coefficient (R? = 0.999) for the pseudo-second-order
kinetic model (Fig. 8b). Furthermore, the theoretical adsorption capacity (Qm fit =
6.62 mg/g) was closer to the experimental adsorption capacity (Qm exp. = 6.147
mg/g). Thus, the adsorption process best obeys the pseudo-second-order kinetic
model in which the removal of fluoride is primarily controlled by chemisorption
processes such as chemical precipitation, hydrogen bonding, ion exchange, and
electrostatics [18,20].
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Fig. 8 Pseudo-first-order kinetics model (a), and pseudo-second-order kinetics
model (b).

Response surface method (RSM) study

The mutual interaction impacts of defluoridation parameters (contact time, C,, and
adsorbent dose) were also detected (at 17 runs) using the Box-Behnken model (Table
S4) at constant pH = 5 Hereafter, the response and the input variables are expressed
using a quadratic model-coded Equation (8).



%R = 86.57 + 1.924A - 3.35B + 1.20C + 1.06AB + 860AC + 0.1550BC - 0.625A2
-0.3125B2
+ 0.2475C?2 (8)

Where, A, B, and C are the coded values of the operation variables for adsorbent

dose, C,, and contact time, respectively.

The model fitness was checked based on the values of the coefficient of
determination (R2). The proximity of R2 value to unity (R? = 0.9973), and the intimacy
of adjusted (R? adj = 0.9939) and predicted R? (R2 pred = 0.9574) values to each
other with the difference < 0.2 suggest the fitness of model [18]. The predicted R2
value is reasonably agreed with the adjusted R2 value, which approves the model's
fitness (Table S5). Besides, the precision that measures the signal-to-noise ratio (AP
= 65.34) is greater than 4; indicating a good signal and accurate model fit [18]. The
F-value of 291.61 suggests that the model is significant. The P-values < 0.0500
indicate the significance of the model. In this regard, A, B, C, AB, AC, and A? are
significant (Table S5). Consequently, the Box-Behnken model was verified and

statistically proved to be reliable and adequate in defluoridation of drinking water.

The mutual impacts of contact time and C, exhibited a positive effect on the
defluoridation efficiency (Fig. 9). But individually, the C, showed negative effects
whereas the contact time showed a positive impact on the removal of fluoride [18].
The mutual interaction impacts of Z-A/M-BC dose and contact time on the removal
of fluoride showed positive effects (Fig. 10). The collaboration of adsorbent dose and

C, of fluoride (Fig. 11) also shows favorable effect on the removal of fluoride.
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Figure 10. Two-dimensional and three-dimensional surface plots showing the
effect of adsorbent dose and contact time on the removal of fluoride by Z-A/M-BC
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Figure 11. Two-dimensional and three-dimensional surface plots showing the
impact of C, and contact time on the removal of fluoride by Z-A/M-BC composite.

Real Sample Analysis and Reusability Test

Before applying the removal test, the content of anions in the groundwater (CI,
NOs3, COs32~, SO42~, and PO43~) was analyzed [20, 51] and the results were tabulated
in Table S6. Then the performance of the as-synthesized adsorbent was applied for
defluoridation of a real water sample having 12.25 mg/L C,, which was collected
from Kenteri town, Ethiopia. The equilibrium concentration of fluoride was reduced
to 1.35 mg/L (Table S6), which meets the acceptable limit of fluoride concentration
in potable water endorsed by WHO [20]. The removal efficiency of synthesized
adsorbents (Z-A, BC, M-BC, and Z-A/M-BC) was found to be 46.45%, 51.82%, 44%,
and 88.97%, respectively (Fig. 12a). The Z-A/M-BC composite relatively shows better
removal efficiency than its pristine materials. However, the Z-A/M-BC composite
shows relatively lower removal efficiency in a real water sample than in a simulated
water sample. This could be due to the presence of different matrix ions in
groundwater (Table S6). The economic viability of the as-synthesized adsorbents
was checked by the reusability test. The reusability test of the synthesized Z-A/M-
BC composite was found to be 95.80%, 90.40%, 87.30%, 85.40%, and 70.20%
removal efficiency for the first, second, third, fourth, and fifth cycles, respectively,

which is almost constant removal efficiency from the first to fourth cycles (Fig. 12b).
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Comparison of Z-A/M-BC removal efficiency with previous reports

The fluoride removal efficiency of Z-A/M-BC was compared with other
adsorbents which was reported previously (Table 1). Accordingly, the synthesized
adsorbent shows good defluoridation efficiency. Thus, the finding of this research
work suggests that the Z-A/M-BC is a good adsorbent for the defluoridation

groundwater.

Table 1 Comparison of the defluoridation efficiency of Z-A/M-BC composite with

Previous Reports.

S. NO Adsorbents Removal efficiency  Ref.
(%)
1 | Fe3Oy4/graphene/alginate nanocomposite  85.50% [42]
2 | Lanthanum-doped - activated carbon 92.00% [2]
(AC-La),
3 | Zirconia/Zeolite (ZrO,-Ze) 94.89% [346]
4 | Activated carbon of Catha edulis 73.00% [9]
5 | Zirconium-MOF (MOF-801) 95.20% [17]
6 | Aluminum hydroxide-loaded zeolite 92.00% [6]
7| Z-A/IM-BC 95.80% This
study

Adsorption Mechanisms

The removal mechanism of fluoride via Z-A/M-BC involves surface
complexation/precipitation, ion exchange, hydrogen bonding, and electrostatic



interaction (Fig. 13). The hydroxyl groups (M-OH) are substituted by fluoride, and
the removal of fluoride proceeds through anion exchange [20]. The defluoridation of
fluoride also proceeds via a complexation/precipitation mechanism; fluoride is a
hard base that is highly affinized to hard acids (Al**, Fe3*, and Si**) to form stable
products. Most importantly, the defluoridation mechanism occurred via electrostatic

interaction on the basis of PZC.

Physical Adsorption

Fig.13 Proposed removal mechanism of fluoride via Z-A/M-BC composite.

Conclusions
In the present work, Z-A/M-BC adsorbent was synthesized for the removal of

fluoride groundwater. The crystalline size, functional groups, surface area,
elemental composition, and morphology of the synthesized Z-A/M-BC composite
were also characterized by using PXRD, FT-IR, BET, and SEM-EDX to confirm the
formation of adsorbent material. The removal efficiency of Z-A/M-BC adsorbent was
started by optimizing pH, adsorbent dose, C,, and contact time. The maximum
removal efficiency (95.80%) and capacity (6.37 mg/g) were obtained at pH 5, an
adsorbent dose of 1.5 g/L, a contact time of 6 h, and C, of 10 mg/L. Furthermore,
the reusability study was found to be 95.80%, 90.40%, 87.30%, 85.40%, and 70.20%
removal efficiency for the first, second, third, fourth, and fifth turns, respectively.
This suggests that the Z-A/M-BC composite is efficient and can be reused for the
removal of groundwater. The as-synthesized adsorbent was also applied for the
defluoridation of a real water sample having 12.25 mg/L fluoride C,, which was

reduced to 1.35 mg/L, which meets the permissible limit of fluoride concentration in
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drinking water recommended by WHO. Thus, the synthesized adsorbent is useful for

the removal of fluoride from groundwater.
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