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Introduction: Tobacco black shank (TBS), caused by Phytophthora nicotianae, 
poses a serious threat to tobacco production, highlighting the urgent need for 
sustainable management strategies. Meanwhile, tobacco stalk, a byproduct of 
tobacco cultivation, required effective recycling and value-added utilization.
Methods: In this study, four types of tobacco stalk derived biochar (unmodified 
biochar, H3PO4-modified biochar, ball-milled biochar, and ball-milled H3PO4-
modified biochar) were prepared to evaluate their efficacy in controlling TBS. 
We evaluated physiological indices, including chlorophyll content, antioxidant 
enzyme activities, reactive oxygen species levels, and phytohormone profiles, 
along with changes in tobacco leaf metabolites, to explore the impact of 
modified biochar on diseased tobacco plants.
Results: The ball milled-phosphorus modified biochar (BPT) exhibited a 
dense and uniform pore structure, markedly increased surface P content, and 
introduced abundant -OH and P-O functional groups, resulting in the most 
effective disease suppression. Soil application of BPT significantly reduced 
lesion length in infected plants, enhanced chlorophyll content, increased 
the activities of antioxidant enzymes [catalase (CAT), peroxidase (POD), and 
superoxide dismutase (SOD)], decreased malondialdehyde (MDA), hydrogen 
peroxide (H2O2), and superoxide anion (O2

−) levels. Moreover, BPT modulated 
phytohormone levels elevating indole-3-acetic acid (IAA), jasmonic acid (JA), 
abscisic acid (ABA), and salicylic acid (SA) and reshaped amino acid, lipid, and 
phenolic acid profiles. Metabolic pathway analysis indicated that BPT promoted 
phenylpropanoid as well as phenylalanine, tyrosine, and tryptophan biosynthesis, 
thereby strengthening tobacco resistance to P. nicotianae.
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Discussion: This study elucidate the mechanisms underlying biochar-
induced disease resistance and provide a promising approach for sustainable 
management of tobacco black shank using modified biochar.

KEYWORDS

antioxidant enzymes, metabolites, modified biochar, phytohormones, tobacco black 
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1 Introduction

Soil borne pathogens are among the most destructive plant 
pathogens due to their transmission through the soil. These diseases 
severely damage root systems and can cause unpredictable effects on 
the aerial parts of plants, including stem rot, tissue discoloration, leaf 
wilting, and even plant death (Bhatt et al., 2024). Tobacco black shank 
(TBS), caused by Phytophthora nicotianae (P. nicotianae) is a 
representative example of such threats. Phytophthora nicotianae can 
survive in soil for long periods and infect tobacco plants at nearly any 
growth stage, resulting in root rot, blackened stems, wilted, and 
significant yield losses (Wang et al., 2022; Han et al., 2016). Current 
TBS management strategies include crop rotation, the use of resistant 
varieties, chemical fungicides, and biological controls. Although 
chemical fungicides remain the most widely used approach, their 
excessive application leads to environmental contamination, chemical 
residues, and the development of fungicide-resistant strains (Wang et 
al., 2020). The cultivation of resistant varieties and biological control 
methods, while effective, are costly and time-consuming (Ma et al., 
2024; Yu et al., 2024). Therefore, developing green, safe, and cost-
effective strategies for TBS control is urgently needed.

China is the world’s largest producer of tobacco, ranking first in 
both cultivated area and yield. During tobacco production and 
processing, large quantities of tobacco residues such as stalk are 
generated (Liu et al., 2015). These residues are often burned or 
dumped, causing environmental pollution and resource waste 
(Banožić et al., 2020). Consequently, finding sustainable approaches 
to utilize tobacco stalks has become an important environmental and 
economic concern.

In recent years, biochar (BC) derived from pyrolyzed tobacco 
stalks has attracted growing attention (Yu et al., 2021; Yang et al., 
2022; Zhao et al., 2024). BC is a carbon-rich, porous material 
produced from the pyrolysis of organic biomass (e.g., crop residues, 
manure) under limited oxygen conditions (Azeem et al., 2021). As a 
soil amendment, BC improves soil structure, enhances nutrient and 
water retention and reduces nutrient leaching. Studies have 
demonstrated that BC can increase crop yields, and its beneficial 
effects tend to accumulate over time (Major et al., 2010). For example, 
BC improved quinoa yield and quality by enhancing soil moisture and 
nutrients (Daraei et al., 2024), and it promoted the abundance and 
activity of soil microbial communities, which directly support plant 
growth (Ding et al., 2016; Ng et al., 2022). BC has also shown 
effectiveness in mitigating abiotic stresses such as heavy metal toxicity 
and drought. BC immobilized Cu, Pb, Cd, and Zn in soil, thereby 
reducing their uptake by plants and increasing biomass (Qian et al., 
2024). Similarly, Kumar et al. (2024) found that BC application 
enhanced the shoot and root biomass of coriander and Bengal gram 
under drought stress by improved soil structure and moisture 
retention.

However, despite its carbon-rich composition, BC often contains 
limited nutrients and functional groups. Thus, BC modification 
through chemical, physical or biological means can enrich its surface 
properties, enhance stability and improve performance (Hafeez et al., 
2022). Physical ball milling, as a green and efficient method for 
biochar modification, enables unprocessed biochar to develop a 
more uniform pore structure and a greater abundance of surface 
functional groups, thereby enhancing its thermal stability and cation 
exchange capacity. For instance, Quan et al. (2025) evealed that ball 
milling led to the formation of additional -OH and -COOH 
functional groups on the surface of corn straw biochar, which 
subsequently enhanced its adsorption capacity for ammonium 
nitrogen. Zhang et al. (2025) indicated that ball milling increased the 
specific surface area and surface functional groups of straw biochar 
and enhanced adsorption performance. Chemically modified 
biochar shows potential in plant growth and plant disease 
suppression. Phosphorus-modified BC has been shown to be 
effective in enhancing soil phosphorus levels, thus facilitating plant 
growth (Mbasabire et al., 2024). phosphorus-modified BC also 
significantly increased soil nutrients content, while reducing Cd and 
Pb translocation to lettuce (Han et al., 2023). BC containing 
phosphate has also been used as a slow-release fertilizer to enhance 
soil nutrients and fertility (Ding et al., 2016). In the case of 
co-modified biochar, ball milled phosphorus-loaded BC effectively 
adsorbed heavy metals, improving soil conditions for plant growth 
(Zhang et al., 2021). However, the effect of co-modified biochar on 
plant disease resistance has received limited attention.

To achieve the dual goals of sustainable utilization of tobacco 
stalks and ecological management of tobacco black shank (TBS), this 
study focused on developing and evaluating modified biochar derived 
from tobacco stalks. One pristine biochar, three types of modified 
biochar H3PO4-modified, CaCl2-modified, and MgCl2-modified 
tobacco stalk biochar’s along with their corresponding ball-milled 
variants, were prepared and assessed for their efficacy in suppressing 
TBS caused by P. nicotianae. Among these, the ball-milled H3PO4-
modified biochar exhibited the most effective disease control 
performance. Based on this finding, four representative biochars 
unmodified tobacco stalk biochar, H3PO4-modified biochar, ball-
milled modified biochar, and ball-milled H3PO4-modified biochar 
were selected for further investigation. The study aimed to 1) Evaluate 
the influence of different biochar types on TBS incidence and tobacco 
plant health; 2) Elucidate the physiological and metabolic mechanisms 
by which biochar enhances tobacco resistance to P. nicotianae; and 3) 
Provide an eco-friendly and value-added approach for recycling 
tobacco waste into a sustainable disease management material. The 
outcomes of this research not only promote the effective reuse of 
tobacco processing byproducts but also contribute to the development 
of a green, safe, and cost-effective strategy for controlling TBS in 
tobacco cultivation systems.
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2 Materials and methods

2.1 Preparation for biochar

Tobacco stalks were collected from the Nanyang tobacco-growing 
region, Henan Province, China. The stalks were washed thoroughly 
with deionized water, air-dried, and ground into fine particles. Four 
types of biochar and their derivatives were prepared as follows: 1) 
Tobacco stalk biochar (T): Crushed stalks were pyrolyzed in a tube 
furnace (Model TL1200, BEQ, Anhui, China) at 600 °C for 120 min 
under a nitrogen flow of 0.2 L /min, with a heating rate of 10 °C/min. 
The resulting biochar yield was approximately 25.3%; 2) Ball-milled 
biochar (BT): A 5 g portion of T was milled using a planetary ball mill 
(Model XQM-0.4A, Tencan Power, Changsha, China) with stainless 
steel grinding jars (500 mL) and balls (diameter: 5 mm, ball-to-
powder ratio 20:1). The milling process was conducted at 500 rpm for 
120 min; 3) Phosphoric acid-modified biochar (PT): Five grams of T 
were mixed with 40 mL of 85% H3PO4 in a hydrothermal reactor and 
activated at 200 °C for 720 min; and 4) Ball-milled phosphoric acid-
modified biochar (BPT): The prepared PT was further processed by 
ball milling under the same conditions used for BT. Additionally, the 
preparation procedures for CaCl2- and MgCl2-modified biochars, and 
their ball-milled variants, are described in Supplementary Text S1.

2.2 Tobacco pot experiment

Seeds of flue-cured tobacco (Nicotiana tabacum L., cultivar K326) 
were provided by Henan Agricultural University. The physicochemical 
properties of the experimental soil are listed in Supplementary Text S2. 
The P. nicotianae isolate (XC-26-5) was provided from College of Plant 
Protection, Henan Agricultural University and has been deposited at 
the China Center for Type Culture Collection (CCTCC) under the 
accession number CCTCC M 2024037. The strain was cultured on 
oatmeal agar (OMA) at 28 °C in the dark. Tobacco seeds were surface-
sterilized in 10% (v/v) NaClO for 3–5 min, followed by 75% ethanol 
for 30 s, rinsed three to four times with sterile water, and soaked for 
8 h. The sterilized seeds were germinated in seedling trays filled with 
sterilized substrate soil. At the four-leaf-one-heart stage, uniform 
seedlings were transplanted into pots containing 2 kg of soil mixed 
with biochar (10 g) at a rate of 0.5% (w/w) following Jaiswal et al. 
(2014). Each pot contained one plant.

Eight types of biochar were initially tested include T (unmodified), 
CaT (CaCl2-modified), MgT (MgCl2-modified), PT (H3PO4-
modified), BT (ball-milled), BCaT (ball-milled CaCl2-modified), 
BMgT (ball-milled MgCl2-modified), and BPT (ball-milled H3PO4-
modified). After 30 days of transplantation, plant growth was observed 
(Supplementary Figure S2), and using a sterilized puncher, 
P. nicotianae mycelial plugs (5 mm in diameter) were inoculated onto 
the stem surface (Ma et al., 2024). Seven days of post-inoculation, the 
stem bases were observed for blackening to confirm successful 
infection by P. nicotianae, and lesion lengths were measured, and the 
middle leaves were collected and stored at −80 °C for further analyses. 
Based on the superior growth and disease suppression observed in PT 
and BPT treatments (Supplementary Figure S3), these two, along with 
T and BT, were selected for subsequent physiological and biochemical 
investigations. The experiment comprised 10 treatments divided into 
two groups: 1) Non-inoculated: N-CK, N-T, N-BT, N-PT, N-BPT and 

2) Inoculated: CK, T, BT, PT, BPT. Each treatment included three 
biological replicates arranged in a completely randomized design.

2.3 Physico-chemical characterization 
analysis biochar

The surface morphology of T, BT, PT, and BPT were characterized 
using scanning electron microscopy (SEM). Functional groups were 
identified by Fourier transform infrared spectroscopy (FTIR), surface 
elemental composition was analyzed by X-ray photoelectron 
spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) was used for 
the detection of specific surface area and pore structure of biochars. 
Detailed instrument specifications are provided in 
Supplementary Text S3.

2.4 Determination of chlorophyll content

Fresh leaf samples (0.5 g) were immersed in 25 mL 95% ethanol 
and incubated in darkness for 24–36 h until the leaves became 
completely bleached. The absorbance of the extract was measured at 
665 nm and 649 nm using an enzyme-linked immunosorbent assay 
reader, and chlorophyll a, b, and total chlorophyll contents were 
calculated as described by Sun et al. (2022). Each treatment was 
repeated three times.

2.5 Determination of antioxidant system 
and hormone content

Leaves from each treatment were collected to determine the 
activities of catalase (CAT), peroxidase (POD), and superoxide 
dismutase (SOD), as well as the levels of reactive oxygen species (ROS) 
indicators, including malondialdehyde (MDA), superoxide anion (O2

.-

), hydrogen peroxide (H2O2). All parameters were measured using 
commercial assay kits (Suzhou Comin Biotechnology Co., Ltd., 
China). Phytohormone levels including abscisic acid (ABA), indole-
3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) were 
quantified using enzyme-linked immunosorbent assay (ELISA) kits 
according to the manufacturer’s instructions. Each treatment was 
repeated three times. The detailed parameters of the kits are provided 
in Text S4.

2.6 Metabolomics analysis

Approximately 100 mg of tobacco leaf tissue was mixed with 
500 μL of 80% methanol in an Eppendorf tube. The samples were 
vortexed, kept on ice for 5 min, and centrifuged at 15,000 × g for 
20 min at 4 °C. The supernatant was diluted, re-centrifuged, and the 
final extract was subjected to liquid chromatography-mass 
spectrometry (LC–MS) analysis for metabolite profiling. Six replicates 
were performed for each treatment. Quality control (QC) samples 
were prepared by taking equal volumes from each test sample and 
mixing them uniformly, and repeating three times. The specific 
instrument model and detailed parameters for LC–MS are provided 
in Supplementary Text S5. The raw data files generated by 
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UHPLC–MS/MS were processed using the Compound Discoverer 3.3 
(CD3.3, ThermoFisher) to perform peak alignment, peak picking, and 
quantitation for each metabolite. These metabolites were annotated 
using a local metabolic database. Principal component analysis (PCA) 
and partial least squares discriminant analysis (PLS-DA) were 
performed on the metabolic data. The metabolites with VIP > 1 and 
p < 0.05 and FC > 1.5 or < 0.67 were considered to be differential 
metabolites.

2.7 Statistical analysis

FTIR spectra and XPS data were processed using Origin is a 
graphing software. Statistical analyses were conducted using SPSS 
26.0, and results are expressed as mean ± standard error (SE) of three 
replicates. Statistical differences between the treatment means were 
determined by one-way ANOVA followed by the Tukey’s HSD post-
hoc test at a significance level of 0.05. Data visualization was performed 
using GraphPad Prism 9.5.

3 Results

3.1 Biochar characterization

3.1.1 SEM analysis and elemental compositions
Scanning electron microscopy (SEM) revealed pronounced 

differences in surface morphology and elemental composition among 
the various biochar types (Figure 1). The pristine tobacco stalk biochar 
(T) displayed a relatively smooth surface with limited pore 
development (Figures 1A,B). In contrast, ball milling (BT) generated 
abundant surface particles and markedly enhanced porosity 
(Figures 1D,E). Phosphoric acid modification (PT) and the combined 
treatment of phosphoric acid with ball milling (BPT) further increased 
surface roughness and produced more uniform and well-developed 
pore structures (Figures 1G,H,J,K). Elemental mapping confirmed 
that H3PO4 modification substantially enriched the biochar surface 
with oxygen (O) and phosphorus (P), the P on the surface of the 
biochar increased from T (0.23%) to PT (1.40%), and from BT (0.16%) 
to BPT (0.70%) (Figures 1C,F,I,L).

3.1.2 BET analysis of biochar
The pore size distribution and N2 adsorption–desorption 

isotherms of T. BT, PT and BPT were measured by BET 
(Supplementary Figure S1). According to the IUPAC classification, the 
N2 adsorption–desorption isotherms of the four biochars correspond 
to Type III, while the hysteresis loops observed for T and BT at relative 
pressure range of 0.4–0.9 exhibit an H3 type (Nguyen et al., 2023). The 
pore-size distribution curves indicate that four biochars were 
characterized by mesoporous structures (2–50 nm), with the peak of 
the pore size distribution for BPT located at approximately 4 nm. In 
Supplementary Table S1, ball milling modification increased the 
specific surface area of the raw biochar and reduced the average pore 
size, whereas phosphoric acid modification increased the average pore 
size while decreasing the specific surface area. This phenomenon, 
combined with the increased phosphorus loading in the phosphoric 
acid-modified biochar, suggests that phosphate groups may have 
blocked the pores of the biochar (Sathasivam et al., 2025).

3.1.3 FTIR spectrum of biochar
The FTIR spectra revealed distinct in surface functional groups 

among the four biochar samples, while several characteristic peaks 
were commonly observed at approximately 1,565, 1,137, and 873 cm−1 
(Figure 2). The absorption band at 1565 cm−1 corresponds to the C=C 
stretching vibration of aromatic compounds (Zhang et al., 2023). 
Peaks within the range of 1,262–1,137 cm−1 are associated with the 
vibrations of P-O-P, P-O-C, and P-OH bonds (Yang et al., 2025). The 
band near 873 cm−1 is attributed to C-H bending vibration. In 
addition, prominent peaks round 3,487 cm−1 and 989 cm−1, observed 
in both PT and BPT samples, correspond to the stretching vibrations 
of -OH and P-O groups, respectively (Du et al., 2025; Rizwan et al., 
2020). These spectral features confirm the successful incorporation of 
-OH and phosphate functional group onto the biochar surface 
through phosphoric acid modification.

3.1.4 XPS analysis of different biochar
X-ray photoelectron spectroscopy (XPS) was employed to 

characterize the surface elemental composition and chemical states of 
the four biochar. Strong C and O peaks were detected in all samples, 
whereas weak P peaks appeared in the H3PO4-modified biochar (PT 
and BPT), confirming successful phosphorus incorporation (Figure 3). 
The C1s and P2p peaks spectra of each biochar was deconvoluted by 
peak fitting to identify specific bonding environments. For the 
unmodified samples (T and BT), the C1s spectra were resolved into 
four components, primarily corresponding to C-C (284.8 eV) and 
C-O-C (285.8 eV) bonds. After H3PO4 modification, the C1s spectrum 
of PT displayed two major peaks at 284.8 eV and 286.8 eV, attributed 
to C-C and C-O-C bonds, respectively. In the BPT sample, an 
additional peak appeared at 288.6 eV, assigned to O-C=O groups, 
indicating partial surface oxidation induced by phosphorus 
modification and ball milling. The P2p spectra of PT and BPT 
exhibited two characteristic peaks between 133.1 and 135.1 eV, 
corresponding to P-O and C-P-O bonds, respectively. These results 
further confirm the formation of phosphate-related functional groups 
on the biochar surface following H3PO4 treatment and the enhanced 
incorporation efficiency achieved through ball milling.

3.2 Control effect of biochar on tobacco 
black shank

Our results in (Figure 4F) illustrates the effect of different 
biochar treatments on lesion length caused by tobacco black shank 
(TBS). All biochar treatments significantly reduced lesion length 
compared with the control. Among them, the BPT and PT treatments 
achieved the greatest reductions, decreasing lesion length by 37.01 
and 31.17%, respectively. Significant differences were observed 
among the biochar types, with the BPT treatment exhibiting 8.49, 
16.38, and 27.07% shorter lesion lengths than PT, BT, and T, 
respectively.

3.3 Biochar increases chlorophyll content 
in tobacco

The effects of different biochar treatments on chlorophyll 
accumulation in tobacco are presented in Figures 5A–C. In the 
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non-inoculated group, the application of ball-milled phosphorus-
modified biochar (N-BPT) significantly increased chlorophyll a, 
chlorophyll b, and total chlorophyll contents by 53.70, 58.90, and 
55.65%, respectively, compared with the non-inoculated control 
(N-CK). Under P. nicotianae inoculation, chlorophyll contents in 
plants treated with BPT were markedly higher than those in CK, T, BT, 
and PT treatments. Specifically, chlorophyll a content in BPT 
increased by 59.74, 46.22, 6.78, and 16.89%, while chlorophyll b 
content increased by 73.23, 46.58, 26.55, and 9.06%, respectively. 
However, compared with the non-inoculated BPT treatment, total 
chlorophyll, chlorophyll a, and chlorophyll b levels in the inoculated 
BPT group decreased by 10.85, 14.17, and 12.10%, respectively. These 
findings indicate that P. nicotianae infection reduced chlorophyll 
content in tobacco leaves, but the application of BPT effectively 

mitigated this decline and maintained higher chlorophyll levels under 
pathogen stress.

3.4 Effect of biochar on the antioxidant 
system of tobacco

Figures 5D–F present the changes in reactive oxygen species (ROS) 
levels in tobacco under different treatments. Inoculation with 
P. nicotianae significantly increased the accumulation of 
malondialdehyde (MDA), superoxide anion (O2

·-), and hydrogen 
peroxide (H2O2) compared with the non-inoculated group, indicating 
enhanced oxidative stress. However, all biochar treatments markedly 
reduced the levels of these ROS-related indicators. In the inoculated 

FIGURE 1

SEM images of T (unmodified biochar), BT (ball-milled biochar), PT (H3PO4-modified biochar), and BPT (ball-milled H3PO4-modified biochar) at 
different magnifications and surface element concent analysis (A-C: T; D-F: BT; G-I: PT; J-L: BPT).
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plants, compared with the infected control (CK), the T, BT, PT, and 
BPT treatments decreased MDA content by 26.52, 34.52, 35.02, and 
41.80%, respectively; O2

·- content by 18.71, 22.91, 33.84, and 54.76%; 
and H2O2 content by 20.80, 27.04, 45.20, and 46.97%. These results 
demonstrate that P. nicotianae infection triggered oxidative damage in 
tobacco seedlings, whereas biochar application particularly BPT 
effectively mitigated ROS accumulation. Additionally, Figures 5G-I 
show the activities of the antioxidant enzymes CAT, SOD, and POD 
across treatments. Overall, enzyme activities were reduced in 
inoculated plants compared with the non-inoculated controls. Within 
each group, enzyme activity followed the order: 
BPT > PT > BT > T > CK. Relative to N-CK, the activities of CAT, 
SOD, and POD in CK decreased by 11.32, 20.47, and 13.87%, 
respectively. In contrast, compared with CK, the T, BT, PT, and BPT 
treatments increased POD activity by 25.22, 39.87, 50.30, and 74.31%; 
SOD activity by 44.08, 60.88, 75.86, and 158.71%; and CAT activity by 
14.37, 18.88, 30.41, and 32.93%, respectively. Collectively, these results 
indicate that biochar application, particularly the ball-milled 
phosphorus-modified biochar (BPT), effectively reduced oxidative 
stress by lowering ROS accumulation and enhancing the activities of 
key antioxidant enzymes in tobacco under P. nicotianae infection.

3.5 Effect of biochar on phytohormone 
contents in tobacco plants

Biochar amendment markedly influenced the phytohormone 
profiles of tobacco seedlings (Figure 6). In general, the levels of indole-
3-acetic acid (IAA), jasmonic acid (JA), and abscisic acid (ABA) were 
higher in the inoculated group than in the non-inoculated group. Among 
non-inoculated treatments, JA content was lowest in N-CK (0.31 ng/g) 
and highest in N-BPT (0.40  ng/g), representing a 30.56% increase 
compared with N-CK. Following inoculation, JA content in CK increased 
by 16.29% relative to N-CK, while the BPT treatment exhibited the 
highest JA level, which was 34.79, 15.91, and 3.24% higher than those in 
N-CK, CK, and N-BPT, respectively. No significant difference in JA 

content was observed between PT and BPT after inoculation. The 
variation pattern of IAA was like that of JA, following the order 
BPT > PT > BT > T > CK. In contrast, the salicylic acid (SA) and ABA 
contents in the BPT treatment were lower than those in the other 
treatments. These findings suggest that biochar amendments, particularly 
the ball-milled phosphorus-modified biochar (BPT), modulated 
phytohormone homeostasis in tobacco, promoting the accumulation of 
defense-related hormones (JA and IAA) while fine-tuning SA and ABA 
levels to enhance resistance against P. nicotianae infection.

3.6 Biochar alters the metabolic profile of 
tobacco plants

To elucidate the metabolic mechanisms underlying the effects 
of biochar on TBS-infected tobacco plants, untargeted metabolomic 
analyses were performed using BPT as the representative biochar 
treatment. Both non-inoculated (N-CK and N-BPT) and inoculated 
(CK and BPT) groups were analyzed. Supplementary Figure S4 
shows the classification of metabolites identified in tobacco leaves. 
Among them, lipids and lipid-like molecules constituted the largest 
category (35.84%), followed by organic acids and derivatives 
(15.53%), organoheterocyclic compounds (12.88%), organic oxygen 
compounds (11.62%), and phenylpropanoids and polyketides 
(10.63%). Principal component analysis (PCA) revealed clear 
separation among the four treatment groups, explaining 34.01, 
23.39, and 15.19% of the total variation by the first three principal 
components, respectively (Figure 7A). The close clustering of 
biological replicates within each group indicated high data 
reproducibility, while distinct separation among treatments 
demonstrated significant metabolic differentiation. According to 
PLS-DA (Supplementary Figure S5), all comparison groups met the 
criteria of R2 > Q2, and the regression line intercept of Q2 was less 
than 0, indicating that the PLS-DA model was stable, reliable, and 
free from overfitting. Figure 7B revealed 889 differential metabolites 
were detected between N-CK and CK (427 upregulated, 462 
downregulated), 998 between N-CK and BPT (621 upregulated, 377 
downregulated), 745 between CK and BPT (461 upregulated, 284 
downregulated), and 720 between N-BPT and BPT (429 
upregulated, 291 downregulated). The N-CK vs. BPT comparison 
exhibited the highest number of differential metabolites, whereas 
the N-BPT vs. BPT comparison showed the fewest, indicating 
greater metabolic similarity between N-BPT and BPT treatments. 
KEGG pathway enrichment analysis of differential metabolites 
revealed distinct metabolic responses among treatments 
(Figures 7C–F). In the N-CK vs. CK comparison, differential 
metabolites were mainly enriched in betalain biosynthesis, 
flavonoid biosynthesis, arginine and proline metabolism, and 
secondary metabolite biosynthesis. In contrast, the N-CK vs. BPT 
comparison showed enrichment in flavonoid biosynthesis, 
stilbenoid, diarylheptanoid, and gingerol biosynthesis, tyrosine 
metabolism, and secondary metabolite biosynthesis. The CK vs. 
BPT group exhibited significant enrichment in galactose 
metabolism, biotin metabolism, and pyrimidine metabolism. For 
the N-BPT vs. BPT comparison, enriched pathways included 
stilbenoid, diarylheptanoid and gingerol biosynthesis, 
monoterpenoid biosynthesis, phenylpropanoid biosynthesis, and 
tyrosine metabolism.

FIGURE 2

The FTIR spectral analysis of different biochar’s. T (unmodified 
biochar), BT (ball-milled biochar), PT (H3PO4-modified biochar), and 
BPT (ball-milled H3PO4-modified biochar).
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A comprehensive metabolic pathway map (Figure 8) demonstrated 
that key altered metabolites were primarily involved in phenylpropanoid 
biosynthesis, tyrosine metabolism, and phenylalanine, tyrosine, and 
tryptophan biosynthesis. In the phenylpropanoid biosynthesis pathway, 
BPT treatment upregulated L-phenylalanine, chlorogenic acid, and 
sinapyl alcohol, while downregulating caffeate and sinapic acid. Within 
the phenylalanine, tyrosine, and tryptophan biosynthesis pathway, BPT 
increased the levels of quinate, chorismate, and tryptophan, but 

decreased phosphoenolpyruvate. In tyrosine metabolism, both CK and 
BPT treatments reduced the levels of 3,4-dihydroxy-L-phenylalanine 
and 4-hydroxyphenylacetylglutamate, whereas the abundance of 
4-hydroxyphenylacetylglycine increased. Collectively, these results 
indicate that biochar, particularly BPT, substantially remodels primary 
and secondary metabolic pathways in tobacco, promoting the 
accumulation of phenylpropanoid- and amino acid-related 
intermediates associated with plant defense and stress adaptation.

FIGURE 3

The XPS analysis of different biochar. T (unmodified biochar), BT (ball-milled biochar), PT (H3PO4-modified biochar), and BPT (ball-milled H3PO4-
modified biochar).
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4 Discussion

4.1 Architectural feature of ball-milled 
phosphorus modified biochar enhance 
tobacco resistance against Phytophthora 
nicotianae

Biochar is widely recognized as an effective soil amendment make 
plants more resistant to a variety of insect pests and pathogens (Wang 
Y. B. et al., 2024; Wang et al., 2025; Yang et al., 2022; Hafeez et al., 2022; 

Fayyaz et al., 2025). Numerous studies have shown that biochar can 
effectively mitigate crop diseases such as Fusarium wilt, tomato 
bacterial wilt, and tobacco root rot (Chen et al., 2023; Wang S. et al., 
2024; Ge et al., 2023). Fayyaz et al. (2025) found that sugarcane 
biochar was effective in reducing root-knot nematode infection in 
tomato crops.

In the present study, ball milling and phosphoric acid (H3PO4) 
modification were employed to produce an engineered biochar from 
tobacco stalk waste. Such physical–chemical modification approaches 
are known to profoundly alter the microstructure and surface 

FIGURE 4

The phenotype (A-E) and lesion length (F) of tobacco plants under different treatments. CK is the control (A, no biochar), and T (B, unmodified 
biochar), BT (C, ball-milled biochar), PT (D, H3PO4-modified biochar), BPT (E, ball-milled H3PO4-modified biochar) are the treatments. Data are 
presented as mean ± SE (n = 3). Different letters indicate significant differences among treatments at P < 0.05.
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chemistry of biochar, thereby increasing its reactivity and functional 
diversity (Liu Z. X. et al., 2022). The H3PO4-modified biochar 
exhibited higher porosity, a more ordered pore network, and a 
markedly elevated surface phosphorus content (Figure 1). P plays a 
central role in plant metabolism, membrane stability, and energy 
transfer, and its availability can influence the activation of defense 
responses against biotic stress. Therefore, H3PO4-modified biochar 
significantly enhanced nutrient uptake (N, P, K) and growth 
performance of Kosteletzkya virginica (Dai et al., 2025). Similarly, 
modification of biochar surfaces with various elements or compounds 
such as Si, SiO2 NPs, or thiourea has been shown to enrich functional 
groups (e.g., Si-O-Si, -OH, or -SOx), increasing the material’s affinity 
for metals and nutrients while mitigating abiotic and biotic stress in 
plants (Yuan et al., 2017; Lai et al., 2025; Jin et al., 2023; Peng et al., 
2024; Muthusamy et al., 2025). In this study, both H3PO4 modification 
and the combined ball milling-H3PO4 treatment significantly altered 
the surface chemistry of the original biochar, introducing abundant 
phosphate (P-O) and hydroxyl (-OH) groups (Figure 2). These newly 
formed functional groups likely enhanced buffer the plant against 
pathogen-induced stress. As a result, the ball-milled phosphorus-
modified biochar (BPT) markedly promoted tobacco growth and 
suppressed the expansion of P. nicotianae lesions (Figure 4). Taken 

together, the improved physicochemical characteristics of BPT-namely 
its higher porosity, enriched P content, and abundant reactive 
functional groups. These features collectively contribute to enhanced 
tobacco resistance by mitigating oxidative and pathogen-
induced damage.

4.2 Ball-milled phosphorus-modified 
biochar enhances photosynthetic 
efficiency and antioxidant defense in 
tobacco

Photosynthesis is a fundamental physiological process that 
underpins plant growth and productivity, with chlorophyll serving as 
the primary pigment for light energy capture and conversion. 
Chlorophyll degradation under environmental or biotic stress severely 
limits photosynthetic performance and overall plant vitality (Sherin 
et al., 2022). Previous research has shown that biochar applications 
can mitigate stress-induced chlorophyll loss and enhance 
photosynthetic capacity. For instance, Tu et al. (2025) reported a 
marked increase in chlorophyll concentration in salt-stressed 
sunflowers following biochar amendment. Consistent with these 

FIGURE 5

Effects of different treatments on physiological and biochemical parameters of tobacco. (A) Chlorophyll a content; (B) Chlorophyll b content; (C) Total 
chlorophyll content; (D) Malondialdehyde (MDA) content; (E) Superoxide anion (O2.-) content; (F) Hydrogen peroxide (H2O2) content; (G) Catalase 
(CAT) activity; (H) Superoxide dismutase (SOD) activity; (I) Peroxidase (POD) activity. Data are presented as mean ± SE (n = 3). Different letters indicate 
significant differences among treatments  at P < 0.05.
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findings, the present study demonstrated that soil application of ball-
milled phosphorus-modified biochar (BPT) significantly increased 
chlorophyll a, chlorophyll b, and total chlorophyll contents in tobacco 
compared with the control (Figures 5A–C), indicating that BPT 
contributes to improved photosynthetic performance under both 
normal and pathogen-challenged conditions. Reactive oxygen species 
(ROS), including hydrogen peroxide (H2O2) and superoxide anion 
(O2

.-), are by-products of aerobic metabolism in plants. Under stress 
conditions, excessive ROS accumulation disrupts cellular homeostasis, 
leading to lipid peroxidation, membrane damage, and oxidative injury 
(Liu et al., 2024). Malondialdehyde (MDA), a product of lipid 
peroxidation, serves as a reliable biomarker of oxidative damage (Bilal 
et al., 2020). Elevated levels of MDA and H2O2 have been reported in 
tomato plants infected with Fusarium oxysporum, reflecting oxidative 
stress (Abdelaziz et al., 2022). In our study, tobacco plants infected 
with P. nicotianae (CK) exhibited the highest concentrations of MDA, 
H2O2, and O2

.-, confirming the induction of oxidative stress. However, 
BPT application markedly reduced these oxidative markers 
(Figures 5D–F), indicating that the modified biochar effectively 
mitigated ROS accumulation and lipid peroxidation. This reduction 
in oxidative stress is consistent with enhanced disease resistance in 
tobacco. Gao et al. (2023) similarly reported that biochar suppressed 
ROS production and elevated POD activity in pathogen-infected 
tomato leaves. Likewise, Wang et al. (2014) found that biochar 
increased the activities of CAT, SOD, and POD in apple seedlings, 
alleviating apple replant disease. In our experiment, all biochar 

treatments significantly enhanced the activities of these antioxidant 
enzymes (Figures 5G–I), suggesting that biochar enhances tobacco 
tolerance to P. nicotianae by improving photosynthetic pigment 
stability and strengthening enzymatic ROS-scavenging capacity.

Phytohormones play pivotal roles in coordinating plant growth, 
development, and defense signaling. IAA promotes cell elongation 
and root development, while JA serves as a key signal in plant defense 
against necrotrophic pathogens by activating induced systemic 
resistance (Mehari et al., 2015; Qin et al., 2023). In this study, both 
biochar application and pathogen infection significantly altered 
hormone profiles in tobacco. Compared with the control, biochar-
treated plants exhibited elevated IAA and JA contents, with the highest 
levels observed in inoculated groups (Figures 6A,B). Similar findings 
were reported by Bisht et al. (2024), who observed increased IAA 
concentrations in biochar-amended chickpea under drought stress, 
enhancing root water uptake and stress tolerance. Likewise, Waqas et 
al. (2018) showed that biochar application promoted JA accumulation 
in rice, enhancing resistance to the white-backed planthopper. These 
results suggest that BPT stimulates both growth-promoting and 
defense-inducing hormonal responses in tobacco under pathogen 
stress. ABA and SA are central regulators of stress signaling and play 
critical roles in balancing defense activation and growth processes. 
Under optimal conditions, plants maintain low basal levels of these 
hormones, but stress exposure triggers rapid accumulation (Peng et 
al., 2021). Excessive ABA, however, can induce premature leaf 
senescence and inhibit photosynthesis (Peng et al., 2021). Previous 

FIGURE 6

Effects of different biochar treatments on hormone contents in tobacco. (A) Indole-3-acetic acid (IAA) content; (B) Jasmonic acid (JA) content; 
(C) Salicylic acid (SA) content; (D) Abscisic acid (ABA) content. Data are presented as mean ± SE (n = 3). Different letters indicate significant differences 
among treatments at P < 0.05.
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FIGURE 7

Effects of different treatments on tobacco metabolism. N-CK is the control (no biochar, non inoculated), and CK (no biochar, inoculated), N-BPT (ball-
milled H3PO4-modified biochar, non inoculated), BPT (ball-milled H3PO4-modified biochar, inoculated) are the treatments. (A) PCA analysis. 
(B) Statistical analysis of differential metabolites. (C-F) KEGG enrichment bubble diagram.
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studies have indicated that plants under low-stress conditions contain 
relatively high endogenous levels of SA and ABA (Rahimzadeh and 
Ghassemi-Golezani, 2023; Woo et al., 2025). In this study, tobacco 
plants treated with BPT exhibited lower ABA accumulation following 
P. nicotianae infection compared with untreated controls (Figure 6D), 
indicating a reduction in pathogen-induced stress and improved 
physiological balance. Similarly, SA showed reduced accumulation in 
inoculated tobacco under BPT and PT treatments (Figure 6C), 
suggesting alleviation of biotic stress. We speculate that the application 
of modified biochar enhanced disease resistance in tobacco, thereby 
reducing the stress level within the plants. JA, SA, and ABA are the 
primary hormones regulating plant defense responses against 
pathogens and pests, whereas IAA is primarily considered a growth 
hormone. SA was involved in regulating the biosynthesis and 
transport of IAA. High-concentration SA were generally inhibitory to 
overall root growth, whereas low-level SA can promote the 
development of the root apical meristem (Koo et al., 2020). In 
dicotyledonous plants, JA and SA often exhibit an antagonistic 
relationship in disease defense. The inactivation of the JA receptor 
results in higher SA levels and enhanced pathogen resistance (Spoel 
and Dong, 2008). The interaction between IAA and JA, however, can 
be either synergistic or antagonistic (Mu et al., 2025). Furthermore, 
SA can enhance freezing tolerance in wheat by inducing endogenous 
ABA signal (Wang et al., 2018). Plant growth and development are 
constantly influenced by external conditions. Under biotic or abiotic 
stress, phytohormones can regulate defense response alone or in 
combination with other hormones, thereby enabling plants to better 
mitigate stress. Overall, our results indicate that ball-milled 
phosphorus-modified biochar enhances tobacco resistance to 
P. nicotianae by maintaining chlorophyll stability, stimulating 
antioxidant enzyme activity, reducing ROS accumulation, and 
modulating hormonal balance. These integrated physiological and 
biochemical adjustments collectively strengthen photosynthetic 
efficiency and defense capacity, enabling plants to better withstand 
pathogen-induced stress.

4.3 Ball-milled phosphorus-modified 
biochar enhances phenylpropanoid 
biosynthesis and metabolic defense against 
TBS

Plants produce a vast array of metabolites broadly classified as 
primary and secondary. Primary metabolites such as carbohydrates, 
lipids, and proteins are essential for growth and energy metabolism 
through pathways like glycolysis and the TCA cycle (Anzano et al., 
2022). In contrast, secondary metabolites, including carotenoids, 
phenolics, flavonoids, and terpenoids, though not indispensable for 
survival, play crucial roles in plant defense against biotic and abiotic 
stresses (Razzaq et al., 2019). In the present study, both biochar 
application and P. nicotianae inoculation significantly altered the 
metabolic profile of tobacco. The differential metabolites were mainly 
associated with lipids and lipid-like molecules, phenolic compounds, 
organic acids, and amino acids, indicating coordinated metabolic 
reprogramming in response to stress.

Within the phenylpropanoid biosynthesis and phenylalanine, 
tyrosine, and tryptophan biosynthesis pathways, BPT treatment 
notably upregulated tryptophan and L-phenylalanine levels (Figure 8). 
Tryptophan stimulates auxin biosynthesis in the rhizosphere, thereby 
promoting plant growth and stress tolerance (Mayo-Prieto et al., 2019). 
Similarly, Miao et al. (2019) demonstrated that activation of the 
tryptophan synthesis pathway enhanced Verticillium dahliae resistance 
in cotton. Phenylalanine serves as a precursor for monolignol synthesis 
via the phenylpropanoid pathway, and monolignols are the building 
blocks of lignin (Lee et al., 2019). Lignin deposition strengthens cell 
walls, forming a physical barrier against pathogens and serving as an 
integral component of plant immunity (Cesarino, 2019; Adobor et al., 
2023). Compared with the N-CK group, BPT treatment significantly 
increased the abundance of phenolic acids, particularly chlorogenic 
acid (Figure 8). Phenolic acids play dual roles in plant-microbe 
interactions: mediating signaling and providing antioxidant protection 
under stress conditions (Kaur and Suseela, 2020). Chlorogenic acid has 

FIGURE 8

Enrichment pathway analysis of differential metabolite abundance among treatments. Heatmap illustrates the relative abundance of metabolites across 
different treatments. Metabolites shown in red indicate upregulation, while those in blue indicate downregulation in the BPT treatment.
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been identified as a key resistance factor, enhancing tolerance to 
multiple biotic and abiotic stresses (Atanasova-Penichon et al., 2012; 
Sabino et al., 2019). For example, Si treatment increased chlorogenic 
acid accumulation in rose leaves, correlating with reduced mildew 
powdery incidence (Shetty et al., 2011), while higher chlorogenic acid 
levels were also observed in resistant wheat cultivars infected by 
Fusarium graminearum (Liu C. X. et al., 2022). The upregulation of 
chlorogenic acid in BPT-treated plants suggests that ball-milled H3PO4-
modified biochar effectively activates defense-related secondary 
metabolism, enhancing resistance against P. nicotianae. In response to 
pathogen-induced oxidative stress, plants activate defense systems 
comprising enzymatic and non-enzymatic antioxidants (Colak et al., 
2021). Key enzymatic components include CAT, POD, and SOD, while 
phenolic compounds (e.g., phenolic acids) represent non-enzymatic 
constituents. Antioxidant compounds maintain the dynamic balance 
between the production and scavenging of reactive oxygen species 
(ROS) under stress conditions (Gudkov et al., 2019). Notably, during 
plant-pathogen interaction, increase in peroxidase activity is often 
associated with the accumulation of phenolic compounds in the cell 
wall, collectively enhancing the plant’s disease resistance (Jaiti et al., 
2007). Additionally, phosphoenolpyruvate (PEP) serves as a precursor 
to pyruvate (Dumont and Rivoal, 2019). Fan et al. (2023) reported that 
PEP is catalyzed by phosphoenolpyruvate carboxylase (PEPC) to form 
oxaloacetate, an intermediate of the TCA cycle, thereby supporting 
energy metabolism under stress. Enhanced TCA cycle activity provides 
additional energy for defense responses and growth under pathogen 
attack (Xiao et al., 2022). In the present study, organic acids such as 
chorismate and 4-hydroxyphenylacetylglycine also accumulated under 
BPT treatment. Chorismate is a central intermediate leading to both 
plant hormone synthesis and aromatic amino acid formation (Yuan et 
al., 2022). The accumulation of organic acids is often associated with 
improved pathogen resistance (Zhao et al., 2023), and similar patterns 
have been observed in wild soybean exhibiting tolerance to alkaline 
stress (Sun et al., 2025). Pathogen infection typically compromises cell 
membrane integrity (Zhang et al., 2024). Lipids play a dual role in 
maintaining membrane stability and scavenging reactive oxygen 
species (ROS), thus functioning as antioxidant protectants (Zhu et al., 
2024). The disease resistance of plants may be influenced by the 
antioxidant property of lipids and play a significant role in plant-
pathogen interaction. In this study, BPT treatment significantly 
upregulated several lipid-related metabolites, including alpha-linolenic 
acid, loganin, and 9,10-epoxystearic acid. Alpha-linolenic acid not only 
a polyunsaturated fatty acid but also as a precursor of JA, a key defense 
hormone involved in plant stress responses (Zi et al., 2022). JA is found 
in the photoreceptors of plants, specifically in the membrane lipids of 
chloroplast. Alpha-Linolenic acid serves to activate the expression of 
JA-related defense genes and contributes to maintaining cell membrane 
integrity during pathogen attack (Wasternack and Song, 2017). 
Furthermore, a higher level of unsaturated fatty acids can increase the 
flexibility of cell membranes, thereby enhancing the capacity of cells to 
withstand pathogen infection (Zhang et al., 2024). Collectively, these 
findings suggest that ball-milled phosphorus-modified biochar (BPT) 
enhances tobacco resistance to P. nicotianae by promoting 
phenylpropanoid biosynthesis, increasing the accumulation of phenolic 
acids, amino acids, and lipids, and enhancing energy metabolism. This 
comprehensive metabolic reprogramming strengthens antioxidant 
capacity and defense signaling, thereby improving overall plant health 
and resilience against pathogen invasion.

Modified biochar demonstrates a positive role in enhancing tobacco 
disease resistance. As an integrated system, the interactions between 
biochar, soil, and tobacco are complex and interconnected. While this 
study primarily focused on the effects of biochar on the physiological and 
biochemical characteristics of tobacco, the role of soil-particularly its 
microbial community-warrants further investigation. The application of 
biochar to soil contributes to soil health by enhancing the abundance of 
beneficial microorganisms, suppressing the reproduction of soil-borne 
pathogens and pests, and strengthening plant resistance against diseases 
and pests (Martínez-Gómez et al., 2023; Waqar et al., 2025; Yan et al., 
2024; Li et al., 2022). Therefore, future research should prioritize 
examining how modified biochar influences the structure of soil microbial 
communities in the context of soil-borne disease management. 
Additionally, as this experiment was a pot-based simulation, subsequent 
research necessitates field-scale validation. The selection of appropriate 
modified biochar formulations for disease management must be informed 
by specific soil, climatic, and agronomic conditions to achieve optimal 
disease control.

5 Conclusion

Ball milling combined with phosphorus modification 
significantly enhanced the structural and chemical properties of 
biochar and markedly increased surface phosphorus content. The 
modified biochar (BPT) surface was enriched with functional groups 
including -OH, P-OH, and P-O, which improved its reactivity and 
soil interaction potential. BPT application in soil effectively 
enhanced tobacco chlorophyll accumulation, strengthened plant 
antioxidant defense systems, and modulated phytohormone balance. 
Moreover, BPT upregulated the biosynthesis of amino acids and 
phenolic acids through the phenylpropanoid and phenylalanine-
tyrosine-tryptophan pathways, as well as influencing lipid 
metabolism to improve resistance of Nicotiana tabacum to 
P. nicotianae infection.
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