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reducing oxidative damage,
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content and promoting
phenylpropanoid metabolism
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Introduction: Tobacco black shank (TBS), caused by Phytophthora nicotianae,
poses a serious threat to tobacco production, highlighting the urgent need for
sustainable management strategies. Meanwhile, tobacco stalk, a byproduct of
tobacco cultivation, required effective recycling and value-added utilization.
Methods: In this study, four types of tobacco stalk derived biochar (unmodified
biochar, HsPO,-modified biochar, ball-milled biochar, and ball-milled HzPO,-
modified biochar) were prepared to evaluate their efficacy in controlling TBS.
We evaluated physiological indices, including chlorophyll content, antioxidant
enzyme activities, reactive oxygen species levels, and phytohormone profiles,
along with changes in tobacco leaf metabolites, to explore the impact of
modified biochar on diseased tobacco plants.

Results: The ball milled-phosphorus modified biochar (BPT) exhibited a
dense and uniform pore structure, markedly increased surface P content, and
introduced abundant -OH and P-O functional groups, resulting in the most
effective disease suppression. Soil application of BPT significantly reduced
lesion length in infected plants, enhanced chlorophyll content, increased
the activities of antioxidant enzymes [catalase (CAT), peroxidase (POD), and
superoxide dismutase (SOD)], decreased malondialdehyde (MDA), hydrogen
peroxide (H,O,), and superoxide anion (O,) levels. Moreover, BPT modulated
phytohormone levels elevating indole-3-acetic acid (IAA), jasmonic acid (JA),
abscisic acid (ABA), and salicylic acid (SA) and reshaped amino acid, lipid, and
phenolic acid profiles. Metabolic pathway analysis indicated that BPT promoted
phenylpropanoid as well as phenylalanine, tyrosine, and tryptophan biosynthesis,
thereby strengthening tobacco resistance to P. nicotianae.
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Discussion: This study elucidate the mechanisms underlying biochar-
induced disease resistance and provide a promising approach for sustainable
management of tobacco black shank using modified biochar.
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shank

1 Introduction

Soil borne pathogens are among the most destructive plant
pathogens due to their transmission through the soil. These diseases
severely damage root systems and can cause unpredictable effects on
the aerial parts of plants, including stem rot, tissue discoloration, leaf
wilting, and even plant death (Bhatt et al., 2024). Tobacco black shank
(TBS), caused by Phytophthora nicotianae (P. nicotianae) is a
representative example of such threats. Phytophthora nicotianae can
survive in soil for long periods and infect tobacco plants at nearly any
growth stage, resulting in root rot, blackened stems, wilted, and
significant yield losses (Wang et al., 2022; Han et al., 2016). Current
TBS management strategies include crop rotation, the use of resistant
varieties, chemical fungicides, and biological controls. Although
chemical fungicides remain the most widely used approach, their
excessive application leads to environmental contamination, chemical
residues, and the development of fungicide-resistant strains (Wang et
al.,, 2020). The cultivation of resistant varieties and biological control
methods, while effective, are costly and time-consuming (Ma et al.,
2024; Yu et al., 2024). Therefore, developing green, safe, and cost-
effective strategies for TBS control is urgently needed.

China is the world’s largest producer of tobacco, ranking first in
both cultivated area and yield. During tobacco production and
processing, large quantities of tobacco residues such as stalk are
generated (Liu et al.,, 2015). These residues are often burned or
dumped, causing environmental pollution and resource waste
(Banozi¢ et al., 2020). Consequently, finding sustainable approaches
to utilize tobacco stalks has become an important environmental and
economic concern.

In recent years, biochar (BC) derived from pyrolyzed tobacco
stalks has attracted growing attention (Yu et al., 2021; Yang et al,,
2022; Zhao et al, 2024). BC is a carbon-rich, porous material
produced from the pyrolysis of organic biomass (e.g., crop residues,
manure) under limited oxygen conditions (Azeem et al., 2021). As a
soil amendment, BC improves soil structure, enhances nutrient and
water retention and reduces nutrient leaching. Studies have
demonstrated that BC can increase crop yields, and its beneficial
effects tend to accumulate over time (Major et al., 2010). For example,
BC improved quinoa yield and quality by enhancing soil moisture and
nutrients (Daraei et al., 2024), and it promoted the abundance and
activity of soil microbial communities, which directly support plant
growth (Ding et al, 2016; Ng et al., 2022). BC has also shown
effectiveness in mitigating abiotic stresses such as heavy metal toxicity
and drought. BC immobilized Cu, Pb, Cd, and Zn in soil, thereby
reducing their uptake by plants and increasing biomass (Qian et al.,
2024). Similarly, Kumar et al. (2024) found that BC application
enhanced the shoot and root biomass of coriander and Bengal gram
under drought stress by improved soil structure and moisture
retention.
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However, despite its carbon-rich composition, BC often contains
limited nutrients and functional groups. Thus, BC modification
through chemical, physical or biological means can enrich its surface
properties, enhance stability and improve performance (Hafeez et al.,
2022). Physical ball milling, as a green and efficient method for
biochar modification, enables unprocessed biochar to develop a
more uniform pore structure and a greater abundance of surface
functional groups, thereby enhancing its thermal stability and cation
exchange capacity. For instance, Quan et al. (2025) evealed that ball
milling led to the formation of additional -OH and -COOH
functional groups on the surface of corn straw biochar, which
subsequently enhanced its adsorption capacity for ammonium
nitrogen. Zhang et al. (2025) indicated that ball milling increased the
specific surface area and surface functional groups of straw biochar
and enhanced adsorption performance. Chemically modified
biochar shows potential in plant growth and plant disease
suppression. Phosphorus-modified BC has been shown to be
effective in enhancing soil phosphorus levels, thus facilitating plant
growth (Mbasabire et al., 2024). phosphorus-modified BC also
significantly increased soil nutrients content, while reducing Cd and
Pb translocation to lettuce (Han et al, 2023). BC containing
phosphate has also been used as a slow-release fertilizer to enhance
soil nutrients and fertility (Ding et al, 2016). In the case of
co-modified biochar, ball milled phosphorus-loaded BC effectively
adsorbed heavy metals, improving soil conditions for plant growth
(Zhang et al., 2021). However, the effect of co-modified biochar on
plant disease resistance has received limited attention.

To achieve the dual goals of sustainable utilization of tobacco
stalks and ecological management of tobacco black shank (TBS), this
study focused on developing and evaluating modified biochar derived
from tobacco stalks. One pristine biochar, three types of modified
biochar H;PO,-modified, CaCl,-modified, and MgCl,-modified
tobacco stalk biochar’s along with their corresponding ball-milled
variants, were prepared and assessed for their efficacy in suppressing
TBS caused by P. nicotianae. Among these, the ball-milled H;PO,-
modified biochar exhibited the most effective disease control
performance. Based on this finding, four representative biochars
unmodified tobacco stalk biochar, H;PO,-modified biochar, ball-
milled modified biochar, and ball-milled H;PO,-modified biochar
were selected for further investigation. The study aimed to 1) Evaluate
the influence of different biochar types on TBS incidence and tobacco
plant health; 2) Elucidate the physiological and metabolic mechanisms
by which biochar enhances tobacco resistance to P. nicotianae; and 3)
Provide an eco-friendly and value-added approach for recycling
tobacco waste into a sustainable disease management material. The
outcomes of this research not only promote the effective reuse of
tobacco processing byproducts but also contribute to the development
of a green, safe, and cost-effective strategy for controlling TBS in
tobacco cultivation systems.
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2 Materials and methods
2.1 Preparation for biochar

Tobacco stalks were collected from the Nanyang tobacco-growing
region, Henan Province, China. The stalks were washed thoroughly
with deionized water, air-dried, and ground into fine particles. Four
types of biochar and their derivatives were prepared as follows: 1)
Tobacco stalk biochar (T): Crushed stalks were pyrolyzed in a tube
furnace (Model TL1200, BEQ, Anhui, China) at 600 °C for 120 min
under a nitrogen flow of 0.2 L /min, with a heating rate of 10 °C/min.
The resulting biochar yield was approximately 25.3%; 2) Ball-milled
biochar (BT): A 5 g portion of T was milled using a planetary ball mill
(Model XQM-0.4A, Tencan Power, Changsha, China) with stainless
steel grinding jars (500 mL) and balls (diameter: 5 mm, ball-to-
powder ratio 20:1). The milling process was conducted at 500 rpm for
120 min; 3) Phosphoric acid-modified biochar (PT): Five grams of T
were mixed with 40 mL of 85% H;PO, in a hydrothermal reactor and
activated at 200 °C for 720 min; and 4) Ball-milled phosphoric acid-
modified biochar (BPT): The prepared PT was further processed by
ball milling under the same conditions used for BT. Additionally, the
preparation procedures for CaCl,- and MgCl,-modified biochars, and
their ball-milled variants, are described in Supplementary Text SI.

2.2 Tobacco pot experiment

Seeds of flue-cured tobacco (Nicotiana tabacum L., cultivar K326)
were provided by Henan Agricultural University. The physicochemical
properties of the experimental soil are listed in Supplementary Text S2.
The P, nicotianae isolate (XC-26-5) was provided from College of Plant
Protection, Henan Agricultural University and has been deposited at
the China Center for Type Culture Collection (CCTCC) under the
accession number CCTCC M 2024037. The strain was cultured on
oatmeal agar (OMA) at 28 °C in the dark. Tobacco seeds were surface-
sterilized in 10% (v/v) NaClO for 3-5 min, followed by 75% ethanol
for 30 s, rinsed three to four times with sterile water, and soaked for
8 h. The sterilized seeds were germinated in seedling trays filled with
sterilized substrate soil. At the four-leaf-one-heart stage, uniform
seedlings were transplanted into pots containing 2 kg of soil mixed
with biochar (10 g) at a rate of 0.5% (w/w) following Jaiswal et al.
(2014). Each pot contained one plant.

Eight types of biochar were initially tested include T (unmodified),
CaT (CaCl,-modified), MgT (MgCl,-modified), PT (H;PO,-
modified), BT (ball-milled), BCaT (ball-milled CaCl,-modified),
BMgT (ball-milled MgCl,-modified), and BPT (ball-milled H;PO,-
modified). After 30 days of transplantation, plant growth was observed
(Supplementary Figure S2), and using a sterilized puncher,
P, nicotianae mycelial plugs (5 mm in diameter) were inoculated onto
the stem surface (Ma et al., 2024). Seven days of post-inoculation, the
stem bases were observed for blackening to confirm successful
infection by P. nicotianae, and lesion lengths were measured, and the
middle leaves were collected and stored at —80 °C for further analyses.
Based on the superior growth and disease suppression observed in PT
and BPT treatments (Supplementary Figure S3), these two, along with
T and BT, were selected for subsequent physiological and biochemical
investigations. The experiment comprised 10 treatments divided into
two groups: 1) Non-inoculated: N-CK, N-T, N-BT, N-PT, N-BPT and

Frontiers in Microbiology

10.3389/fmicb.2025.1734991

2) Inoculated: CK, T, BT, PT, BPT. Each treatment included three
biological replicates arranged in a completely randomized design.

2.3 Physico-chemical characterization
analysis biochar

The surface morphology of T, BT, PT, and BPT were characterized
using scanning electron microscopy (SEM). Functional groups were
identified by Fourier transform infrared spectroscopy (FTIR), surface
elemental composition was analyzed by X-ray photoelectron
spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) was used for
the detection of specific surface area and pore structure of biochars.
Detailed
Supplementary Text S3.

instrument  specifications are  provided in

2.4 Determination of chlorophyll content

Fresh leaf samples (0.5 g) were immersed in 25 mL 95% ethanol
and incubated in darkness for 24-36 h until the leaves became
completely bleached. The absorbance of the extract was measured at
665 nm and 649 nm using an enzyme-linked immunosorbent assay
reader, and chlorophyll a, b, and total chlorophyll contents were
calculated as described by Sun et al. (2022). Each treatment was
repeated three times.

2.5 Determination of antioxidant system
and hormone content

Leaves from each treatment were collected to determine the
activities of catalase (CAT), peroxidase (POD), and superoxide
dismutase (SOD), as well as the levels of reactive oxygen species (ROS)
indicators, including malondialdehyde (MDA), superoxide anion (O,
), hydrogen peroxide (H,0,). All parameters were measured using
commercial assay kits (Suzhou Comin Biotechnology Co., Ltd.,
China). Phytohormone levels including abscisic acid (ABA), indole-
3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) were
quantified using enzyme-linked immunosorbent assay (ELISA) kits
according to the manufacturer’s instructions. Each treatment was
repeated three times. The detailed parameters of the kits are provided
in Text S4.

2.6 Metabolomics analysis

Approximately 100 mg of tobacco leaf tissue was mixed with
500 pL of 80% methanol in an Eppendorf tube. The samples were
vortexed, kept on ice for 5 min, and centrifuged at 15,000 x g for
20 min at 4 °C. The supernatant was diluted, re-centrifuged, and the
final extract was subjected to liquid chromatography-mass
spectrometry (LC-MS) analysis for metabolite profiling. Six replicates
were performed for each treatment. Quality control (QC) samples
were prepared by taking equal volumes from each test sample and
mixing them uniformly, and repeating three times. The specific
instrument model and detailed parameters for LC-MS are provided
in Supplementary Text S5. The raw data files generated by
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UHPLC-MS/MS were processed using the Compound Discoverer 3.3
(CD3.3, ThermoFisher) to perform peak alignment, peak picking, and
quantitation for each metabolite. These metabolites were annotated
using a local metabolic database. Principal component analysis (PCA)
and partial least squares discriminant analysis (PLS-DA) were
performed on the metabolic data. The metabolites with VIP > 1 and
p <0.05 and FC > 1.5 or < 0.67 were considered to be differential
metabolites.

2.7 Statistical analysis

FTIR spectra and XPS data were processed using Origin is a
graphing software. Statistical analyses were conducted using SPSS
26.0, and results are expressed as mean =+ standard error (SE) of three
replicates. Statistical differences between the treatment means were
determined by one-way ANOVA followed by the Tukey’s HSD post-
hoc test at a significance level of 0.05. Data visualization was performed
using GraphPad Prism 9.5.

3 Results
3.1 Biochar characterization

3.1.1 SEM analysis and elemental compositions

Scanning electron microscopy (SEM) revealed pronounced
differences in surface morphology and elemental composition among
the various biochar types (Figure 1). The pristine tobacco stalk biochar
(T) displayed a relatively smooth surface with limited pore
development (Figures 1A,B). In contrast, ball milling (BT) generated
abundant surface particles and markedly enhanced porosity
(Figures 1D,E). Phosphoric acid modification (PT) and the combined
treatment of phosphoric acid with ball milling (BPT) further increased
surface roughness and produced more uniform and well-developed
pore structures (Figures 1G,H,],K). Elemental mapping confirmed
that H;PO, modification substantially enriched the biochar surface
with oxygen (O) and phosphorus (P), the P on the surface of the
biochar increased from T (0.23%) to PT (1.40%), and from BT (0.16%)
to BPT (0.70%) (Figures 1C,ELL).

3.1.2 BET analysis of biochar

The pore size distribution and N, adsorption-desorption
isotherms of T. BT, PT and BPT were measured by BET
(Supplementary Figure S1). According to the IUPAC classification, the
N, adsorption-desorption isotherms of the four biochars correspond
to Type III, while the hysteresis loops observed for T and BT at relative
pressure range of 0.4-0.9 exhibit an H3 type (Nguyen et al., 2023). The
pore-size distribution curves indicate that four biochars were
characterized by mesoporous structures (2-50 nm), with the peak of
the pore size distribution for BPT located at approximately 4 nm. In
Supplementary Table S1, ball milling modification increased the
specific surface area of the raw biochar and reduced the average pore
size, whereas phosphoric acid modification increased the average pore
size while decreasing the specific surface area. This phenomenon,
combined with the increased phosphorus loading in the phosphoric
acid-modified biochar, suggests that phosphate groups may have
blocked the pores of the biochar (Sathasivam et al., 2025).
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3.1.3 FTIR spectrum of biochar

The FTIR spectra revealed distinct in surface functional groups
among the four biochar samples, while several characteristic peaks
were commonly observed at approximately 1,565, 1,137, and 873 cm™'
(Figure 2). The absorption band at 1565 cm™ corresponds to the C=C
stretching vibration of aromatic compounds (Zhang et al., 2023).
Peaks within the range of 1,262-1,137 cm™" are associated with the
vibrations of P-O-P, P-O-C, and P-OH bonds (Yang et al., 2025). The

1

band near 873 cm™ is attributed to C-H bending vibration. In

! observed

addition, prominent peaks round 3,487 cm™ and 989 cm™
in both PT and BPT samples, correspond to the stretching vibrations
of -OH and P-O groups, respectively (Du et al., 2025; Rizwan et al.,
2020). These spectral features confirm the successful incorporation of
-OH and phosphate functional group onto the biochar surface

through phosphoric acid modification.

3.1.4 XPS analysis of different biochar

X-ray photoelectron spectroscopy (XPS) was employed to
characterize the surface elemental composition and chemical states of
the four biochar. Strong C and O peaks were detected in all samples,
whereas weak P peaks appeared in the H;PO,-modified biochar (PT
and BPT), confirming successful phosphorus incorporation (Figure 3).
The Cls and P2p peaks spectra of each biochar was deconvoluted by
peak fitting to identify specific bonding environments. For the
unmodified samples (T and BT), the Cls spectra were resolved into
four components, primarily corresponding to C-C (284.8 ¢V) and
C-0-C (285.8 eV) bonds. After H;PO, modification, the Cls spectrum
of PT displayed two major peaks at 284.8 eV and 286.8 eV, attributed
to C-C and C-O-C bonds, respectively. In the BPT sample, an
additional peak appeared at 288.6 eV, assigned to O-C=0 groups,
indicating partial surface oxidation induced by phosphorus
modification and ball milling. The P2p spectra of PT and BPT
exhibited two characteristic peaks between 133.1 and 135.1¢V,
corresponding to P-O and C-P-O bonds, respectively. These results
further confirm the formation of phosphate-related functional groups
on the biochar surface following H;PO, treatment and the enhanced
incorporation efficiency achieved through ball milling.

3.2 Control effect of biochar on tobacco
black shank

Our results in (Figure 4F) illustrates the effect of different
biochar treatments on lesion length caused by tobacco black shank
(TBS). All biochar treatments significantly reduced lesion length
compared with the control. Among them, the BPT and PT treatments
achieved the greatest reductions, decreasing lesion length by 37.01
and 31.17%, respectively. Significant differences were observed
among the biochar types, with the BPT treatment exhibiting 8.49,
16.38, and 27.07% shorter lesion lengths than PT, BT, and T,
respectively.

3.3 Biochar increases chlorophyll content
in tobacco

The effects of different biochar treatments on chlorophyll
accumulation in tobacco are presented in Figures 5A-C. In the
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FIGURE 1

SEM images of T (unmodified biochar), BT (ball-milled biochar), PT (HsPO,-modified biochar), and BPT (ball-milled HsPO,-modified biochar) at
different magnifications and surface element concent analysis (A-C: T; D-F: BT; G-I: PT; J-L: BPT).
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non-inoculated group, the application of ball-milled phosphorus-
modified biochar (N-BPT) significantly increased chlorophyll a,
chlorophyll b, and total chlorophyll contents by 53.70, 58.90, and
55.65%, respectively, compared with the non-inoculated control
(N-CK). Under P. nicotianae inoculation, chlorophyll contents in
plants treated with BPT were markedly higher than those in CK, T, BT,
and PT treatments. Specifically, chlorophyll a content in BPT
increased by 59.74, 46.22, 6.78, and 16.89%, while chlorophyll b
content increased by 73.23, 46.58, 26.55, and 9.06%, respectively.
However, compared with the non-inoculated BPT treatment, total
chlorophyll, chlorophyll a, and chlorophyll b levels in the inoculated
BPT group decreased by 10.85, 14.17, and 12.10%, respectively. These
findings indicate that P. nicotianae infection reduced chlorophyll
content in tobacco leaves, but the application of BPT effectively

Frontiers in Microbiology

mitigated this decline and maintained higher chlorophyll levels under
pathogen stress.

3.4 Effect of biochar on the antioxidant
system of tobacco

Figures 5D-F present the changes in reactive oxygen species (ROS)
levels in tobacco under different treatments. Inoculation with
P nicotianae significantly increased the accumulation of
malondialdehyde (MDA), superoxide anion (O,"), and hydrogen
peroxide (H,0,) compared with the non-inoculated group, indicating
enhanced oxidative stress. However, all biochar treatments markedly

reduced the levels of these ROS-related indicators. In the inoculated
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FIGURE 2
The FTIR spectral analysis of different biochar's. T (unmodified
biochar), BT (ball-milled biochar), PT (H;PO,-modified biochar), and
BPT (ball-milled HsPO,-modified biochar).

plants, compared with the infected control (CK), the T, BT, PT, and
BPT treatments decreased MDA content by 26.52, 34.52, 35.02, and
41.80%, respectively; O, content by 18.71, 22.91, 33.84, and 54.76%;
and H,0, content by 20.80, 27.04, 45.20, and 46.97%. These results
demonstrate that P, nicotianae infection triggered oxidative damage in
tobacco seedlings, whereas biochar application particularly BPT
effectively mitigated ROS accumulation. Additionally, Figures 5G-I
show the activities of the antioxidant enzymes CAT, SOD, and POD
across treatments. Overall, enzyme activities were reduced in
inoculated plants compared with the non-inoculated controls. Within
each group, enzyme activity followed the  order:
BPT > PT > BT > T > CK. Relative to N-CK, the activities of CAT,
SOD, and POD in CK decreased by 11.32, 20.47, and 13.87%,
respectively. In contrast, compared with CK, the T, BT, PT, and BPT
treatments increased POD activity by 25.22, 39.87, 50.30, and 74.31%;
SOD activity by 44.08, 60.88, 75.86, and 158.71%; and CAT activity by
14.37, 18.88, 30.41, and 32.93%, respectively. Collectively, these results
indicate that biochar application, particularly the ball-milled
phosphorus-modified biochar (BPT), effectively reduced oxidative
stress by lowering ROS accumulation and enhancing the activities of
key antioxidant enzymes in tobacco under P. nicotianae infection.

3.5 Effect of biochar on phytohormone
contents in tobacco plants

Biochar amendment markedly influenced the phytohormone
profiles of tobacco seedlings (Figure 6). In general, the levels of indole-
3-acetic acid (IAA), jasmonic acid (JA), and abscisic acid (ABA) were
higher in the inoculated group than in the non-inoculated group. Among
non-inoculated treatments, JA content was lowest in N-CK (0.31 ng/g)
and highest in N-BPT (0.40 ng/g), representing a 30.56% increase
compared with N-CK. Following inoculation, JA content in CK increased
by 16.29% relative to N-CK, while the BPT treatment exhibited the
highest JA level, which was 34.79, 15.91, and 3.24% higher than those in
N-CK, CK, and N-BPT, respectively. No significant difference in JA

Frontiers in Microbiology

10.3389/fmicb.2025.1734991

content was observed between PT and BPT after inoculation. The
variation pattern of IAA was like that of JA, following the order
BPT > PT > BT > T > CK. In contrast, the salicylic acid (SA) and ABA
contents in the BPT treatment were lower than those in the other
treatments. These findings suggest that biochar amendments, particularly
the ball-milled phosphorus-modified biochar (BPT), modulated
phytohormone homeostasis in tobacco, promoting the accumulation of
defense-related hormones (JA and IAA) while fine-tuning SA and ABA
levels to enhance resistance against P. nicotianae infection.

3.6 Biochar alters the metabolic profile of
tobacco plants

To elucidate the metabolic mechanisms underlying the effects
of biochar on TBS-infected tobacco plants, untargeted metabolomic
analyses were performed using BPT as the representative biochar
treatment. Both non-inoculated (N-CK and N-BPT) and inoculated
(CK and BPT) groups were analyzed. Supplementary Figure S4
shows the classification of metabolites identified in tobacco leaves.
Among them, lipids and lipid-like molecules constituted the largest
category (35.84%), followed by organic acids and derivatives
(15.53%), organoheterocyclic compounds (12.88%), organic oxygen
compounds (11.62%), and phenylpropanoids and polyketides
(10.63%). Principal component analysis (PCA) revealed clear
separation among the four treatment groups, explaining 34.01,
23.39, and 15.19% of the total variation by the first three principal
components, respectively (Figure 7A). The close clustering of
biological replicates within each group indicated high data
reproducibility, while distinct separation among treatments
demonstrated significant metabolic differentiation. According to
PLS-DA (Supplementary Figure S5), all comparison groups met the
criteria of R2 > Q2, and the regression line intercept of Q2 was less
than 0, indicating that the PLS-DA model was stable, reliable, and
free from overfitting. Figure 7B revealed 889 differential metabolites
were detected between N-CK and CK (427 upregulated, 462
downregulated), 998 between N-CK and BPT (621 upregulated, 377
downregulated), 745 between CK and BPT (461 upregulated, 284
downregulated), and 720 between N-BPT and BPT (429
upregulated, 291 downregulated). The N-CK vs. BPT comparison
exhibited the highest number of differential metabolites, whereas
the N-BPT vs. BPT comparison showed the fewest, indicating
greater metabolic similarity between N-BPT and BPT treatments.
KEGG pathway enrichment analysis of differential metabolites
revealed distinct metabolic responses among treatments
(Figures 7C-F). In the N-CK vs. CK comparison, differential
metabolites were mainly enriched in betalain biosynthesis,
flavonoid biosynthesis, arginine and proline metabolism, and
secondary metabolite biosynthesis. In contrast, the N-CK vs. BPT
comparison showed enrichment in flavonoid biosynthesis,
stilbenoid, diarylheptanoid, and gingerol biosynthesis, tyrosine
metabolism, and secondary metabolite biosynthesis. The CK vs.
BPT group exhibited significant enrichment in galactose
metabolism, biotin metabolism, and pyrimidine metabolism. For
the N-BPT vs. BPT comparison, enriched pathways included
stilbenoid,

monoterpenoid biosynthesis, phenylpropanoid biosynthesis, and

diarylheptanoid and  gingerol  biosynthesis,

tyrosine metabolism.
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FIGURE 3
The XPS analysis of different biochar. T (unmodified biochar), BT (ball-milled biochar), PT (H;PO,4-modified biochar), and BPT (ball-milled HsPO,-
modified biochar).

A comprehensive metabolic pathway map (Figure 8) demonstrated
that key altered metabolites were primarily involved in phenylpropanoid
biosynthesis, tyrosine metabolism, and phenylalanine, tyrosine, and
tryptophan biosynthesis. In the phenylpropanoid biosynthesis pathway,
BPT treatment upregulated L-phenylalanine, chlorogenic acid, and
sinapyl alcohol, while downregulating caffeate and sinapic acid. Within

the phenylalanine, tyrosine, and tryptophan biosynthesis pathway, BPT
increased the levels of quinate, chorismate, and tryptophan, but
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decreased phosphoenolpyruvate. In tyrosine metabolism, both CK and
BPT treatments reduced the levels of 3,4-dihydroxy-L-phenylalanine
and 4-hydroxyphenylacetylglutamate, whereas the abundance of
4-hydroxyphenylacetylglycine increased. Collectively, these results
indicate that biochar, particularly BPT, substantially remodels primary
and secondary metabolic pathways in tobacco, promoting the
accumulation of phenylpropanoid-

intermediates associated with plant defense and stress adaptation.

and amino acid-related
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FIGURE 4
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4 Discussion

4.1 Architectural feature of ball-milled
phosphorus modified biochar enhance
tobacco resistance against Phytophthora
nicotianae

Biochar is widely recognized as an effective soil amendment make

plants more resistant to a variety of insect pests and pathogens (Wang
Y. B. et al., 2024; Wang et al., 2025; Yang et al., 2022; Hafeez et al., 2022;

Frontiers in Microbiology

Fayyaz et al., 2025). Numerous studies have shown that biochar can
effectively mitigate crop diseases such as Fusarium wilt, tomato
bacterial wilt, and tobacco root rot (Chen et al., 2023; Wang S. et al.,
2024; Ge et al.,, 2023). Fayyaz et al. (2025) found that sugarcane
biochar was effective in reducing root-knot nematode infection in
tomato crops.

In the present study, ball milling and phosphoric acid (H;PO,)
modification were employed to produce an engineered biochar from
tobacco stalk waste. Such physical-chemical modification approaches
are known to profoundly alter the microstructure and surface
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chemistry of biochar, thereby increasing its reactivity and functional
diversity (Liu Z. X. et al, 2022). The H;PO,-modified biochar
exhibited higher porosity, a more ordered pore network, and a
markedly elevated surface phosphorus content (Figure 1). P plays a
central role in plant metabolism, membrane stability, and energy
transfer, and its availability can influence the activation of defense
responses against biotic stress. Therefore, H;PO,-modified biochar
significantly enhanced nutrient uptake (N, P, K) and growth
performance of Kosteletzkya virginica (Dai et al., 2025). Similarly,
modification of biochar surfaces with various elements or compounds
such as Si, SiO, NPs, or thiourea has been shown to enrich functional
groups (e.g., Si-O-Si, -OH, or -SOx), increasing the material’s affinity
for metals and nutrients while mitigating abiotic and biotic stress in
plants (Yuan et al., 2017; Lai et al., 2025; Jin et al., 2023; Peng et al.,
2024; Muthusamy et al., 2025). In this study, both H;PO, modification
and the combined ball milling-H;PO, treatment significantly altered
the surface chemistry of the original biochar, introducing abundant
phosphate (P-O) and hydroxyl (-OH) groups (Figure 2). These newly
formed functional groups likely enhanced buffer the plant against
pathogen-induced stress. As a result, the ball-milled phosphorus-
modified biochar (BPT) markedly promoted tobacco growth and
suppressed the expansion of P. nicotianae lesions (Figure 4). Taken

Frontiers in Microbiology

together, the improved physicochemical characteristics of BPT-namely
its higher porosity, enriched P content, and abundant reactive
functional groups. These features collectively contribute to enhanced
tobacco resistance by mitigating oxidative and pathogen-
induced damage.

4.2 Ball-milled phosphorus-modified
biochar enhances photosynthetic
efficiency and antioxidant defense in
tobacco

Photosynthesis is a fundamental physiological process that
underpins plant growth and productivity, with chlorophyll serving as
the primary pigment for light energy capture and conversion.
Chlorophyll degradation under environmental or biotic stress severely
limits photosynthetic performance and overall plant vitality (Sherin
et al,, 2022). Previous research has shown that biochar applications
can mitigate stress-induced chlorophyll loss and enhance
photosynthetic capacity. For instance, Tu et al. (2025) reported a
marked increase in chlorophyll concentration in salt-stressed
sunflowers following biochar amendment. Consistent with these
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findings, the present study demonstrated that soil application of ball-
milled phosphorus-modified biochar (BPT) significantly increased
chlorophyll a, chlorophyll b, and total chlorophyll contents in tobacco
compared with the control (Figures 5A-C), indicating that BPT
contributes to improved photosynthetic performance under both
normal and pathogen-challenged conditions. Reactive oxygen species
(ROS), including hydrogen peroxide (H,0,) and superoxide anion
(0;"), are by-products of aerobic metabolism in plants. Under stress
conditions, excessive ROS accumulation disrupts cellular homeostasis,
leading to lipid peroxidation, membrane damage, and oxidative injury
(Liu et al, 2024). Malondialdehyde (MDA), a product of lipid
peroxidation, serves as a reliable biomarker of oxidative damage (Bilal
etal,, 2020). Elevated levels of MDA and H,0, have been reported in
tomato plants infected with Fusarium oxysporum, reflecting oxidative
stress (Abdelaziz et al., 2022). In our study, tobacco plants infected
with P. nicotianae (CK) exhibited the highest concentrations of MDA,
H,0,, and O,", confirming the induction of oxidative stress. However,
BPT application markedly reduced these oxidative markers
(Figures 5D-F), indicating that the modified biochar effectively
mitigated ROS accumulation and lipid peroxidation. This reduction
in oxidative stress is consistent with enhanced disease resistance in
tobacco. Gao et al. (2023) similarly reported that biochar suppressed
ROS production and elevated POD activity in pathogen-infected
tomato leaves. Likewise, Wang et al. (2014) found that biochar
increased the activities of CAT, SOD, and POD in apple seedlings,
alleviating apple replant disease. In our experiment, all biochar
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treatments significantly enhanced the activities of these antioxidant
enzymes (Figures 5G-I), suggesting that biochar enhances tobacco
tolerance to P. nicotianae by improving photosynthetic pigment
stability and strengthening enzymatic ROS-scavenging capacity.
Phytohormones play pivotal roles in coordinating plant growth,
development, and defense signaling. IAA promotes cell elongation
and root development, while JA serves as a key signal in plant defense
against necrotrophic pathogens by activating induced systemic
resistance (Mehari et al., 2015; Qin et al., 2023). In this study, both
biochar application and pathogen infection significantly altered
hormone profiles in tobacco. Compared with the control, biochar-
treated plants exhibited elevated IAA and JA contents, with the highest
levels observed in inoculated groups (Figures 6A,B). Similar findings
were reported by Bisht et al. (2024), who observed increased IAA
concentrations in biochar-amended chickpea under drought stress,
enhancing root water uptake and stress tolerance. Likewise, Waqas et
al. (2018) showed that biochar application promoted JA accumulation
in rice, enhancing resistance to the white-backed planthopper. These
results suggest that BPT stimulates both growth-promoting and
defense-inducing hormonal responses in tobacco under pathogen
stress. ABA and SA are central regulators of stress signaling and play
critical roles in balancing defense activation and growth processes.
Under optimal conditions, plants maintain low basal levels of these
hormones, but stress exposure triggers rapid accumulation (Peng et
al.,

senescence and inhibit photosynthesis (Peng et al., 2021). Previous

2021). Excessive ABA, however, can induce premature leaf
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studies have indicated that plants under low-stress conditions contain
relatively high endogenous levels of SA and ABA (Rahimzadeh and
Ghassemi-Golezani, 2023; Woo et al., 2025). In this study, tobacco
plants treated with BPT exhibited lower ABA accumulation following
P, nicotianae infection compared with untreated controls (Figure 6D),
indicating a reduction in pathogen-induced stress and improved
physiological balance. Similarly, SA showed reduced accumulation in
inoculated tobacco under BPT and PT treatments (Figure 6C),
suggesting alleviation of biotic stress. We speculate that the application
of modified biochar enhanced disease resistance in tobacco, thereby
reducing the stress level within the plants. JA, SA, and ABA are the
primary hormones regulating plant defense responses against
pathogens and pests, whereas IAA is primarily considered a growth
hormone. SA was involved in regulating the biosynthesis and
transport of IAA. High-concentration SA were generally inhibitory to
overall root growth, whereas low-level SA can promote the
development of the root apical meristem (Koo et al., 2020). In
dicotyledonous plants, JA and SA often exhibit an antagonistic
relationship in disease defense. The inactivation of the JA receptor
results in higher SA levels and enhanced pathogen resistance (Spoel
and Dong, 2008). The interaction between IAA and JA, however, can
be either synergistic or antagonistic (Mu et al., 2025). Furthermore,
SA can enhance freezing tolerance in wheat by inducing endogenous
ABA signal (Wang et al., 2018). Plant growth and development are
constantly influenced by external conditions. Under biotic or abiotic
stress, phytohormones can regulate defense response alone or in
combination with other hormones, thereby enabling plants to better
mitigate stress. Overall, our results indicate that ball-milled
phosphorus-modified biochar enhances tobacco resistance to
P nicotianae by maintaining chlorophyll stability, stimulating
antioxidant enzyme activity, reducing ROS accumulation, and
modulating hormonal balance. These integrated physiological and
biochemical adjustments collectively strengthen photosynthetic
efficiency and defense capacity, enabling plants to better withstand
pathogen-induced stress.
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4.3 Ball-milled phosphorus-modified
biochar enhances phenylpropanoid
biosynthesis and metabolic defense against
TBS

Plants produce a vast array of metabolites broadly classified as
primary and secondary. Primary metabolites such as carbohydrates,
lipids, and proteins are essential for growth and energy metabolism
through pathways like glycolysis and the TCA cycle (Anzano et al.,
2022). In contrast, secondary metabolites, including carotenoids,
phenolics, flavonoids, and terpenoids, though not indispensable for
survival, play crucial roles in plant defense against biotic and abiotic
stresses (Razzaq et al., 2019). In the present study, both biochar
application and P. nicotianae inoculation significantly altered the
metabolic profile of tobacco. The differential metabolites were mainly
associated with lipids and lipid-like molecules, phenolic compounds,
organic acids, and amino acids, indicating coordinated metabolic
reprogramming in response to stress.

Within the phenylpropanoid biosynthesis and phenylalanine,
tyrosine, and tryptophan biosynthesis pathways, BPT treatment
notably upregulated tryptophan and L-phenylalanine levels (Figure 8).
Tryptophan stimulates auxin biosynthesis in the rhizosphere, thereby
promoting plant growth and stress tolerance (Mayo-Prieto et al., 2019).
Similarly, Miao et al. (2019) demonstrated that activation of the
tryptophan synthesis pathway enhanced Verticillium dahliae resistance
in cotton. Phenylalanine serves as a precursor for monolignol synthesis
via the phenylpropanoid pathway, and monolignols are the building
blocks of lignin (Lee et al., 2019). Lignin deposition strengthens cell
walls, forming a physical barrier against pathogens and serving as an
integral component of plant immunity (Cesarino, 2019; Adobor et al.,
2023). Compared with the N-CK group, BPT treatment significantly
increased the abundance of phenolic acids, particularly chlorogenic
acid (Figure 8). Phenolic acids play dual roles in plant-microbe
interactions: mediating signaling and providing antioxidant protection
under stress conditions (Kaur and Suseela, 2020). Chlorogenic acid has
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been identified as a key resistance factor, enhancing tolerance to
multiple biotic and abiotic stresses (Atanasova-Penichon et al., 2012;
Sabino et al., 2019). For example, Si treatment increased chlorogenic
acid accumulation in rose leaves, correlating with reduced mildew
powdery incidence (Shetty et al., 2011), while higher chlorogenic acid
levels were also observed in resistant wheat cultivars infected by
Fusarium graminearum (Liu C. X. et al., 2022). The upregulation of
chlorogenic acid in BPT-treated plants suggests that ball-milled H;PO,-
modified biochar effectively activates defense-related secondary
metabolism, enhancing resistance against P. nicotianae. In response to
pathogen-induced oxidative stress, plants activate defense systems
comprising enzymatic and non-enzymatic antioxidants (Colak et al.,
2021). Key enzymatic components include CAT, POD, and SOD, while
phenolic compounds (e.g., phenolic acids) represent non-enzymatic
constituents. Antioxidant compounds maintain the dynamic balance
between the production and scavenging of reactive oxygen species
(ROS) under stress conditions (Gudkov et al., 2019). Notably, during
plant-pathogen interaction, increase in peroxidase activity is often
associated with the accumulation of phenolic compounds in the cell
wall, collectively enhancing the plant’s disease resistance (Jaiti et al.,
2007). Additionally, phosphoenolpyruvate (PEP) serves as a precursor
to pyruvate (Dumont and Rivoal, 2019). Fan et al. (2023) reported that
PEP is catalyzed by phosphoenolpyruvate carboxylase (PEPC) to form
oxaloacetate, an intermediate of the TCA cycle, thereby supporting
energy metabolism under stress. Enhanced TCA cycle activity provides
additional energy for defense responses and growth under pathogen
attack (Xiao et al., 2022). In the present study, organic acids such as
chorismate and 4-hydroxyphenylacetylglycine also accumulated under
BPT treatment. Chorismate is a central intermediate leading to both
plant hormone synthesis and aromatic amino acid formation (Yuan et
al.,, 2022). The accumulation of organic acids is often associated with
improved pathogen resistance (Zhao et al., 2023), and similar patterns
have been observed in wild soybean exhibiting tolerance to alkaline
stress (Sun et al., 2025). Pathogen infection typically compromises cell
membrane integrity (Zhang et al., 2024). Lipids play a dual role in
maintaining membrane stability and scavenging reactive oxygen
species (ROS), thus functioning as antioxidant protectants (Zhu et al.,
2024). The disease resistance of plants may be influenced by the
antioxidant property of lipids and play a significant role in plant-
pathogen interaction. In this study, BPT treatment significantly
upregulated several lipid-related metabolites, including alpha-linolenic
acid, loganin, and 9,10-epoxystearic acid. Alpha-linolenic acid not only
a polyunsaturated fatty acid but also as a precursor of JA, a key defense
hormone involved in plant stress responses (Zi et al., 2022). JA is found
in the photoreceptors of plants, specifically in the membrane lipids of
chloroplast. Alpha-Linolenic acid serves to activate the expression of
JA-related defense genes and contributes to maintaining cell membrane
integrity during pathogen attack (Wasternack and Song, 2017).
Furthermore, a higher level of unsaturated fatty acids can increase the
flexibility of cell membranes, thereby enhancing the capacity of cells to
withstand pathogen infection (Zhang et al., 2024). Collectively, these
findings suggest that ball-milled phosphorus-modified biochar (BPT)
enhances tobacco resistance to P micotianae by promoting
phenylpropanoid biosynthesis, increasing the accumulation of phenolic
acids, amino acids, and lipids, and enhancing energy metabolism. This
comprehensive metabolic reprogramming strengthens antioxidant
capacity and defense signaling, thereby improving overall plant health
and resilience against pathogen invasion.
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Modified biochar demonstrates a positive role in enhancing tobacco
disease resistance. As an integrated system, the interactions between
biochar, soil, and tobacco are complex and interconnected. While this
study primarily focused on the effects of biochar on the physiological and
biochemical characteristics of tobacco, the role of soil-particularly its
microbial community-warrants further investigation. The application of
biochar to soil contributes to soil health by enhancing the abundance of
beneficial microorganisms, suppressing the reproduction of soil-borne
pathogens and pests, and strengthening plant resistance against diseases
and pests (Martinez-Gomez et al., 2023; Wagqar et al., 2025; Yan et al.,
2024; Li et al, 2022). Therefore, future research should prioritize
examining how modified biochar influences the structure of soil microbial
communities in the context of soil-borne disease management.
Additionally, as this experiment was a pot-based simulation, subsequent
research necessitates field-scale validation. The selection of appropriate
modified biochar formulations for disease management must be informed
by specific soil, climatic, and agronomic conditions to achieve optimal
disease control.

5 Conclusion

Ball
significantly enhanced the structural and chemical properties of

milling combined with phosphorus modification
biochar and markedly increased surface phosphorus content. The
modified biochar (BPT) surface was enriched with functional groups
including -OH, P-OH, and P-O, which improved its reactivity and
soil interaction potential. BPT application in soil effectively
enhanced tobacco chlorophyll accumulation, strengthened plant
antioxidant defense systems, and modulated phytohormone balance.
Moreover, BPT upregulated the biosynthesis of amino acids and
phenolic acids through the phenylpropanoid and phenylalanine-
tyrosine-tryptophan pathways, as well as influencing lipid
metabolism to improve resistance of Nicotiana tabacum to
P, nicotianae infection.
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