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Integrating Biochar, Compost, and Chemical Fertilizer Improves Maize Yield and Soil Health in

the Guinea Savanna: Evidence from Two Cropping Seasons in Northern Ghana
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ICSIR-Savanna Agricultural Research Institute, P.O. Box TL 52, Tamale, Ghana
“The corresponding author’s email address: aziizlatiif@gmail.com
ABSTRACT

Maize production by smallholder farmers in sub-Saharan Africa is constrained by declining soil
fertility due to low input use and poor nutrient management. This study evaluated the individual and
combined effects of biochar, compost, and chemical fertilizer on maize growth, yield, and soil
chemical properties during the 2023 and 2024 cropping seasons in Northern Ghana. A randomized
complete block design was used with six treatments: control, biochar alone (B), compost alone (C),
chemical fertilizer (CF), biochar + compost (*2 B + 2 C), and biochar + compost + chemical fertilizer
(2B + % C + %4 CF). Data were analyzed using analysis of variance (ANOVA), and treatment means
were separated using the least significant difference (LSD) test at a 5% probability level. The biochar
+ compost + chemical fertilizer (2 B + % C + V2 CF) treatment significantly increased maize grain
yield by 105.7% in 2023 and 127.4% in 2024 compared to the control. Soil organic carbon, nitrogen,
and phosphorus improved by 115.8%, 685%, and 40.2%, respectively, under this integrated
treatment. The SPAD chlorophyll index, cob number, seed weight, and harvest index also increased
significantly. Grain yield correlated strongly with soil pH (r = 0.88**%*), electrical conductivity (r =
0.94***), organic carbon (r = 0.84***), and phosphorus (r = 0.86***). The results demonstrate that
integrating biochar, compost, and mineral fertilizer enhances maize productivity and soil fertility,
while biochar addition contributes to increased soil carbon storage in semi-arid, low-input systems

of West Africa.

Keywords: Biochar, Compost, Guinea Savanna, Integrated nutrient management, Maize productivity, Soil

chemical properties.
1. INTRODUCTION

Maize (Zea mays L.) is one of the most important cereal crops globally, serving as a major source
of food, feed, and income for millions of smallholder farmers, particularly in sub-Saharan Africa
(SSA) (Shiferaw et al., 2011; FAO, 2021). In Ghana, maize is a cornerstone of food security and

rural livelihoods, especially in the Guinea Savanna agro-ecological zone, where it is cultivated
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largely under rainfed conditions (Badu-Apraku et al., 2012). Despite its significance, maize
productivity in SSA, including Ghana, remains far below its potential due to chronic soil fertility
decline, erratic rainfall, and poor soil health (Vanlauwe et al., 2010; Agyeman et al., 2020). The
soils of the Guinea Savanna are inherently fragile, dominated by highly weathered Ferric Lixisols
characterized by low organic matter, poor nutrient retention, and rapid decomposition under
continuous cultivation (Saaka et al., 2021). To address nutrient deficiencies, smallholder farmers
often apply mineral fertilizers, particularly nitrogen (N) and phosphorus (P), which are critical for
maize growth. For instance, optimum maize production in the Guinea Savanna typically requires
60-90 kg N ha=", 40—60 kg PJO[J ha~", and 40—60 kg K[JO under smallholder conditions
(MoFA, 2019; FAO, 2021). However, average maize yields in this zone remain low, typically
ranging from 1.5 to 2.0 tha=—" (MoFA, 2019; Agyeman et al., 2020). While mineral fertilizers have
been shown to increase yields in the short term, their exclusive use often results in soil
acidification, declining organic matter, low fertilizer use efficiency, and high production costs
(Adjei-Nsiah & Bagamsah, 2012; Abdulai et al., 2023). Moreover, global price volatility and
supply chain disruptions have highlighted the vulnerability of input-dependent systems.

These challenges underscore the need for sustainable approaches that improve both crop yields
and soil health. Integrated Soil Fertility Management (ISFM), which strategically combines
organic and inorganic nutrient sources, has gained global recognition as a pathway to enhance
productivity, restore soil fertility, and strengthen resilience (Vanlauwe et al., 2015; Chivenge et
al., 2021). Among organic amendments, biochar and compost are widely studied. Biochar, a
carbon-rich product of biomass pyrolysis, improves soil cation exchange capacity, pH buffering,
and water retention, while also providing habitat for beneficial microorganisms (Lehmann &
Joseph, 2015; Jeffery et al., 2017). Mechanistically, biochar tends to increase soil pH by
neutralizing acidity through the release of basic cations (Ca?[/, Mg?[], K[, and NalJ) and surface
functional groups, thereby creating a more favorable environment for nutrient availability. Its
porous structure also contributes to higher electrical conductivity (EC) by retaining exchangeable
ions in the soil solution (Glaser et al., 2002). Furthermore, the high carbon content of biochar
enhances soil organic carbon stocks, improves aggregation, and stabilizes native soil organic
matter, while its relatively low N content promotes nitrogen retention and reduces volatilization
losses (Lehmann & Joseph, 2015; Woolf et al., 2010; Laird et al., 2010; Agegnehu et al., 2016).

In addition, biochar surfaces can adsorb phosphate ions, reduce fixation, and gradually increase
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available phosphorus for plant uptake (Lehmann & Joseph, 2015; Liu et al., 2018). Compost, on
the other hand, supplies readily available nutrients such as N, P, and K through mineralization,
enhances microbial activity, and contributes to long-term organic matter buildup (Sohi et al., 2010;
Agegnehu et al., 2016). The microbial activity stimulated by compost accelerates organic matter
turnover, thereby improving total nitrogen and available phosphorus levels, while also contributing
to higher EC and cation exchange capacity. When applied together with mineral fertilizers, biochar
and compost have been shown to synergistically improve nutrient availability, reduce leaching
losses, and enhance nutrient use efficiency (Glaser et al., 2002; Liu et al., 2018; Adekiya et al.,
2020). Despite global advances, the application of ISFM in the Guinea Savanna of Ghana remains
limited. Previous studies have often considered compost or biochar in isolation—Yawson et al.
(2016) found that compost alone improved soil N and P but had limited residual yield effects,
while Asare-Bediako et al. (2020) reported that biochar enhanced soil pH and organic carbon but
produced modest yield gains when applied alone. However, their combined effects with mineral
fertilizers under smallholder field conditions remain poorly understood. Furthermore, evidence on

the multi-season response of maize and soil properties under integrated applications is scarce.

This study was therefore designed to evaluate the individual and combined effects of biochar,
compost, and chemical fertilizer on maize growth, yield, and selected soil properties across two
cropping seasons (2023 and 2024) in the Guinea Savanna of Ghana. It was hypothesized that
integrating biochar and compost with mineral fertilizers would enhance maize productivity more
effectively than sole applications while simultaneously improving soil fertility. In addition, this
work provides both locally relevant insights and contributions to the global discourse on ISFM.
Future research could further explore innovative organic amendments such as vermicompost,
which has been shown to improve nutrient availability, microbial diversity, and soil structure with
relatively less labor demand compared to conventional composting (Edwards et al., 2011; Lazcano

& Dominguez, 2011).

2. MATERIALS AND METHODS
2.1. Study area

The study was conducted at the research fields of the Savannah Agricultural Research Institute
(SARI), located in the Tolon District of Northern Ghana (9° 25’ N latitude, 00° 58" W longitude),

within the Guinea Savanna agro-ecological zone. The experimental field measured approximately
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0.7 ha, from which the plots were demarcated. The site has a long history of continuous cereal—
legume cultivation, dominated by maize, soybean, and groundnut in rotation. Before the study, the
land had been cropped to maize for two consecutive seasons. Soil fertility management by farmers
in the zone typically relies on low and inconsistent use of mineral fertilizer, occasional application
of poultry manure or compost, and limited adoption of integrated practices. As a result, soils are
generally nutrient-depleted, with low organic matter and declining productivity. A map of the
study site is provided (Figure 1) to clearly indicate the geographic location of the experimental
fields in relation to the wider production landscape. The Guinea Savanna is highly significant in
the broader context of maize production in Ghana and West Africa. It constitutes the country’s
largest maize belt, contributing substantially to national food security and serving as a surplus
production area that supplies other regions (MoFA, 2019; Abdulai et al., 2023). However, the soils
in this zone are predominantly Ferric Lixisols, highly weathered, coarse-textured, and inherently
low in organic matter and essential nutrients (Saaka et al., 2021). This makes the zone a
representative hotspot for testing soil fertility management innovations, particularly integrated soil
fertility management (ISFM) strategies aimed at reversing soil degradation, improving nutrient use
efficiency, and strengthening resilience under climate variability. Conducting the study at this site,
therefore, provides not only locally relevant insights but also lessons applicable to similar agro-

ecological zones across sub-Saharan Africa.
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Figure 1. Map of Ghana showing the location of the experimental sites

The area experiences a unimodal rainfall pattern from May to October, with peaks in August and
September. Rainfall distribution varied considerably between the two years of study (Figure 2). In
2023, the highest rainfall occurred in August (254.3 mm) and October (238.1 mm), while in 2024,
September recorded the peak (330.3 mm), followed by August (225.1 mm). Rainfall was absent
in March, May, November, and December of 2024, whereas in 2023, these months received 5 mm,
126 mm, 140.1 mm, and 13.2 mm, respectively. June and July 2024 received more rainfall (149.1
mm and 85.2 mm) than the same months in 2023 (97.3 mm and 107.1 mm), suggesting shifts in
rainfall timing and intensity. Average monthly temperatures were relatively stable across both
years, with only minor variations (Figure 3). May was the hottest month, recording 30.2°C in 2023
and 29.1°C in 2024, while August was the coolest, with 26.4°C in 2023 and 26.8°C in 2024. On
average, 2024 was marginally cooler than 2023, particularly in May, October, and November.
These year-to-year climatic differences likely affected maize phenology, soil moisture availability,

and the effectiveness of the soil amendments evaluated.
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Figure 2. Total rainfall distribution in the 2023 and 2024 seasons.
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Figure 3. Temperature distribution in the 2023 and 2024 seasons

2.2. Experimental Design and Treatments

The experiment was arranged in a randomized complete block design (RCBD) with six treatments and four
replications, totaling 24 plots per season. Each plot measured 4 meters by 4 meters (16 m?), with a 1-meter
buffer between plots. The treatments comprised: (1) Control (no amendment), (2) Biochar alone (B), (3)
Compost alone (C), (4) Chemical fertilizer alone (CF), (5) Biochar + Compost (Y2 BC + 2 C), and (6)
Biochar + Compost + Chemical fertilizer (/2 BC + % C + 2 CF). The treatments were selected to reflect
both farmer-relevant practices and scientific interest in integrated soil fertility management. Sole
applications of biochar, compost, and chemical fertilizer were included to evaluate their individual effects.
The combined treatments (2 BC + %2 C, and 2 BC + 2 C + %2 CF) were designed to test whether partial
substitution and integration of organic and inorganic inputs could provide synergistic benefits. The half-
rate combinations were informed by previous studies (Mensah et al., 2018; Abukari et al., 2019; Fianko et
al., 2023; Onawumi et al., 2024) related to agroecologies, which suggest that integrating organics with
fertilizers at reduced rates can enhance nutrient use efficiency, improve soil health, and lower input costs

for farmers.
2.3. Soil Sampling and Analysis

Initial soil samples were collected from the top 0—20 cm soil depth before treatment application to determine

baseline properties. At physiological maturity, post-treatment soil samples were again collected from each
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plot during both seasons. The samples were air-dried, sieved to pass through a 2 mm mesh, and analyzed
in the laboratory and the results is presented in Table 1. Soil pH was measured in a 1:2.5 soil-to-water
suspension using a digital pH meter (McLean, 1982). Electrical conductivity (EC) was determined using a
conductivity meter (Rhoades, 1996). Organic carbon (OC) was analyzed using the Walkley—Black wet
oxidation method (Walkley & Black, 1934). Total nitrogen (N) was determined using the Kjeldahl digestion
method (Bremner & Mulvaney, 1982). Available phosphorus (P) was measured using the Bray I extraction
method (Bray & Kurtz, 1945), and exchangeable potassium (K) was determined by flame photometry
following ammonium acetate extraction (Knudsen et al., 1982). The results from Table 1 reveal that the soil
pH (6.50) falls within the moderately acidic range, which can influence nutrient availability and thereby
maize growth and yield. As noted by Brady and Weil (2016), acidic conditions may restrict the availability
of key nutrients such as phosphorus and nitrogen, potentially constraining maize productivity if soil pH
declines further below 5.5. The low organic carbon (0.158%) and total nitrogen (0.65 g kg[1') indicate poor
soil fertility, a condition common in degraded tropical soils (Chen et al., 2010). Such deficiencies are critical
for maize production, as limited nitrogen and organic matter restrict biomass accumulation and grain yield,
thereby highlighting the need for fertility-enhancing inputs. The available phosphorus (6.98 mg kg™!) is also
below the critical threshold for maize, which often requires >15 mg/kg for optimal nodulation and growth
(Sainju et al., 2014). The exchangeable potassium (254 mg kg™!) is relatively moderate but may still limit
yield potential when coupled with other nutrient constraints. These baseline conditions justify the use of
organic and inorganic inputs as a strategy to enhance maize productivity. They also help contextualize the

crop's response to the treatments applied.

Table 1: Physico-chemical characteristics of the soil at 0-20 cm depth at Nyankpala

Soil properties Values
%sand 61.6
% silt 23.76
% clay 14.64
Texture Sandy loam
pH (1:2.5 H,0) 6.50
EC (dS/m) 0.0019
Available phosphorus (P) (mg kg™) 6.98
Organic carbon (%) 0.158
Total nitrogen (N) (g kg™!) 0.65
Exchangeable potassium (mg kg!) 254

Exchangeable Calcium (cmol (+)/kg) 2.6
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Exchangeable Magnesium (cmol (+)/kg) 1.2

Cation exchange capacity 4.11

2.4. Biochar and Compost Preparation

Biochar was produced from rice husk using a slow pyrolysis process at approximately 500°C in a locally
fabricated drum. Biochar was ground, sieved with a 2mm sieve, and analyzed before application. Compost
was prepared using cattle manure, rice straw, and maize stover through aerobic decomposition over 3-4
months. The biochar had a pH of 8.5 and contained approximately 65% carbon, while the compost was rich
in nitrogen, phosphorus, and potassium with values of 1.5 gkg!, 1.8 mgkg'!, and 1.82 mg kg™!, respectively.

Compost and biochar chemical characteristics are presented in Table 2.

Table 2. Selected chemical properties of biochar and compost applied to the experimental plots in 2023 and
2024.

Property Unit Biochar Compost
Moisture % 9.8 22.5
Ash % 16.5 21.35
Fixed C % 65 17.6
pH (1:2.5 H,0) 8.5 7.30
EC (uS/cm) 1.5 4.5
g kg'! 0.67 1.50
P mg kg! 0.85 1.80
mg kg'! 2.23 1.82

2.5. Treatment Application and Crop Establishment

Biochar and compost were each applied at a rate of 5 t hall! when used individually, or at 2.5 t hal]! each
when applied in combination. The maize was planted at a spacing of 75 cm X 25 c¢cm (population of about
53,333 plants hal[l'), giving approximately 85 planting stations per 4 m x 4 m plot. This corresponded to
about 8.0 kg of amendment per plot (=94 g per planting station) when applied singly, or 4.0 kg per plot
(=47 g per planting station) for each amendment when combined. The mineral fertilizer (NPK 15-15-15)
was applied at the recommended rate equivalent to 90 kg N ha', 60 kg POO ha™!, and 60 kg KOO
ha['. Of this, 60 kg N, 60 kg PO, and 60 kg KOO were applied as basal fertilizer two weeks after

planting, while urea (46% N) was top-dressed six weeks after planting to supply the remaining nitrogen.
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When mineral fertilizer was integrated with organic amendments, it was applied at half of the recommended
rate. In the fully integrated treatment (2 BC + 2 C + % CF), each amendment was applied at 50% of its
full rate. These rates were informed by national maize production guidelines (MoFA, 2010) and previous
studies in the Guinea Savanna and related agroecologies, which have shown that 5 t halJ! of organics and
recommended fertilizer levels enhance maize performance without being prohibitive for farmers (Mensah
et al., 2018; Ezike et al., 2016; Abukari et al., 2019). Organic inputs were incorporated 2-3 weeks before
planting, while fertilizer was applied in two equal splits: at sowing and four weeks after emergence. The
maize variety used was Zea mays L. (cv. Wang Dataa). Weed control was done manually at three and six
weeks after emergence. The same plots were maintained across both seasons (2023 and 2024) to assess
residual effects. Organic and inorganic amendments were reapplied in 2024 at the same rates as in 2023.
After each harvest, maize stover and cobs were left on each plot to decompose naturally, contributing some
organic matter to the soil. This was done to ensure the work reflects the Integrated soil fertility management

strategy.
2.6. Data Collection on Growth and Yield Parameters

Growth assessment focused on SPAD chlorophyll readings and plant height. Chlorophyll content was
measured at tasseling using a Minolta SPAD-502 meter, with readings taken from the topmost fully
expanded leaf of ten randomly selected plants per plot. Plant height was measured from the soil surface to
the tip of the tassel at physiological maturity. At harvest, data were collected on several yield and yield
components. The number of cobs per plot was determined from all plants within the net plot, while cob
weight was recorded from the harvested cobs. Stalk weight was obtained from oven-dried biomass of stalks,
and grain yield was calculated from shelled grain, adjusted to 12.5% moisture content, and converted to
tonnes per hectare. The 100-seed weight was determined from a randomly selected grain sub-sample.
Finally, the harvest index was calculated as the ratio of grain yield to total aboveground biomass. This
combination of growth parameters, yield, and yield components offered an integrated assessment of

treatment effects on maize growth performance and overall productivity.
2.7. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) using GenStat (version 12). In the statistical model,
treatments were considered fixed factors, while blocks (replications) were treated as random factors. Since
the experiment was conducted across two cropping seasons (2023 and 2024), seasons were treated as a
fixed factor, and the analysis was combined over the two seasons to account for seasonal variability and

treatment x season interactions. Treatment means were separated using the Least Significant Difference
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(LSD) test at the 5% probability level. Before analysis, data were tested for normality and homogeneity of

variance, with appropriate transformations applied where assumptions were not met.
3. RESULTS
3.1. Effects of treatments and seasons on SPAD readings, plant height, and stalk weight

SPAD chlorophyll values varied significantly with treatment and season (p = 0.002) (Table 3). The highest
chlorophyll content (47.17) was found in 2023 under 2BC + 2C + 4CF, followed closely by 2BC + %2C
(45.47) and BC (44.07). The lowest was observed in the control (28.84). In 2024, values declined slightly,
with %2BC + %4C (43.24) and CF (41.84) performing best, while the control (32.00) and C (33.91) remained
the lowest (Table 3). Plant height was not significantly affected by the interaction of treatment and season
(p < 0.001). In 2023, the tallest plants (185 c¢m) were recorded under 2BC + AC + CF, which was
statistically comparable to C (181 cm), CF (179 ¢cm), and %2BC + %2C (178 cm), while the control (166 cm)
and BC (165 cm) were the shortest (Table 3). In 2024, plant heights were generally lower, ranging from
132 cm under the control to 175 cm under 2BC + 2C + 2CF, though significant differences were not seen
among treatments compared with 2023. The treatment x season interaction significantly affected stalk
weight (p = 0.005; Figure 4). In 2023, CF produced the heaviest stalks (3.80 t ha[ '), followed by C (2.67 t
ha'), while the control recorded the lowest (1.60 t ha[1'). In 2024, /2BC + 2C produced the heaviest stalks
(3.43 t ha™l"), which were significantly higher than the control (2.17 t ha[1') and 2BC + 2C + 2CF (2.30
t ha1") (Figure 4).

10
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Figure 4. Effect of treatments on stalk weight of maize during the 2023 and 2024 cropping seasons. BC =
Biochar; C = Compost; CF = Chemical Fertilizer; 2 = Half of the recommended rate.

Table 3: Effect of Treatments and seasons on growth parameters of maize during the cropping season

Treatment SPAD (umol m™?) Plant height (cm) Cob number (No plot!)
Cropping season

2023 2024 2023 2024 2023 2024
Control 28.84d 32.00¢ 166¢ 1322 69 23¢
BC 44.07° 38.57¢ 165¢ 1562 19¢ 350
C 35.83¢ 33.91d 18120 1562 25b¢ 27¢
CF 41.49° 41.84° 17920 1472 452 3920
%BC + 14C 45.4743b 43.24z2b 178° 1662 23¢ 392b
“BBC +%C + %CF 47.172 40.43bc 1852 1752 320 472
LSD (5%) 3.197 21.00 9.06
Pr(TxYS) 0.002 0.331 0.005
Ccv 4.80 7.50 17.80

Means followed by the same letter are not significantly different at the 5% probability level (p < 0.05). BC
= Biochar; C = Compost; CF = Chemical Fertilizer; 2 = Half of the recommended rate. LSD = Least
Significant Difference, Pr = probability, CV= Coefficient of Variation, T x S = Treatment and Season

interaction.

3.2. Effect of Treatments and seasons on the number of cobs per plot and cob weight

11
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Cob number per plot was significantly affected by the interaction of treatment and season (p <0.001) (Table
3). In 2023, CF produced the highest cob number (45), followed by 2BC + 2C + CF (32), while the
lowest was under control (6). In 2024, 2BC + 2C + "CF produced the most cobs (47), with the weakest
in control (23) (Table 3). Cob weight, however, was not significantly affected by treatment x season (p =
0.071). The application of fertilizers and organic amendments had a significant influence on cob weight
(Table 4). In 2023, the chemical fertilizer (CF) treatment produced the highest cob weight (2.93 t ha[1?),
representing a 54.2% increase over the control (1.90 t ha[1'). However, in 2024, the highest cob weight was
obtained from the biochar + compost (/2 BC + % C) treatment (3.15 t hall'), reflecting a 63.2%

improvement over the control.
3.3. Effect of treatments on grain yield, 100-Seed Weight, and Harvest Index

Grain yield differed significantly across treatments and seasons (p = 0.016; Table 4). In 2023, 2BC + »2C
+ 1CF recorded the highest yield (2.53 t ha[1'), followed by CF (2.23 t ha[1'), while control was the lowest
(1.23 thal"). In 2024, 2BC + 2C (2.94 t ha1') and %2BC + %2C + Y4CF (2.82 t ha[1") performed best, while
control remained the least productive (1.24 t ha[1') (Table 4). A significant treatment X season interaction
was also observed for 100-seed weight (p = 0.011) (Table 4). In 2023, “2BC + 1»C + %ACF (26 g) recorded
the heaviest seeds, followed by CF (25 g), while the control produced the lightest (18 g). In 2024, both
1%LBC + 4C + %CF and C had the heaviest seed weights (28 g), while treatment CF and 2 BC+%C had the
lightest seeds in 2024 (Table 4). Harvest index was not significantly affected by treatment x season (p =
0.296) (Table 4). Harvest index (HI) was, however, significantly enhanced by integrated treatments. In
2023, 2 BC + 2 C (1.08) and %2 BC + /2 C + 2 CF (1.05) recorded the highest HI values, showing 66.2%
and 61.5% improvements over the control (0.65). In 2024, 2 BC + 2 C + 2 CF achieved an even greater
HI of 1.20, an 84.6% increase relative to the control (Table 4).

Table 4: Effect of Treatments and cropping season on cob weight, 100-seed weight, and harvest index of

maize during the 2023 and 2024 cropping seasons

Treatment Cob weight (tha')  Grain yield (t ha') 100-seed weight (g) Harvest index (%)

Cropping season

2023 2024 2023 2024 2023 2024 2023 2024

Control 1908  1.932 1.23d 1249  18° 26° 0.65°  0.65°
BC 2,032 2948 173c 197  22b 273 0.852  0.72a
C 2472 270 200 2.15°  22b 28s 0.92¢  0.802
CF 2932 283 223 265 25 26b 0772 0.972
BC + 4C 1902 3152 2.00bc 2.94a 24 25b 1.088  0.942
VBC+%C+%CF 2472 2432 253 282 262 28s 1.058  1.202
LSD (5%) 0.75 0.358 3.00 0.278

Pr(TxS) 0.071 0.016 0.011 0.296

12
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CV 18.20 9.90 7.00 18.60

Means followed by the same letter are not significantly different at the 5% probability level (p < 0.05). BC
= Biochar; C = Compost; CF = Chemical Fertilizer; 2 = Half of the recommended rate. LSD = Least
Significant Difference, Pr = probability, CV= Coefficient of Variation, T x S = Treatment and Season

interaction.
3.4. Soil chemical properties

All measured soil properties (pH, EC, OC, N, P, and K) were significantly affected by treatment x season
(p <0.001). Soil pH ranged from 5.69 under control to 6.67 under 2BC + 2C + %ACF in 2023, and from
5.62 under CF to 6.64 under 2BC + 4C + CF in 2024 (Table 5). Soil EC increased significantly under
CF and ¥2BC + AC + 14CF, with values above 1100 dS/m in 2023, compared with 817 dS/m under control
(Table 5). Organic carbon was highest under 2BC + 2C + ACF (1.64% in 2023; 1.33% in 2024), while
the lowest was in control (0.76% in 2023; 0.64% in 2024) (Table 5). Similarly, nitrogen content was highest
under 2BC + %2C + %CF (0.2667% in 2023), while no difference was observed in 2024 (Figure 5).
Available phosphorus increased markedly under %2BC + 14C + ACF (117.43 mg/kg in 2023; 113.35 mg/kg
in 2024), compared with the lowest in the control (83.77 and 66.18 mg/kg, respectively) (Figure 6).
Potassium also improved with treatments, being highest in 2024 under 2BC + 2C + ACF (43.90 mg/kg),
while the lowest was recorded under control (27.01 and 27.37 mg/kg) (Table 5).

13



298
299

300

301

302

0.4
Hl 2023
0.3— = 2024
=
S 0.2
o
-
" |{| |}| |{| 'l{l
0-0_'.| l| .I ll T
N (&) < < <
Qéo @ CJQ xx\'v ~\Wo
® O o>
\\"l'@ '\\""
ox
\\"b
Treatments

Figure 5. Effect of treatments on total N (%) of the soil during the 2023 and 2024 cropping seasons
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Figure 5. Effects of treatments on available P (mg kg™') of the soil during the 2023 and 2024 cropping

s€asons

Table 5. Effects of treatments on soil pH, EC, organic carbon, and potassium during the 2022 and 2023
cropping seasons

Treatment pH (1:2.5H,0) E C(dS/m) OC (%) K (mg/kg)

Cropping season

2023 2024 2023 2024 2023 2024 2023 2024

Control 5.69¢ 5.659 817¢ 7754 0.76¢  0.64¢ 27.01f 27.37"
B 6.10¢  6.17° 9454 799¢d 0.91¢  0.97¢  29.83¢ 36.544
C 6.43¢ 6.52° 1019¢ 806¢d 1.33°6  0.90¢ 33.174 31.79¢
CF 6.53> 5.624 11090 855°b 1.552 1.00c  37.47° 29.79¢
BC + 14C 6.47°¢  5.65¢ 1004¢ 815¢ 1.03¢ 1.20>  39.17°>  43.01°
“BC +%C + %CF  6.672  6.642 11152 844° 1.642 1.332 38.87°  43.902
LSD (5%) 0.150 41.80 0.174 3.607
Pr(TxS) <.001 <.001 <.001 <.001
CVv 1.40 2.70 9.30 6.10

Means followed by the same letter are not significantly different at the 5% probability level (p < 0.05). BC
= Biochar; C = Compost; CF = Chemical Fertilizer; 2 = Half of the recommended rate. LSD = Least
Significant Difference, Pr = probability, CV= Coefficient of Variation, T x S = Treatment and Season

interaction.
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3.6. Correlation Analysis

Correlation analysis was conducted to examine the relationships among soil chemical properties,
physiological parameters, growth characteristics, and yield-related traits of maize in 2023 and 2024 (Tables
6 and 7). In 2023, grain yield showed a strong and significant positive correlation with SPAD chlorophyll
readings (r = 0.73***), cob number (r = 0.77***), and 100-seed weight (r = 0.76***). These findings align
with previous studies that highlight the importance of chlorophyll content and reproductive components in
determining maize productivity (Rukundo et al., 2021; Zhang et al., 2020). Grain yield also correlated
significantly with soil pH (r = 0.88***) EC (r = 0.94***), organic carbon (r = 0.84***), and phosphorus (r
= 0.86***), indicating that soil fertility status plays a crucial role in enhancing maize yield under the study

conditions (Agegnehu et al., 2016; Lehmann et al., 2011).

SPAD values had significant positive correlations with several key traits, including 100-seed weight (r =
0.68**), harvest index (r = 0.60%*), and multiple soil chemical properties (e.g., pH, EC, OC, N, P, and K).
In 2024, similar trends were observed. Grain yield maintained a significant correlation with SPAD (r =
0.72%**), cob number (r = 0.81***), and harvest index (r = 0.81***). Notably, cob weight was not
significantly correlated with grain yield (r = 0.13). Phosphorus (r = 0.78***) and organic carbon (r =
0.79***) remained significantly associated with grain yield, reinforcing the importance of soil fertility
improvement strategies such as organic amendments and integrated nutrient management. Unlike in 2023,
100-seed weight in 2024 showed weak or negative correlations with most traits, including a non-significant
correlation with grain yield (r = -0.03), which may reflect inconsistencies in seed development or kernel
filling due to uneven rainfall distribution. However, SPAD remained a consistently strong indicator of

overall crop performance across both years.

16



334  Table 6. Pearson correlation coefficients among physiological, growth, yield traits, and soil chemical properties of maize in 2023.

Variable SPAD Plant Stalk wt. Cobno. Cobwt. Grainy. 100-SW  HI pH EC ocC N P K
h.

SPAD 1.00

Plant height 0.33 1.00

Stalk weight 0.22 0.28  1.00

Cob number 0.48* 0.29  0.70%* 1.00

Cob weight 0.25 0.37  0.69%* 0.79***  1.00

Grain yield 0.73***  (0.48* 0.49% 0.77***  (.58% 1.00

100-seed weight ~ 0.68**  0.59* 0.39 0.70**  0.70**  0.76*¥**  1.00

Harvest index 0.60* 0.10  -0.08 0.13 -0.32 0.56* 0.14 1.00

pH 0.70*¥* 042  0.57* 0.70**  0.46% 0.88*** (. 71** 0.58* 1.00

EC 0.70%*  0.44  0.69** 0.82%**  (.62%* 0.94%*% 0. 71%**  0.49* 0.94%*%* 1.00

Organic carbon 0.47* 046  0.61* 0.70%*  0.62%*  0.84***  (.60* 0.36  0.84*** (0.91*** 1.00

Nitrogen 0.67** 028  0.03 0.35 0.22 0.73%**  (.53* 0.58* 0.63**  (0.64** 0.64%* 1.00

Phosphorus 0.63** 045 036 0.63**  0.44 0.86%**  (.71%* 0.53*  0.88***  (.86***  (.84***  (.79%** 1.00

Potassium 0.69*%*  0.55% 0.41 0.50* 0.28 0.73***  (0.59* 0.59*  0.84*** (. 78***  (0.68**  0.57* 0.67** 1.00

335  *Note: *, *, and *** indicate significance at p < 0.05, p < 0.01, and p < 0.001, respectively.

336

337

338

339
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340  Table 7. Pearson correlation coefficients among physiological, growth, yield traits, and soil chemical properties of maize in 2024.

Variable SPAD Planth. Stalk Cobno. Cob  Grainy. 100-SW  HI pH EC ocC N P K

wt. wt.

SPAD 1.00

Plant height 0.58* 1.00

Stalk weight 0.40 0.18 1.00

Cob number 0.78***  0.65%*  0.12 1.00

Cob weight 0.17 -0.05 0.56*  -0.19 1.00

Grain yield 0.72%**  (0.57* 0.54*  0.81*** 0.13  1.00

100-seed weight -0.21 0.28 -0.34  0.06 -0.26  -0.03 1.00

Harvest index 0.54%* 0.53* 0.11 0.85*%**  -0.44 0.81***  0.15 1.00

pH 0.12 0.51%* -0.24  0.20 -0.38  0.12 0.80**** (.37 1.00

EC 0.46* 0.31 0.22 0.60* -0.05 0.75***  -0.01 0.74***  0.08 1.00

Organic carbon 0.69** 0.69**  0.28 0.87*** « -0.10~ 0.79***  0.07 0.76***  0.33 0.43 1.00

Nitrogen 0.49* 0.67**  0.48* 0.61%* 0.25  0.73***  0.08 0.53* 0.30 0.36 0.72%** 1.00

Phosphorus 0.62* 0.76***  0.08 0.91*** -0.23 0.78*** 0.30 0.86*** 0.52*  0.54*  0.88*** (0.76*** 1.00

Potassium 0.58* 0.73***  0.18 0.74*** 0.01 0.67**  0.10 0.59* 0.36 0.27 0.85%** (. 72%**  (.83*%** 1.00
341 *Note: *, *, and *** indicate significance at p < 0.05, p < 0.01, and p < 0.001, respectively.
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4. DISCUSSION

The combined application of biochar, compost, and mineral fertilizer significantly improved maize growth,
yield, and soil fertility compared with the control and single amendments. Although the fertilizer-only
treatment (CF) performed better than the integrated treatments in 2023, the differences disappeared in 2024,
indicating that the benefits of integrated nutrient management may become more evident over time. Other
growth parameters, such as plant height and chlorophyll content (SPAD), were consistently higher under
integrated treatments, particularly 2BC + 142C + /2CF, which ranked among the best-performing options in
both seasons. These results suggest that improved nutrient availability and uptake could be a possible reason
for the enhanced crop performance observed when biochar was combined with compost and chemical
fertilizer, supporting the hypothesis that integrated nutrient management tends to be more effective than the

application of single sources of fertility.

The higher SPAD values recorded in the integrated treatments reflect improved nitrogen availability and
assimilation. Biochar is known to reduce nitrogen losses by adsorbing ammonium and nitrate ions and
modifying mineralization processes, while compost supplies readily available organic N and stimulates
microbial activity. When combined with mineral fertilizer, these mechanisms likely create a more balanced
and sustained nitrogen supply for the crop. The observed increase in chlorophyll content under integrated
treatments is consistent with previous findings that biochar-based amendments enhance leaf nitrogen status
and photosynthetic efficiency. Liu et al. (2020) demonstrated that biochar combined with nitrogen fertilizer
significantly improved nitrogen uptake and use efficiency, thereby increasing SPAD values and maize
growth, while Ye et al. (2020) also reported higher crop yields under biochar—fertilizer combinations

compared with fertilizer or biochar alone.

The yield response followed a similar pattern. The highest grain yields were observed in the combined
treatments, particularly 2BC + 2C + ACF, which consistently outperformed the control and single
amendments across both seasons. Although the 2BC + %4C treatment improved yield compared with the
control, it did not perform better than the fertilizer-only (CF) treatment. Biochar or compost applied alone
gave modest improvements, but the synergistic effect of combining organic and inorganic sources was more
pronounced. These findings align with the meta-analysis of Ye et al. (2020), which concluded that biochar
alone rarely increases yields substantially but has strong positive interactions when applied with mineral
fertilizer. The complementary functions of the amendments explain this synergy: biochar improves soil
structure and nutrient retention, compost enriches organic matter and micronutrients, and mineral fertilizer
provides readily available nutrients. This combination likely enhanced assimilate partitioning during grain

filling, as reflected in the higher 100-seed weight observed under integrated treatments.
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Soil chemical properties also responded positively to biochar-based treatments. Soil pH increased
significantly in biochar-amended plots, consistent with the liming effect of biochar arising from its alkaline
ash content and capacity to neutralize exchangeable acidity. Similar trends have been reported in acidic
tropical soils by Chimdi et al. (2012) and Jeffery et al. (2017). The increase in pH likely alleviated aluminum
toxicity, creating a more favorable environment for root growth and nutrient uptake. Organic carbon content
was also higher in biochar- and compost-amended soils, in agreement with Nguyen et al. (2022), who
reported that biochar additions enhance soil organic carbon by contributing stable carbon fractions and
reducing decomposition rates of added organic matter. The improvement in soil N, P, and K under
combined treatments can be attributed to the nutrient-holding capacity of biochar, the nutrient contribution
of compost, and the immediate availability of mineral fertilizers. Amarasinghe et al. (2022) similarly found

that compost—biochar mixtures increased SOC and enhanced the availability of P and K.

Correlation analysis provided further insights into the relationships among soil fertility, physiological
parameters, and yield performance. In 2023, grain yield exhibited strong positive associations with SPAD
readings, cob number, and 100-seed weight, confirming the importance of chlorophyll status and
reproductive traits as determinants of maize productivity. Similar findings have been reported by Rukundo
et al. (2021) and Zhang et al. (2020), who emphasized the predictive value of leaf chlorophyll and yield
components such as cob number. Grain yield also correlated strongly with soil pH, electrical conductivity,
organic carbon, and phosphorus, indicating that improved soil fertility was a major driver of yield increases.
These results corroborate earlier reports by Agegnehu et al. (2016) and Lehmann et al. (2011), which
highlighted the role of organic amendments and biochar in improving nutrient status and crop productivity.
SPAD values further correlated positively with 100-seed weight, harvest index, and several soil chemical

properties, reinforcing their use as indicators of crop nitrogen status and yield potential.

In 2024, similar relationships were observed, with grain yield maintaining strong associations with SPAD,
cob number, and harvest index. Soil phosphorus and organic carbon remained significantly correlated with
yield, suggesting that organic amendments contribute to sustained fertility and productivity across seasons.
However, 100-seed weight showed a weaker relationship with yield in 2024, likely due to uneven rainfall
distribution affecting kernel development. Despite seasonal variability, SPAD remained a consistent

predictor of yield, underscoring its utility as a rapid, non-destructive indicator of crop performance.

The seasonal differences observed, with generally lower growth and yield in 2024 compared with 2023, are
likely to reflect temporal dynamics in nutrient release and microbial activity influenced by climatic factors,
particularly rainfall distribution. The delayed mineralization of compost and gradual nutrient release from
biochar may have interacted with moisture availability to influence nutrient cycling and uptake over time.

Although microbial processes were not directly measured in this study, the enhanced performance of
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integrated treatments suggests that biochar and compost likely stimulated soil biological activity, improved
nutrient turnover, and increased nutrient use efficiency. Such biological contributions are increasingly
recognized as critical for sustaining soil fertility in tropical systems (Lehmann et al., 2021; Liang et al.,

2023).

Overall, the results support the conclusion that integrating biochar with compost and mineral fertilizer
enhances soil health and maize productivity more effectively than single applications. The mechanisms
involve improved nutrient retention, increased organic soil matter, favorable soil chemical conditions, and
better synchronization between nutrient release and crop demand. The correlation results further emphasize
that maize yield is closely linked to physiological traits such as chlorophyll content and cob number, as
well as soil fertility indicators such as pH, phosphorus, and organic carbon. These findings are consistent
with regional and global evidence, reinforcing the value of integrated nutrient management for sustainable
intensification in smallholder farming systems. Nonetheless, to strengthen the understanding of biochar—
compost—fertilizer interactions, future studies should quantify the temporal and biological dynamics
underlying these effects, including microbial responses and nutrient transformation processes. Multi-season
and on-farm studies would be valuable to refine optimal rates and combinations for wider adoption in the

Guinea Savanna zone of Ghana.
6. CONCLUSION

The findings of this study confirm that the individual and combined applications of biochar, compost, and
chemical fertilizer influenced maize growth, yield, and soil fertility under the Guinea Savanna conditions
of Ghana. Consistent with the study’s objective and hypothesis, the integration of biochar and compost with
mineral fertilizer enhanced maize productivity more effectively than the sole applications, while also
improving soil properties across both seasons. These results highlight the importance of combining organic
and inorganic nutrient sources as an effective approach to managing soil fertility in low-input, rainfed
farming systems. By strengthening the linkages between soil quality indicators and crop performance,
integrated nutrient application enhances the ecological foundation of maize production systems. This
approach promotes higher input efficiency, improved soil management, and more resilient yields amid
changing climate conditions. Beyond its agricultural benefits, integrated nutrient management supports
broader sustainability goals by reducing dependence on external inputs and promoting the use of locally
available organic resources. Its relevance extends to policies on regenerative agriculture, climate adaptation,
and smallholder livelihood improvement. Scaling these integrated practices will require supportive
institutional frameworks, participatory research, and targeted investments in extension services. Future
work should emphasize long-term monitoring, landscape-scale impacts, and farmer-led innovation to fully

realize the potential of integrated soil fertility management in sub-Saharan Africa.
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Data Availability: The datasets generated and/or analysed during the current study are available upon

request.
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