
Integrating biochar, compost, and chemical fertilizer improves maize yield and soil health in the guinea savannah: evidence from two cropping seasons in Northern Ghana

Received: 26 July 2025

Accepted: 5 December 2025

Published online: 13 December 2025

Cite this article as: Abdul-Aziz A., Haruna A. & Baako A.Y. Integrating biochar, compost, and chemical fertilizer improves maize yield and soil health in the guinea savannah: evidence from two cropping seasons in Northern Ghana. *Sci Rep* (2025). <https://doi.org/10.1038/s41598-025-31886-2>

Abdul-Latif Abdul-Aziz, Abdulai Haruna & Alhassan Yamyolya Baako

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Integrating Biochar, Compost, and Chemical Fertilizer Improves Maize Yield and Soil Health in**
 2 **the Guinea Savanna: Evidence from Two Cropping Seasons in Northern Ghana**

3 **Abdul-Latif Abdul-Aziz^{1*}, Abdulai Haruna¹, and Alhassan Yamyolya Baako¹**

4 **¹CSIR-Savanna Agricultural Research Institute, P.O. Box TL 52, Tamale, Ghana**

5 ***The corresponding author's email address: aziizlatiif@gmail.com**

6 **ABSTRACT**

7 **Maize production by smallholder farmers in sub-Saharan Africa is constrained by declining soil**
 8 **fertility due to low input use and poor nutrient management. This study evaluated the individual and**
 9 **combined effects of biochar, compost, and chemical fertilizer on maize growth, yield, and soil**
 10 **chemical properties during the 2023 and 2024 cropping seasons in Northern Ghana. A randomized**
 11 **complete block design was used with six treatments: control, biochar alone (B), compost alone (C),**
 12 **chemical fertilizer (CF), biochar + compost ($\frac{1}{2}$ B + $\frac{1}{2}$ C), and biochar + compost + chemical fertilizer**
 13 **($\frac{1}{2}$ B + $\frac{1}{2}$ C + $\frac{1}{2}$ CF). Data were analyzed using analysis of variance (ANOVA), and treatment means**
 14 **were separated using the least significant difference (LSD) test at a 5% probability level. The biochar**
 15 **+ compost + chemical fertilizer ($\frac{1}{2}$ B + $\frac{1}{2}$ C + $\frac{1}{2}$ CF) treatment significantly increased maize grain**
 16 **yield by 105.7% in 2023 and 127.4% in 2024 compared to the control. Soil organic carbon, nitrogen,**
 17 **and phosphorus improved by 115.8%, 685%, and 40.2%, respectively, under this integrated**
 18 **treatment. The SPAD chlorophyll index, cob number, seed weight, and harvest index also increased**
 19 **significantly. Grain yield correlated strongly with soil pH ($r = 0.88^{***}$), electrical conductivity ($r =$**
 20 **0.94^{***}), organic carbon ($r = 0.84^{***}$), and phosphorus ($r = 0.86^{***}$). The results demonstrate that**
 21 **integrating biochar, compost, and mineral fertilizer enhances maize productivity and soil fertility,**
 22 **while biochar addition contributes to increased soil carbon storage in semi-arid, low-input systems**
 23 **of West Africa.**

24 **Keywords:** Biochar, Compost, Guinea Savanna, Integrated nutrient management, Maize productivity, Soil
 25 chemical properties.

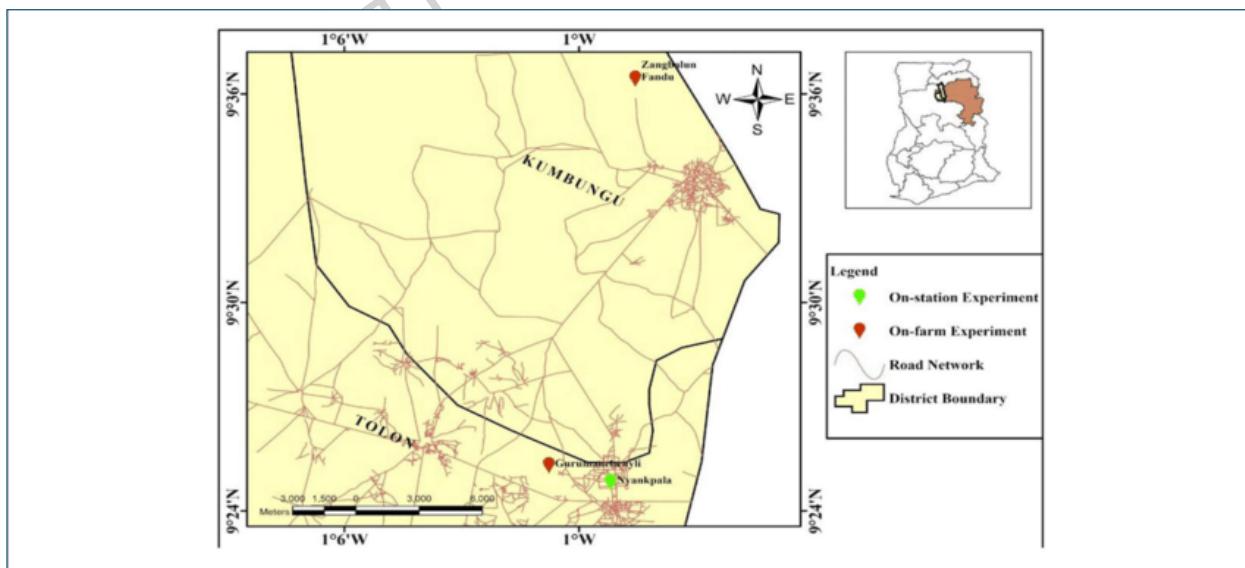
26 **1. INTRODUCTION**

27 Maize (*Zea mays* L.) is one of the most important cereal crops globally, serving as a major source
 28 of food, feed, and income for millions of smallholder farmers, particularly in sub-Saharan Africa
 29 (SSA) (Shiferaw et al., 2011; FAO, 2021). In Ghana, maize is a cornerstone of food security and
 30 rural livelihoods, especially in the Guinea Savanna agro-ecological zone, where it is cultivated

31 largely under rainfed conditions (Badu-Apraku et al., 2012). Despite its significance, maize
32 productivity in SSA, including Ghana, remains far below its potential due to chronic soil fertility
33 decline, erratic rainfall, and poor soil health (Vanlauwe et al., 2010; Agyeman et al., 2020). The
34 soils of the Guinea Savanna are inherently fragile, dominated by highly weathered Ferric Lixisols
35 characterized by low organic matter, poor nutrient retention, and rapid decomposition under
36 continuous cultivation (Saaka et al., 2021). To address nutrient deficiencies, smallholder farmers
37 often apply mineral fertilizers, particularly nitrogen (N) and phosphorus (P), which are critical for
38 maize growth. For instance, optimum maize production in the Guinea Savanna typically requires
39 60–90 kg N ha⁻¹, 40–60 kg P₂O₅ ha⁻¹, and 40–60 kg K₂O under smallholder conditions
40 (MoFA, 2019; FAO, 2021). However, average maize yields in this zone remain low, typically
41 ranging from 1.5 to 2.0 t ha⁻¹ (MoFA, 2019; Agyeman et al., 2020). While mineral fertilizers have
42 been shown to increase yields in the short term, their exclusive use often results in soil
43 acidification, declining organic matter, low fertilizer use efficiency, and high production costs
44 (Adjei-Nsiah & Bagamsah, 2012; Abdulai et al., 2023). Moreover, global price volatility and
45 supply chain disruptions have highlighted the vulnerability of input-dependent systems.

46 These challenges underscore the need for sustainable approaches that improve both crop yields
47 and soil health. Integrated Soil Fertility Management (ISFM), which strategically combines
48 organic and inorganic nutrient sources, has gained global recognition as a pathway to enhance
49 productivity, restore soil fertility, and strengthen resilience (Vanlauwe et al., 2015; Chivenge et
50 al., 2021). Among organic amendments, biochar and compost are widely studied. Biochar, a
51 carbon-rich product of biomass pyrolysis, improves soil cation exchange capacity, pH buffering,
52 and water retention, while also providing habitat for beneficial microorganisms (Lehmann &
53 Joseph, 2015; Jeffery et al., 2017). Mechanistically, biochar tends to increase soil pH by
54 neutralizing acidity through the release of basic cations (Ca²⁺, Mg²⁺, K⁺, and Na⁺) and surface
55 functional groups, thereby creating a more favorable environment for nutrient availability. Its
56 porous structure also contributes to higher electrical conductivity (EC) by retaining exchangeable
57 ions in the soil solution (Glaser et al., 2002). Furthermore, the high carbon content of biochar
58 enhances soil organic carbon stocks, improves aggregation, and stabilizes native soil organic
59 matter, while its relatively low N content promotes nitrogen retention and reduces volatilization
60 losses (Lehmann & Joseph, 2015; Woolf et al., 2010; Laird et al., 2010; Agegnehu et al., 2016).
61 In addition, biochar surfaces can adsorb phosphate ions, reduce fixation, and gradually increase

62 available phosphorus for plant uptake (Lehmann & Joseph, 2015; Liu et al., 2018). Compost, on
63 the other hand, supplies readily available nutrients such as N, P, and K through mineralization,
64 enhances microbial activity, and contributes to long-term organic matter buildup (Sohi et al., 2010;
65 Agegnehu et al., 2016). The microbial activity stimulated by compost accelerates organic matter
66 turnover, thereby improving total nitrogen and available phosphorus levels, while also contributing
67 to higher EC and cation exchange capacity. When applied together with mineral fertilizers, biochar
68 and compost have been shown to synergistically improve nutrient availability, reduce leaching
69 losses, and enhance nutrient use efficiency (Glaser et al., 2002; Liu et al., 2018; Adekiya et al.,
70 2020). Despite global advances, the application of ISFM in the Guinea Savanna of Ghana remains
71 limited. Previous studies have often considered compost or biochar in isolation—*Yawson et al.*
72 (2016) found that compost alone improved soil N and P but had limited residual yield effects,
73 while *Asare-Bediako et al.* (2020) reported that biochar enhanced soil pH and organic carbon but
74 produced modest yield gains when applied alone. However, their combined effects with mineral
75 fertilizers under smallholder field conditions remain poorly understood. Furthermore, evidence on
76 the multi-season response of maize and soil properties under integrated applications is scarce.

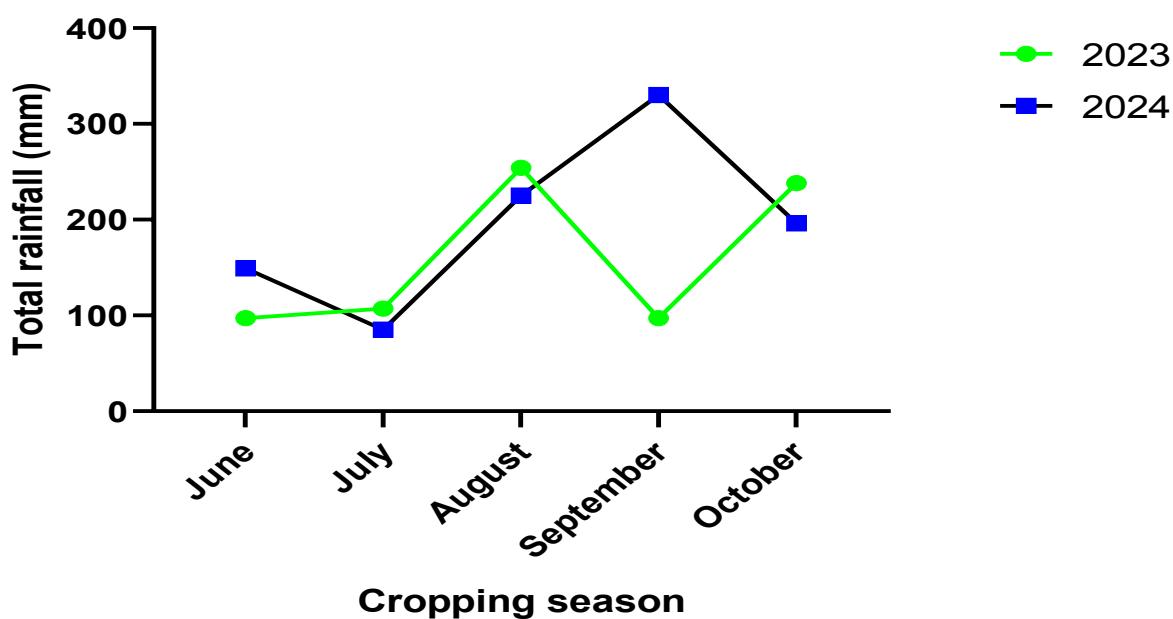

77 This study was therefore designed to evaluate the individual and combined effects of biochar,
78 compost, and chemical fertilizer on maize growth, yield, and selected soil properties across two
79 cropping seasons (2023 and 2024) in the Guinea Savanna of Ghana. It was hypothesized that
80 integrating biochar and compost with mineral fertilizers would enhance maize productivity more
81 effectively than sole applications while simultaneously improving soil fertility. In addition, this
82 work provides both locally relevant insights and contributions to the global discourse on ISFM.
83 Future research could further explore innovative organic amendments such as vermicompost,
84 which has been shown to improve nutrient availability, microbial diversity, and soil structure with
85 relatively less labor demand compared to conventional composting (Edwards et al., 2011; Lazcano
86 & Domínguez, 2011).

87 2. MATERIALS AND METHODS

88 2.1. Study area

89 The study was conducted at the research fields of the Savannah Agricultural Research Institute
90 (SARI), located in the Tolon District of Northern Ghana (9° 25' N latitude, 00° 58' W longitude),
91 within the Guinea Savanna agro-ecological zone. The experimental field measured approximately

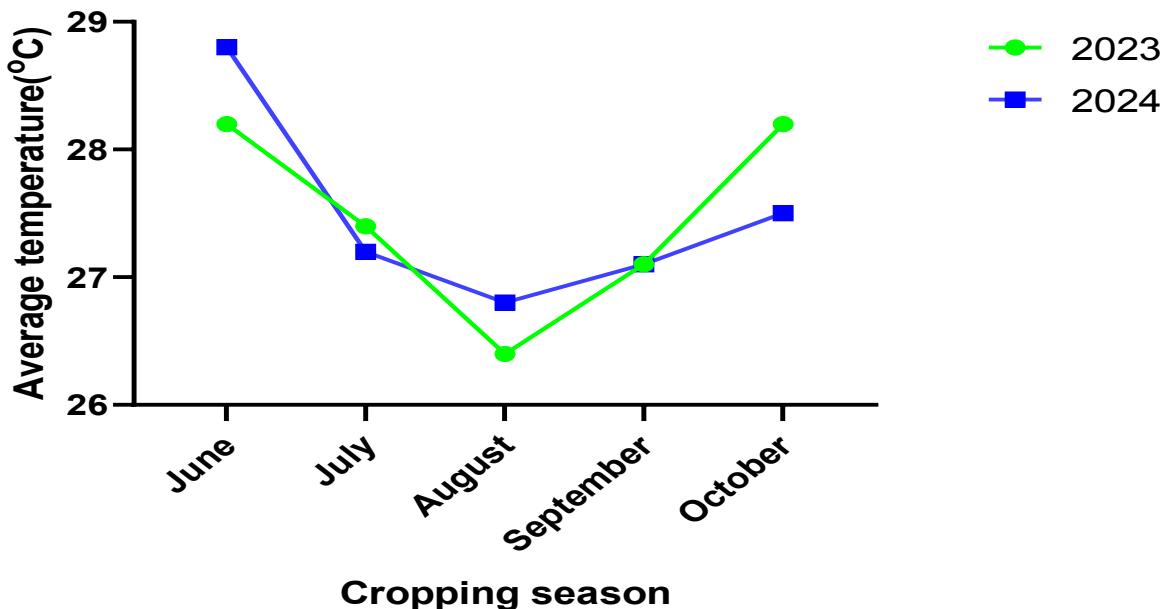
92 0.7 ha, from which the plots were demarcated. The site has a long history of continuous cereal–
 93 legume cultivation, dominated by maize, soybean, and groundnut in rotation. Before the study, the
 94 land had been cropped to maize for two consecutive seasons. Soil fertility management by farmers
 95 in the zone typically relies on low and inconsistent use of mineral fertilizer, occasional application
 96 of poultry manure or compost, and limited adoption of integrated practices. As a result, soils are
 97 generally nutrient-depleted, with low organic matter and declining productivity. A map of the
 98 study site is provided (Figure 1) to clearly indicate the geographic location of the experimental
 99 fields in relation to the wider production landscape. The Guinea Savanna is highly significant in
 100 the broader context of maize production in Ghana and West Africa. It constitutes the country's
 101 largest maize belt, contributing substantially to national food security and serving as a surplus
 102 production area that supplies other regions (MoFA, 2019; Abdulai et al., 2023). However, the soils
 103 in this zone are predominantly Ferric Lixisols, highly weathered, coarse-textured, and inherently
 104 low in organic matter and essential nutrients (Saaka et al., 2021). This makes the zone a
 105 representative hotspot for testing soil fertility management innovations, particularly integrated soil
 106 fertility management (ISFM) strategies aimed at reversing soil degradation, improving nutrient use
 107 efficiency, and strengthening resilience under climate variability. Conducting the study at this site,
 108 therefore, provides not only locally relevant insights but also lessons applicable to similar agro-
 109 ecological zones across sub-Saharan Africa.


110

111 Source: Ministry of Agriculture-Tolon District

112 Figure 1. Map of Ghana showing the location of the experimental sites

113 The area experiences a unimodal rainfall pattern from May to October, with peaks in August and
 114 September. Rainfall distribution varied considerably between the two years of study (Figure 2). In
 115 2023, the highest rainfall occurred in August (254.3 mm) and October (238.1 mm), while in 2024,
 116 September recorded the peak (330.3 mm), followed by August (225.1 mm). Rainfall was absent
 117 in March, May, November, and December of 2024, whereas in 2023, these months received 5 mm,
 118 126 mm, 140.1 mm, and 13.2 mm, respectively. June and July 2024 received more rainfall (149.1
 119 mm and 85.2 mm) than the same months in 2023 (97.3 mm and 107.1 mm), suggesting shifts in
 120 rainfall timing and intensity. Average monthly temperatures were relatively stable across both
 121 years, with only minor variations (Figure 3). May was the hottest month, recording 30.2°C in 2023
 122 and 29.1°C in 2024, while August was the coolest, with 26.4°C in 2023 and 26.8°C in 2024. On
 123 average, 2024 was marginally cooler than 2023, particularly in May, October, and November.
 124 These year-to-year climatic differences likely affected maize phenology, soil moisture availability,
 125 and the effectiveness of the soil amendments evaluated.


126

127

128 Figure 2. Total rainfall distribution in the 2023 and 2024 seasons.

129

130

131 Figure 3. Temperature distribution in the 2023 and 2024 seasons

132 **2.2. Experimental Design and Treatments**

133 The experiment was arranged in a randomized complete block design (RCBD) with six treatments and four
 134 replications, totaling 24 plots per season. Each plot measured 4 meters by 4 meters (16 m^2), with a 1-meter
 135 buffer between plots. The treatments comprised: (1) Control (no amendment), (2) Biochar alone (B), (3)
 136 Compost alone (C), (4) Chemical fertilizer alone (CF), (5) Biochar + Compost ($\frac{1}{2}\text{ BC} + \frac{1}{2}\text{ C}$), and (6)
 137 Biochar + Compost + Chemical fertilizer ($\frac{1}{2}\text{ BC} + \frac{1}{2}\text{ C} + \frac{1}{2}\text{ CF}$). The treatments were selected to reflect
 138 both farmer-relevant practices and scientific interest in integrated soil fertility management. Sole
 139 applications of biochar, compost, and chemical fertilizer were included to evaluate their individual effects.
 140 The combined treatments ($\frac{1}{2}\text{ BC} + \frac{1}{2}\text{ C}$, and $\frac{1}{2}\text{ BC} + \frac{1}{2}\text{ C} + \frac{1}{2}\text{ CF}$) were designed to test whether partial
 141 substitution and integration of organic and inorganic inputs could provide synergistic benefits. The half-
 142 rate combinations were informed by previous studies (Mensah et al., 2018; Abukari et al., 2019; Fianko et
 143 al., 2023; Onawumi et al., 2024) related to agroecologies, which suggest that integrating organics with
 144 fertilizers at reduced rates can enhance nutrient use efficiency, improve soil health, and lower input costs
 145 for farmers.

146 **2.3. Soil Sampling and Analysis**

147 Initial soil samples were collected from the top 0–20 cm soil depth before treatment application to determine
 148 baseline properties. At physiological maturity, post-treatment soil samples were again collected from each

149 plot during both seasons. The samples were air-dried, sieved to pass through a 2 mm mesh, and analyzed
 150 in the laboratory and the results is presented in Table 1. Soil pH was measured in a 1:2.5 soil-to-water
 151 suspension using a digital pH meter (McLean, 1982). Electrical conductivity (EC) was determined using a
 152 conductivity meter (Rhoades, 1996). Organic carbon (OC) was analyzed using the Walkley–Black wet
 153 oxidation method (Walkley & Black, 1934). Total nitrogen (N) was determined using the Kjeldahl digestion
 154 method (Bremner & Mulvaney, 1982). Available phosphorus (P) was measured using the Bray I extraction
 155 method (Bray & Kurtz, 1945), and exchangeable potassium (K) was determined by flame photometry
 156 following ammonium acetate extraction (Knudsen et al., 1982). The results from Table 1 reveal that the soil
 157 pH (6.50) falls within the moderately acidic range, which can influence nutrient availability and thereby
 158 maize growth and yield. As noted by Brady and Weil (2016), acidic conditions may restrict the availability
 159 of key nutrients such as phosphorus and nitrogen, potentially constraining maize productivity if soil pH
 160 declines further below 5.5. The low organic carbon (0.158%) and total nitrogen (0.65 g kg⁻¹) indicate poor
 161 soil fertility, a condition common in degraded tropical soils (Chen et al., 2010). Such deficiencies are critical
 162 for maize production, as limited nitrogen and organic matter restrict biomass accumulation and grain yield,
 163 thereby highlighting the need for fertility-enhancing inputs. The available phosphorus (6.98 mg kg⁻¹) is also
 164 below the critical threshold for maize, which often requires ≥ 15 mg/kg for optimal nodulation and growth
 165 (Sainju et al., 2014). The exchangeable potassium (254 mg kg⁻¹) is relatively moderate but may still limit
 166 yield potential when coupled with other nutrient constraints. These baseline conditions justify the use of
 167 organic and inorganic inputs as a strategy to enhance maize productivity. They also help contextualize the
 168 crop's response to the treatments applied.

169 Table 1: Physico-chemical characteristics of the soil at 0-20 cm depth at Nyankpala

Soil properties	Values
%sand	61.6
% silt	23.76
% clay	14.64
Texture	Sandy loam
pH (1:2.5 H ₂ O)	6.50
EC (dS/m)	0.0019
Available phosphorus (P) (mg kg ⁻¹)	6.98
Organic carbon (%)	0.158
Total nitrogen (N) (g kg ⁻¹)	0.65
Exchangeable potassium (mg kg ⁻¹)	254
Exchangeable Calcium (cmol (+)/kg)	2.6

Exchangeable Magnesium (cmol (+)/kg)	1.2
Cation exchange capacity	4.11

170

171 **2.4. Biochar and Compost Preparation**

172 Biochar was produced from rice husk using a slow pyrolysis process at approximately 500°C in a locally
 173 fabricated drum. Biochar was ground, sieved with a 2mm sieve, and analyzed before application. Compost
 174 was prepared using cattle manure, rice straw, and maize stover through aerobic decomposition over 3-4
 175 months. The biochar had a pH of 8.5 and contained approximately 65% carbon, while the compost was rich
 176 in nitrogen, phosphorus, and potassium with values of 1.5 g kg⁻¹, 1.8 mg kg⁻¹, and 1.82 mg kg⁻¹, respectively.
 177 Compost and biochar chemical characteristics are presented in Table 2.

178 Table 2. Selected chemical properties of biochar and compost applied to the experimental plots in 2023 and
 179 2024.

Property	Unit	Biochar	Compost
Moisture	%	9.8	22.5
Ash	%	16.5	21.35
Fixed C	%	65	17.6
pH	(1:2.5 H ₂ O)	8.5	7.30
EC	(µS/cm)	1.5	4.5
N	g kg ⁻¹	0.67	1.50
P	mg kg ⁻¹	0.85	1.80
K	mg kg ⁻¹	2.23	1.82

180

181 **2.5. Treatment Application and Crop Establishment**

182 Biochar and compost were each applied at a rate of 5 t ha⁻¹ when used individually, or at 2.5 t ha⁻¹ each
 183 when applied in combination. The maize was planted at a spacing of 75 cm × 25 cm (population of about
 184 53,333 plants ha⁻¹), giving approximately 85 planting stations per 4 m × 4 m plot. This corresponded to
 185 about 8.0 kg of amendment per plot (≈94 g per planting station) when applied singly, or 4.0 kg per plot
 186 (≈47 g per planting station) for each amendment when combined. The mineral fertilizer (NPK 15–15–15)
 187 was applied at the recommended rate equivalent to 90 kg N ha⁻¹, 60 kg P₂O₅ ha⁻¹, and 60 kg K₂O
 188 ha⁻¹. Of this, 60 kg N, 60 kg P₂O₅, and 60 kg K₂O were applied as basal fertilizer two weeks after
 189 planting, while urea (46% N) was top-dressed six weeks after planting to supply the remaining nitrogen.

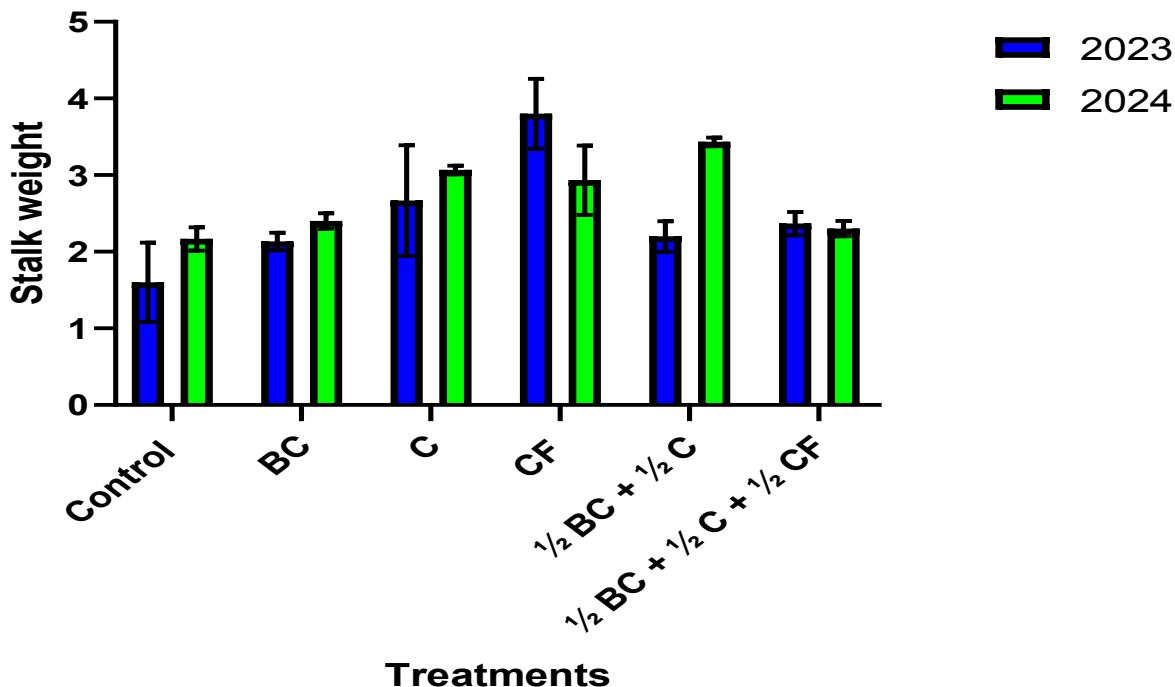
190 When mineral fertilizer was integrated with organic amendments, it was applied at half of the recommended
 191 rate. In the fully integrated treatment ($\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF), each amendment was applied at 50% of its
 192 full rate. These rates were informed by national maize production guidelines (MoFA, 2010) and previous
 193 studies in the Guinea Savanna and related agroecologies, which have shown that 5 t ha $^{-1}$ of organics and
 194 recommended fertilizer levels enhance maize performance without being prohibitive for farmers (Mensah
 195 et al., 2018; Ezike et al., 2016; Abukari et al., 2019). Organic inputs were incorporated 2-3 weeks before
 196 planting, while fertilizer was applied in two equal splits: at sowing and four weeks after emergence. The
 197 maize variety used was Zea mays L. (cv. Wang Dataa). Weed control was done manually at three and six
 198 weeks after emergence. The same plots were maintained across both seasons (2023 and 2024) to assess
 199 residual effects. Organic and inorganic amendments were reapplied in 2024 at the same rates as in 2023.
 200 After each harvest, maize stover and cobs were left on each plot to decompose naturally, contributing some
 201 organic matter to the soil. This was done to ensure the work reflects the Integrated soil fertility management
 202 strategy.

203 **2.6. Data Collection on Growth and Yield Parameters**

204 Growth assessment focused on SPAD chlorophyll readings and plant height. Chlorophyll content was
 205 measured at tasseling using a Minolta SPAD-502 meter, with readings taken from the topmost fully
 206 expanded leaf of ten randomly selected plants per plot. Plant height was measured from the soil surface to
 207 the tip of the tassel at physiological maturity. At harvest, data were collected on several yield and yield
 208 components. The number of cobs per plot was determined from all plants within the net plot, while cob
 209 weight was recorded from the harvested cobs. Stalk weight was obtained from oven-dried biomass of stalks,
 210 and grain yield was calculated from shelled grain, adjusted to 12.5% moisture content, and converted to
 211 tonnes per hectare. The 100-seed weight was determined from a randomly selected grain sub-sample.
 212 Finally, the harvest index was calculated as the ratio of grain yield to total aboveground biomass. This
 213 combination of growth parameters, yield, and yield components offered an integrated assessment of
 214 treatment effects on maize growth performance and overall productivity.

215 **2.7. Statistical Analysis**

216 Data were subjected to analysis of variance (ANOVA) using GenStat (version 12). In the statistical model,
 217 treatments were considered fixed factors, while blocks (replications) were treated as random factors. Since
 218 the experiment was conducted across two cropping seasons (2023 and 2024), seasons were treated as a
 219 fixed factor, and the analysis was combined over the two seasons to account for seasonal variability and
 220 treatment \times season interactions. Treatment means were separated using the Least Significant Difference


221 (LSD) test at the 5% probability level. Before analysis, data were tested for normality and homogeneity of
222 variance, with appropriate transformations applied where assumptions were not met.

223 **3. RESULTS**

224 **3.1. Effects of treatments and seasons on SPAD readings, plant height, and stalk weight**

225 SPAD chlorophyll values varied significantly with treatment and season ($p = 0.002$) (Table 3). The highest
226 chlorophyll content (47.17) was found in 2023 under $\frac{1}{2}BC + \frac{1}{2}C + \frac{1}{2}CF$, followed closely by $\frac{1}{2}BC + \frac{1}{2}C$
227 (45.47) and BC (44.07). The lowest was observed in the control (28.84). In 2024, values declined slightly,
228 with $\frac{1}{2}BC + \frac{1}{2}C$ (43.24) and CF (41.84) performing best, while the control (32.00) and C (33.91) remained
229 the lowest (Table 3). Plant height was not significantly affected by the interaction of treatment and season
230 ($p < 0.001$). In 2023, the tallest plants (185 cm) were recorded under $\frac{1}{2}BC + \frac{1}{2}C + \frac{1}{2}CF$, which was
231 statistically comparable to C (181 cm), CF (179 cm), and $\frac{1}{2}BC + \frac{1}{2}C$ (178 cm), while the control (166 cm)
232 and BC (165 cm) were the shortest (Table 3). In 2024, plant heights were generally lower, ranging from
233 132 cm under the control to 175 cm under $\frac{1}{2}BC + \frac{1}{2}C + \frac{1}{2}CF$, though significant differences were not seen
234 among treatments compared with 2023. The treatment \times season interaction significantly affected stalk
235 weight ($p = 0.005$; Figure 4). In 2023, CF produced the heaviest stalks (3.80 t ha $^{-1}$), followed by C (2.67 t
236 ha $^{-1}$), while the control recorded the lowest (1.60 t ha $^{-1}$). In 2024, $\frac{1}{2}BC + \frac{1}{2}C$ produced the heaviest stalks
237 (3.43 t ha $^{-1}$), which were significantly higher than the control (2.17 t ha $^{-1}$) and $\frac{1}{2}BC + \frac{1}{2}C + \frac{1}{2}CF$ (2.30
238 t ha $^{-1}$) (Figure 4).

239

240

241 Figure 4. Effect of treatments on stalk weight of maize during the 2023 and 2024 cropping seasons. BC =
 242 Biochar; C = Compost; CF = Chemical Fertilizer; $\frac{1}{2}$ = Half of the recommended rate.

243 Table 3: Effect of Treatments and seasons on growth parameters of maize during the cropping season

Treatment	SPAD ($\mu\text{mol m}^{-2}$)		Plant height (cm)		Cob number (No plot ⁻¹)	
	2023	2024	2023	2024	2023	2024
Control	28.84 ^d	32.00 ^d	166 ^c	132 ^a	6 ^d	23 ^c
BC	44.07 ^b	38.57 ^c	165 ^c	156 ^a	19 ^c	35 ^b
C	35.83 ^c	33.91 ^d	181 ^{ab}	156 ^a	25 ^{bc}	27 ^c
CF	41.49 ^b	41.84 ^b	179 ^{ab}	147 ^a	45 ^a	39 ^{ab}
$\frac{1}{2}$ BC + $\frac{1}{2}$ C	45.47 ^{ab}	43.24 ^{ab}	178 ^b	166 ^a	23 ^c	39 ^{ab}
$\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF	47.17 ^a	40.43 ^{bc}	185 ^a	175 ^a	32 ^b	47 ^a
LSD (5%)		3.197		21.00		9.06
Pr (T x S)		0.002		0.331		0.005
CV		4.80		7.50		17.80

244 Means followed by the same letter are not significantly different at the 5% probability level ($p < 0.05$). BC
 245 = Biochar; C = Compost; CF = Chemical Fertilizer; $\frac{1}{2}$ = Half of the recommended rate. LSD = Least
 246 Significant Difference, Pr = probability, CV = Coefficient of Variation, T x S = Treatment and Season
 247 interaction.

248 3.2. Effect of Treatments and seasons on the number of cobs per plot and cob weight

249 Cob number per plot was significantly affected by the interaction of treatment and season ($p < 0.001$) (Table
 250 3). In 2023, CF produced the highest cob number (45), followed by $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (32), while the
 251 lowest was under control (6). In 2024, $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF produced the most cobs (47), with the weakest
 252 in control (23) (Table 3). Cob weight, however, was not significantly affected by treatment \times season ($p =$
 253 0.071). The application of fertilizers and organic amendments had a significant influence on cob weight
 254 (Table 4). In 2023, the chemical fertilizer (CF) treatment produced the highest cob weight (2.93 t ha $^{-1}$),
 255 representing a 54.2% increase over the control (1.90 t ha $^{-1}$). However, in 2024, the highest cob weight was
 256 obtained from the biochar + compost ($\frac{1}{2}$ BC + $\frac{1}{2}$ C) treatment (3.15 t ha $^{-1}$), reflecting a 63.2%
 257 improvement over the control.

258 **3.3. Effect of treatments on grain yield, 100-Seed Weight, and Harvest Index**

259 Grain yield differed significantly across treatments and seasons ($p = 0.016$; Table 4). In 2023, $\frac{1}{2}$ BC + $\frac{1}{2}$ C
 260 + $\frac{1}{2}$ CF recorded the highest yield (2.53 t ha $^{-1}$), followed by CF (2.23 t ha $^{-1}$), while control was the lowest
 261 (1.23 t ha $^{-1}$). In 2024, $\frac{1}{2}$ BC + $\frac{1}{2}$ C (2.94 t ha $^{-1}$) and $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (2.82 t ha $^{-1}$) performed best, while
 262 control remained the least productive (1.24 t ha $^{-1}$) (Table 4). A significant treatment \times season interaction
 263 was also observed for 100-seed weight ($p = 0.011$) (Table 4). In 2023, $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (26 g) recorded
 264 the heaviest seeds, followed by CF (25 g), while the control produced the lightest (18 g). In 2024, both
 265 $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF and C had the heaviest seed weights (28 g), while treatment CF and $\frac{1}{2}$ BC+ $\frac{1}{2}$ C had the
 266 lightest seeds in 2024 (Table 4). Harvest index was not significantly affected by treatment \times season ($p =$
 267 0.296) (Table 4). Harvest index (HI) was, however, significantly enhanced by integrated treatments. In
 268 2023, $\frac{1}{2}$ BC + $\frac{1}{2}$ C (1.08) and $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (1.05) recorded the highest HI values, showing 66.2%
 269 and 61.5% improvements over the control (0.65). In 2024, $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF achieved an even greater
 270 HI of 1.20, an 84.6% increase relative to the control (Table 4).

271 Table 4: Effect of Treatments and cropping season on cob weight, 100-seed weight, and harvest index of
 272 maize during the 2023 and 2024 cropping seasons

Treatment	Cob weight (t ha $^{-1}$)		Grain yield (t ha $^{-1}$)		100-seed weight (g)		Harvest index (%)	
	Cropping season		2023	2024	2023	2024	2023	2024
Control	1.90 ^a	1.93 ^a	1.23d	1.24 ^d	18 ^c	26 ^b	0.65 ^a	0.65 ^a
BC	2.03 ^a	2.94 ^a	1.73 ^c	1.97 ^c	22 ^b	27 ^{ab}	0.85 ^a	0.72 ^a
C	2.17 ^a	2.70 ^a	2.00 ^{bc}	2.15 ^c	22 ^b	28 ^a	0.92 ^a	0.80 ^a
CF	2.93 ^a	2.83 ^a	2.23 ^b	2.65 ^b	25 ^{ab}	26 ^b	0.77 ^a	0.97 ^a
$\frac{1}{2}$ BC + $\frac{1}{2}$ C	1.90 ^a	3.15 ^a	2.00 ^{bc}	2.94 ^a	24 ^{ab}	25 ^b	1.08 ^a	0.94 ^a
$\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF	2.47 ^a	2.43 ^a	2.53 ^a	2.82 ^a	26 ^a	28 ^a	1.05 ^a	1.20 ^a
LSD (5%)	0.75		0.358		3.00		0.278	
Pr (T x S)	0.071		0.016		0.011		0.296	

CV	18.20	9.90	7.00	18.60
273	Means followed by the same letter are not significantly different at the 5% probability level ($p < 0.05$). BC			
274	$=$ Biochar; C = Compost; CF = Chemical Fertilizer; $\frac{1}{2}$ = Half of the recommended rate. LSD = Least			
275	Significant Difference, Pr = probability, CV= Coefficient of Variation, T x S = Treatment and Season			
276	interaction.			

277 **3.4. Soil chemical properties**

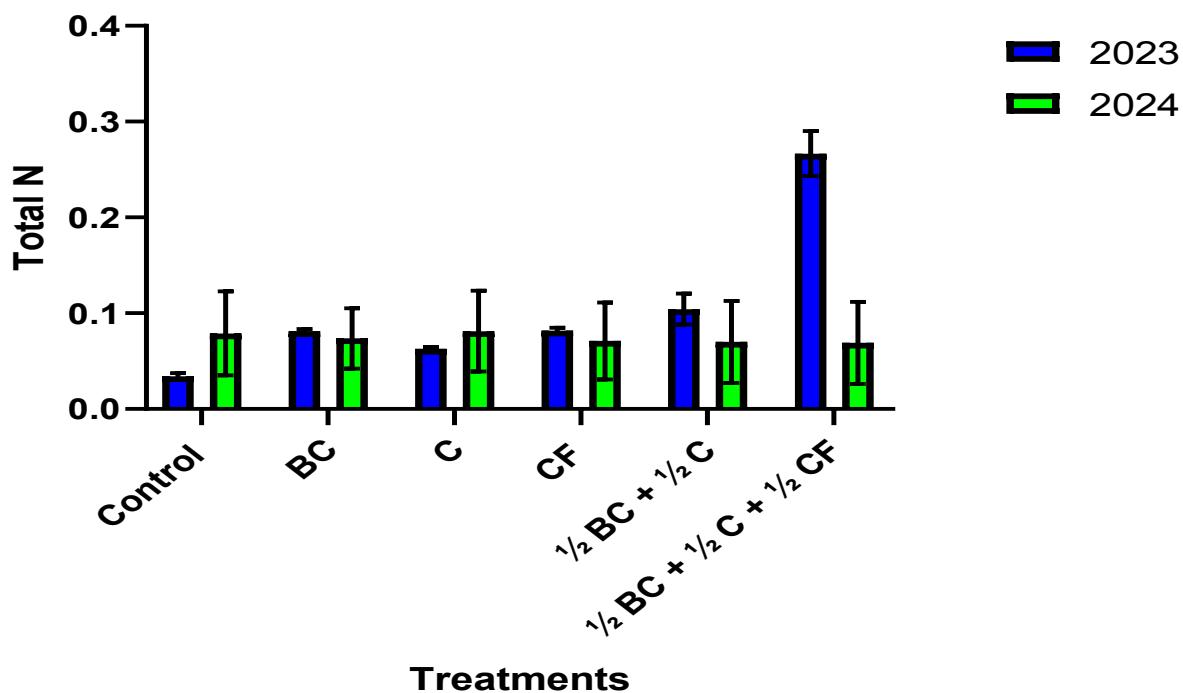
278 All measured soil properties (pH, EC, OC, N, P, and K) were significantly affected by treatment \times season
 279 ($p < 0.001$). Soil pH ranged from 5.69 under control to 6.67 under $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF in 2023, and from
 280 5.62 under CF to 6.64 under $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF in 2024 (Table 5). Soil EC increased significantly under
 281 CF and $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF, with values above 1100 dS/m in 2023, compared with 817 dS/m under control
 282 (Table 5). Organic carbon was highest under $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (1.64% in 2023; 1.33% in 2024), while
 283 the lowest was in control (0.76% in 2023; 0.64% in 2024) (Table 5). Similarly, nitrogen content was highest
 284 under $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (0.2667% in 2023), while no difference was observed in 2024 (Figure 5).
 285 Available phosphorus increased markedly under $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (117.43 mg/kg in 2023; 113.35 mg/kg
 286 in 2024), compared with the lowest in the control (83.77 and 66.18 mg/kg, respectively) (Figure 6).
 287 Potassium also improved with treatments, being highest in 2024 under $\frac{1}{2}$ BC + $\frac{1}{2}$ C + $\frac{1}{2}$ CF (43.90 mg/kg),
 288 while the lowest was recorded under control (27.01 and 27.37 mg/kg) (Table 5).

289

290

291

292

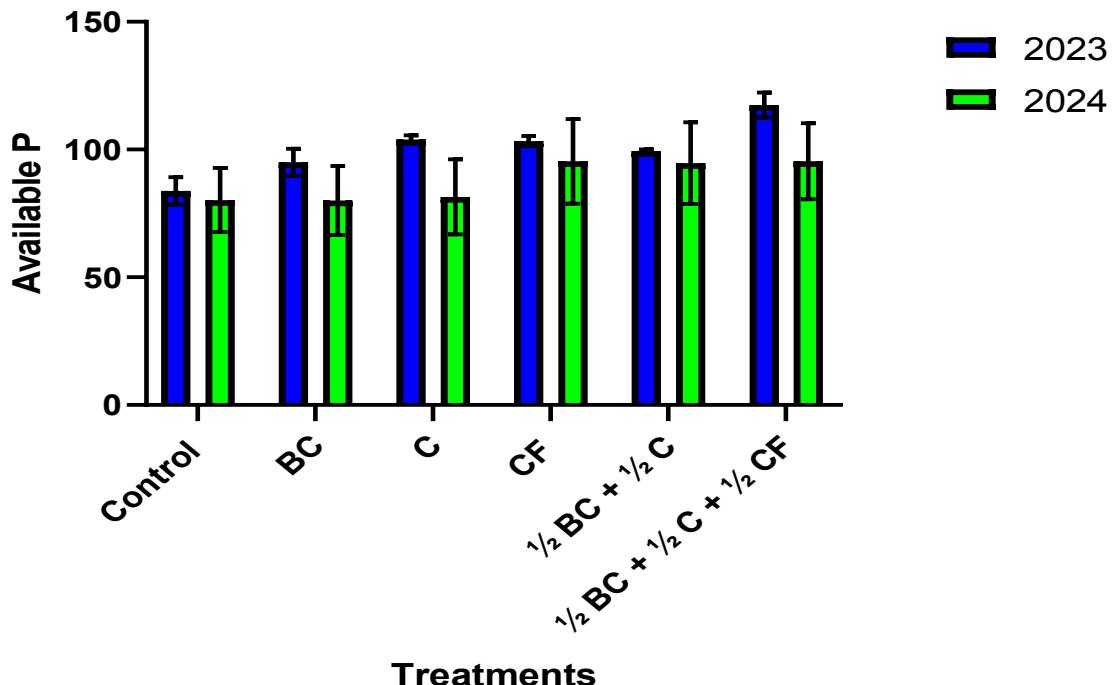

293

294

295

296

297


298

299

300

301 Figure 5. Effect of treatments on total N (%) of the soil during the 2023 and 2024 cropping seasons

302

303

304 Figure 5. Effects of treatments on available P (mg kg⁻¹) of the soil during the 2023 and 2024 cropping
 305 seasons

306 Table 5. Effects of treatments on soil pH, EC, organic carbon, and potassium during the 2022 and 2023
 307 cropping seasons

Treatment	pH (1:2.5 H ₂ O)		E C(dS/m)		OC (%)		K (mg/kg)	
	2023	2024	2023	2024	2023	2024	2023	2024
Control	5.69 ^e	5.65 ^d	817 ^e	775 ^d	0.76 ^e	0.64 ^e	27.01 ^f	27.37 ^f
B	6.10 ^d	6.17 ^c	945 ^d	799 ^{cd}	0.91 ^d	0.97 ^c	29.83 ^e	36.54 ^d
C	6.43 ^c	6.52 ^b	1019 ^c	806 ^{cd}	1.33 ^b	0.90 ^d	33.17 ^d	31.79 ^e
CF	6.53 ^b	5.62 ^d	1109 ^b	855 ^b	1.55 ^a	1.00 ^c	37.47 ^b	29.79 ^e
½BC + ½C	6.47 ^{bc}	5.65 ^d	1004 ^c	815 ^c	1.03 ^c	1.20 ^b	39.17 ^b	43.01 ^b
½BC + ½C + ½CF	6.67 ^a	6.64 ^a	1115 ^a	844 ^b	1.64 ^a	1.33 ^a	38.87 ^b	43.90 ^a
LSD (5%)	0.150		41.80		0.174		3.607	
Pr (T x S)	<.001		<.001		<.001		<.001	
CV	1.40		2.70		9.30		6.10	

308 Means followed by the same letter are not significantly different at the 5% probability level (p < 0.05). BC
 309 = Biochar; C = Compost; CF = Chemical Fertilizer; ½ = Half of the recommended rate. LSD = Least
 310 Significant Difference, Pr = probability, CV= Coefficient of Variation, T x S = Treatment and Season
 311 interaction.

312 **3.6. Correlation Analysis**

313 Correlation analysis was conducted to examine the relationships among soil chemical properties,
314 physiological parameters, growth characteristics, and yield-related traits of maize in 2023 and 2024 (Tables
315 6 and 7). In 2023, grain yield showed a strong and significant positive correlation with SPAD chlorophyll
316 readings ($r = 0.73^{***}$), cob number ($r = 0.77^{***}$), and 100-seed weight ($r = 0.76^{***}$). These findings align
317 with previous studies that highlight the importance of chlorophyll content and reproductive components in
318 determining maize productivity (Rukundo et al., 2021; Zhang et al., 2020). Grain yield also correlated
319 significantly with soil pH ($r = 0.88^{***}$), EC ($r = 0.94^{***}$), organic carbon ($r = 0.84^{***}$), and phosphorus (r
320 $= 0.86^{***}$), indicating that soil fertility status plays a crucial role in enhancing maize yield under the study
321 conditions (Agegnehu et al., 2016; Lehmann et al., 2011).

322 SPAD values had significant positive correlations with several key traits, including 100-seed weight ($r =$
323 0.68^{**}), harvest index ($r = 0.60^*$), and multiple soil chemical properties (e.g., pH, EC, OC, N, P, and K).
324 In 2024, similar trends were observed. Grain yield maintained a significant correlation with SPAD ($r =$
325 0.72^{***}), cob number ($r = 0.81^{***}$), and harvest index ($r = 0.81^{***}$). Notably, cob weight was not
326 significantly correlated with grain yield ($r = 0.13$). Phosphorus ($r = 0.78^{***}$) and organic carbon ($r =$
327 0.79^{***}) remained significantly associated with grain yield, reinforcing the importance of soil fertility
328 improvement strategies such as organic amendments and integrated nutrient management. Unlike in 2023,
329 100-seed weight in 2024 showed weak or negative correlations with most traits, including a non-significant
330 correlation with grain yield ($r = -0.03$), which may reflect inconsistencies in seed development or kernel
331 filling due to uneven rainfall distribution. However, SPAD remained a consistently strong indicator of
332 overall crop performance across both years.

333

334 Table 6. Pearson correlation coefficients among physiological, growth, yield traits, and soil chemical properties of maize in 2023.

Variable	SPAD	Plant h.	Stalk wt.	Cob no.	Cob wt.	Grain y.	100-SW	HI	pH	EC	OC	N	P	K
SPAD	1.00													
Plant height	0.33	1.00												
Stalk weight	0.22	0.28	1.00											
Cob number	0.48*	0.29	0.70**	1.00										
Cob weight	0.25	0.37	0.69**	0.79***	1.00									
Grain yield	0.73***	0.48*	0.49*	0.77***	0.58*	1.00								
100-seed weight	0.68**	0.59*	0.39	0.70**	0.70**	0.76***	1.00							
Harvest index	0.60*	0.10	-0.08	0.13	-0.32	0.56*	0.14	1.00						
pH	0.70**	0.42	0.57*	0.70**	0.46*	0.88***	0.71**	0.58*	1.00					
EC	0.70**	0.44	0.69**	0.82***	0.62*	0.94***	0.71***	0.49*	0.94***	1.00				
Organic carbon	0.47*	0.46	0.61*	0.70**	0.62**	0.84***	0.60*	0.36	0.84***	0.91***	1.00			
Nitrogen	0.67**	0.28	0.03	0.35	0.22	0.73***	0.53*	0.58*	0.63**	0.64**	0.64**	1.00		
Phosphorus	0.63**	0.45	0.36	0.63**	0.44	0.86***	0.71**	0.53*	0.88***	0.86***	0.84***	0.79***	1.00	
Potassium	0.69**	0.55*	0.41	0.50*	0.28	0.73***	0.59*	0.59*	0.84***	0.78***	0.68**	0.57*	0.67**	1.00

335 *Note: *, **, and *** indicate significance at $p < 0.05$, $p < 0.01$, and $p < 0.001$, respectively.

336

337

338

339

340 Table 7. Pearson correlation coefficients among physiological, growth, yield traits, and soil chemical properties of maize in 2024.

Variable	SPAD	Plant h.	Stalk wt.	Cob no.	Cob wt.	Grain y.	100-SW	HI	pH	EC	OC	N	P	K
SPAD	1.00													
Plant height	0.58*	1.00												
Stalk weight	0.40	0.18	1.00											
Cob number	0.78***	0.65**	0.12	1.00										
Cob weight	0.17	-0.05	0.56*	-0.19	1.00									
Grain yield	0.72***	0.57*	0.54*	0.81***	0.13	1.00								
100-seed weight	-0.21	0.28	-0.34	0.06	-0.26	-0.03	1.00							
Harvest index	0.54*	0.53*	0.11	0.85***	-0.44	0.81***	0.15	1.00						
pH	0.12	0.51*	-0.24	0.20	-0.38	0.12	0.80****	0.37	1.00					
EC	0.46*	0.31	0.22	0.60*	-0.05	0.75***	-0.01	0.74***	0.08	1.00				
Organic carbon	0.69**	0.69**	0.28	0.87***	-0.10	0.79***	0.07	0.76***	0.33	0.43	1.00			
Nitrogen	0.49*	0.67**	0.48*	0.61*	0.25	0.73***	0.08	0.53*	0.30	0.36	0.72***	1.00		
Phosphorus	0.62*	0.76***	0.08	0.91***	-0.23	0.78***	0.30	0.86***	0.52*	0.54*	0.88***	0.76***	1.00	
Potassium	0.58*	0.73***	0.18	0.74***	0.01	0.67**	0.10	0.59*	0.36	0.27	0.85***	0.72***	0.83***	1.00

341 *Note: *, **, and *** indicate significance at $p < 0.05$, $p < 0.01$, and $p < 0.001$, respectively.

342 **4. DISCUSSION**

343 The combined application of biochar, compost, and mineral fertilizer significantly improved maize growth,
344 yield, and soil fertility compared with the control and single amendments. Although the fertilizer-only
345 treatment (CF) performed better than the integrated treatments in 2023, the differences disappeared in 2024,
346 indicating that the benefits of integrated nutrient management may become more evident over time. Other
347 growth parameters, such as plant height and chlorophyll content (SPAD), were consistently higher under
348 integrated treatments, particularly $\frac{1}{2}\text{BC} + \frac{1}{2}\text{C} + \frac{1}{2}\text{CF}$, which ranked among the best-performing options in
349 both seasons. These results suggest that improved nutrient availability and uptake could be a possible reason
350 for the enhanced crop performance observed when biochar was combined with compost and chemical
351 fertilizer, supporting the hypothesis that integrated nutrient management tends to be more effective than the
352 application of single sources of fertility.

353 The higher SPAD values recorded in the integrated treatments reflect improved nitrogen availability and
354 assimilation. Biochar is known to reduce nitrogen losses by adsorbing ammonium and nitrate ions and
355 modifying mineralization processes, while compost supplies readily available organic N and stimulates
356 microbial activity. When combined with mineral fertilizer, these mechanisms likely create a more balanced
357 and sustained nitrogen supply for the crop. The observed increase in chlorophyll content under integrated
358 treatments is consistent with previous findings that biochar-based amendments enhance leaf nitrogen status
359 and photosynthetic efficiency. Liu et al. (2020) demonstrated that biochar combined with nitrogen fertilizer
360 significantly improved nitrogen uptake and use efficiency, thereby increasing SPAD values and maize
361 growth, while Ye et al. (2020) also reported higher crop yields under biochar–fertilizer combinations
362 compared with fertilizer or biochar alone.

363 The yield response followed a similar pattern. The highest grain yields were observed in the combined
364 treatments, particularly $\frac{1}{2}\text{BC} + \frac{1}{2}\text{C} + \frac{1}{2}\text{CF}$, which consistently outperformed the control and single
365 amendments across both seasons. Although the $\frac{1}{2}\text{BC} + \frac{1}{2}\text{C}$ treatment improved yield compared with the
366 control, it did not perform better than the fertilizer-only (CF) treatment. Biochar or compost applied alone
367 gave modest improvements, but the synergistic effect of combining organic and inorganic sources was more
368 pronounced. These findings align with the meta-analysis of Ye et al. (2020), which concluded that biochar
369 alone rarely increases yields substantially but has strong positive interactions when applied with mineral
370 fertilizer. The complementary functions of the amendments explain this synergy: biochar improves soil
371 structure and nutrient retention, compost enriches organic matter and micronutrients, and mineral fertilizer
372 provides readily available nutrients. This combination likely enhanced assimilate partitioning during grain
373 filling, as reflected in the higher 100-seed weight observed under integrated treatments.

374 Soil chemical properties also responded positively to biochar-based treatments. Soil pH increased
375 significantly in biochar-amended plots, consistent with the liming effect of biochar arising from its alkaline
376 ash content and capacity to neutralize exchangeable acidity. Similar trends have been reported in acidic
377 tropical soils by Chimdi et al. (2012) and Jeffery et al. (2017). The increase in pH likely alleviated aluminum
378 toxicity, creating a more favorable environment for root growth and nutrient uptake. Organic carbon content
379 was also higher in biochar- and compost-amended soils, in agreement with Nguyen et al. (2022), who
380 reported that biochar additions enhance soil organic carbon by contributing stable carbon fractions and
381 reducing decomposition rates of added organic matter. The improvement in soil N, P, and K under
382 combined treatments can be attributed to the nutrient-holding capacity of biochar, the nutrient contribution
383 of compost, and the immediate availability of mineral fertilizers. Amarasinghe et al. (2022) similarly found
384 that compost–biochar mixtures increased SOC and enhanced the availability of P and K.

385 Correlation analysis provided further insights into the relationships among soil fertility, physiological
386 parameters, and yield performance. In 2023, grain yield exhibited strong positive associations with SPAD
387 readings, cob number, and 100-seed weight, confirming the importance of chlorophyll status and
388 reproductive traits as determinants of maize productivity. Similar findings have been reported by Rukundo
389 et al. (2021) and Zhang et al. (2020), who emphasized the predictive value of leaf chlorophyll and yield
390 components such as cob number. Grain yield also correlated strongly with soil pH, electrical conductivity,
391 organic carbon, and phosphorus, indicating that improved soil fertility was a major driver of yield increases.
392 These results corroborate earlier reports by Agegnehu et al. (2016) and Lehmann et al. (2011), which
393 highlighted the role of organic amendments and biochar in improving nutrient status and crop productivity.
394 SPAD values further correlated positively with 100-seed weight, harvest index, and several soil chemical
395 properties, reinforcing their use as indicators of crop nitrogen status and yield potential.

396 In 2024, similar relationships were observed, with grain yield maintaining strong associations with SPAD,
397 cob number, and harvest index. Soil phosphorus and organic carbon remained significantly correlated with
398 yield, suggesting that organic amendments contribute to sustained fertility and productivity across seasons.
399 However, 100-seed weight showed a weaker relationship with yield in 2024, likely due to uneven rainfall
400 distribution affecting kernel development. Despite seasonal variability, SPAD remained a consistent
401 predictor of yield, underscoring its utility as a rapid, non-destructive indicator of crop performance.

402 The seasonal differences observed, with generally lower growth and yield in 2024 compared with 2023, are
403 likely to reflect temporal dynamics in nutrient release and microbial activity influenced by climatic factors,
404 particularly rainfall distribution. The delayed mineralization of compost and gradual nutrient release from
405 biochar may have interacted with moisture availability to influence nutrient cycling and uptake over time.
406 Although microbial processes were not directly measured in this study, the enhanced performance of

407 integrated treatments suggests that biochar and compost likely stimulated soil biological activity, improved
408 nutrient turnover, and increased nutrient use efficiency. Such biological contributions are increasingly
409 recognized as critical for sustaining soil fertility in tropical systems (Lehmann et al., 2021; Liang et al.,
410 2023).

411 Overall, the results support the conclusion that integrating biochar with compost and mineral fertilizer
412 enhances soil health and maize productivity more effectively than single applications. The mechanisms
413 involve improved nutrient retention, increased organic soil matter, favorable soil chemical conditions, and
414 better synchronization between nutrient release and crop demand. The correlation results further emphasize
415 that maize yield is closely linked to physiological traits such as chlorophyll content and cob number, as
416 well as soil fertility indicators such as pH, phosphorus, and organic carbon. These findings are consistent
417 with regional and global evidence, reinforcing the value of integrated nutrient management for sustainable
418 intensification in smallholder farming systems. Nonetheless, to strengthen the understanding of biochar–
419 compost–fertilizer interactions, future studies should quantify the temporal and biological dynamics
420 underlying these effects, including microbial responses and nutrient transformation processes. Multi-season
421 and on-farm studies would be valuable to refine optimal rates and combinations for wider adoption in the
422 Guinea Savanna zone of Ghana.

423 6. CONCLUSION

424 The findings of this study confirm that the individual and combined applications of biochar, compost, and
425 chemical fertilizer influenced maize growth, yield, and soil fertility under the Guinea Savanna conditions
426 of Ghana. Consistent with the study's objective and hypothesis, the integration of biochar and compost with
427 mineral fertilizer enhanced maize productivity more effectively than the sole applications, while also
428 improving soil properties across both seasons. These results highlight the importance of combining organic
429 and inorganic nutrient sources as an effective approach to managing soil fertility in low-input, rainfed
430 farming systems. By strengthening the linkages between soil quality indicators and crop performance,
431 integrated nutrient application enhances the ecological foundation of maize production systems. This
432 approach promotes higher input efficiency, improved soil management, and more resilient yields amid
433 changing climate conditions. Beyond its agricultural benefits, integrated nutrient management supports
434 broader sustainability goals by reducing dependence on external inputs and promoting the use of locally
435 available organic resources. Its relevance extends to policies on regenerative agriculture, climate adaptation,
436 and smallholder livelihood improvement. Scaling these integrated practices will require supportive
437 institutional frameworks, participatory research, and targeted investments in extension services. Future
438 work should emphasize long-term monitoring, landscape-scale impacts, and farmer-led innovation to fully
439 realize the potential of integrated soil fertility management in sub-Saharan Africa.

440 **Data Availability:** The datasets generated and/or analysed during the current study are available upon
 441 request.

442 **7. REFERENCES**

443 1) Abdulai, H., Alhassan, Y. B., & Mohammed, A. (2023). Integrated soil fertility management
 444 options for maize production in northern Ghana: Lessons for sustainable intensification. *Journal of
 445 Soil Science and Environmental Management*, 14(2), 45–57.

446 2) Abukari, I., Tetteh, F. M., & Yakubu, I. (2019). Biochar application improves maize yield and soil
 447 properties in the Guinea Savanna of Ghana. *Agriculture & Food Security*, 8, 12.
 448 <https://doi.org/10.1186/s40066-019-0253-6>

449 3) Adekiya, A. O., Agbede, T. M., Olayanju, A., Ejue, W. S., Aremu, C. O., Owolabi, A. O., ... &
 450 Adegbite, A. E. (2020). Biochar and poultry manure effects on soil properties and radish yield.
 451 *Communications in Soil Science and Plant Analysis*, 51(1), 1–16.
 452 <https://doi.org/10.1080/00103624.2019.1694468>

453 4) Adjei-Nsiah, S., & Bagamsah, T. T. (2012). Comparative study of different soil fertility
 454 management practices in the Guinea Savanna zone of Ghana. *Agricultural Sciences*, 3(6), 768–775.

455 5) Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and
 456 biochar–compost for soil quality, maize yield and greenhouse gas emissions in tropical agricultural
 457 soils. *Science of the Total Environment*, 543, 295–306.
 458 <https://doi.org/10.1016/j.scitotenv.2015.11.054>

459 6) Agyeman, P. C., Tetteh, F. M., & Abunyewa, A. A. (2020). Soil fertility decline and maize
 460 production in Ghana: A review. *West African Journal of Applied Ecology*, 28(1), 63–75.

461 7) Amarasinghe, U. A., et al. (2022). Biochar and compost interactions improve soil fertility and crop
 462 performance in degraded soils: A review. *Environmental Advances*, 7, 100159.
 463 <https://doi.org/10.1016/j.envadv.2021.100159>

464 8) Asare-Bediako, E., et al. (2020). Effects of organic and inorganic amendments on maize yield in
 465 the Guinea Savanna of Ghana. *Agronomy Journal*, 112(5), 4075–4085.

466 9) Badu-Apraku, B., Fakorede, M. A. B., Menkir, A., Kamara, A. Y., & Melaku, G. (2012). *Breeding
 467 for drought and nitrogen stress tolerance in maize in sub-Saharan Africa*. Springer.

468 10) Brady, N. C., & Weil, R. R. (2016). *The Nature and Properties of Soils* (15th ed.). Pearson.

469 11) Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of
 470 phosphorus in soils. *Soil Science*, 59(1), 39–46.

471 12) Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In A. L. Page (Ed.), *Methods of Soil
 472 Analysis: Part 2, Chemical and Microbiological Properties* (pp. 595–624). ASA, SSSA.

473 13) Chen, J. H., Xu, J. M., & He, P. (2010). Soil organic carbon and nitrogen dynamics in degraded
474 tropical soils. *Soil Biology and Biochemistry*, 42(2), 233–239.

475 14) Chivenge, P., Vanlauwe, B., & Six, J. (2021). Integrated soil fertility management: Contributions
476 of organic inputs and mineral fertilizers to soil productivity. *Nutrient Cycling in Agroecosystems*,
477 119, 1–15.

478 15) Chimdi, A., Yli-Halla, M., & Gebrekidan, H. (2012). Soil acidity and liming potential of biochar
479 in acid soils of Ethiopia. *African Journal of Agricultural Research*, 7(47), 6741–6746.

480 16) Edwards, C. A., Arancon, N. Q., & Sherman, R. (2011). *Vermiculture Technology: Earthworms,*
481 *Organic Wastes, and Environmental Management*. CRC Press.

482 17) Ezike, K. N., Oti, N. N., & Okpara, S. C. (2016). Comparative effects of organic and inorganic
483 fertilizers on maize performance in Nigeria. *Journal of Agriculture and Ecology Research
484 International*, 7(3), 1–9.

485 18) FAO. (2021). *FAOSTAT Statistical Database*. Food and Agriculture Organization of the United
486 Nations. <http://www.fao.org/faostat/>

487 19) Fianko, A. K., et al. (2023). Integrating organics with mineral fertilizers enhances maize yield in
488 the Guinea Savanna. *Soil and Tillage Research*, 230, 105631.

489 20) Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating the nutrient availability in highly
490 weathered soils through charcoal application. *Biology and Fertility of Soils*, 35(4), 219–230.

491 21) Jeffery, S., Verheijen, F. G. A., Van der Velde, M., & Bastos, A. C. (2017). A quantitative review
492 of the effects of biochar application to soils on crop productivity using meta-analysis. *Agriculture,
493 Ecosystems & Environment*, 144, 175–187.

494 22) Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, sodium, and potassium. In A. L. Page
495 (Ed.), *Methods of Soil Analysis: Part 2* (pp. 225–246). ASA, SSSA.

496 23) Lazcano, C., & Domínguez, J. (2011). The use of vermicompost in sustainable agriculture: Impact
497 on plant growth and soil fertility. In C. A. Edwards et al. (Eds.), *Vermiculture Technology* (pp.
498 401–424). CRC Press.

499 24) Lehmann, J., & Joseph, S. (2015). *Biochar for Environmental Management: Science, Technology
500 and Implementation* (2nd ed.). Routledge.

501 25) Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011).
502 Biochar effects on soil biota – A review. *Soil Biology and Biochemistry*, 43(9), 1812–1836.

503 26) Liu, X., Ye, Y., & Ding, W. (2018). Biochar's effect on nutrient leaching and soil fertility in maize
504 systems: A meta-analysis. *Field Crops Research*, 221, 230–242.

505 27) Liu, Z., He, T., Cao, T., Yang, T., Meng, J., Chen, W., & Zhang, W. (2020). Biochar and nitrogen
506 fertilizer co-application improves maize yield and nitrogen use efficiency. *Journal of Soils and*
507 *Sediments*, 20, 3027–3039.

508 28) McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page (Ed.), *Methods of Soil Analysis: Part 2* (pp. 199–224). ASA, SSSA.

510 29) Mensah, A. K., Frimpong, K. A., & Yeboah, S. (2018). Combined application of biochar and
511 inorganic fertilizer improves maize yield in the Guinea Savanna. *Journal of Plant Nutrition and*
512 *Soil Science*, 181(6), 871–878.

513 30) Ministry of Food and Agriculture (MoFA). (2010). *Maize Production Guide for Extension and*
514 *Farmers in Ghana*. MoFA, Accra.

515 31) Ministry of Food and Agriculture (MoFA). (2019). *Agriculture in Ghana: Facts and Figures*
516 (2018). Statistics, Research and Information Directorate (SRID), Accra.

517 32) Nguyen, T. T. N., Xu, C. Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., ... & Wallace, H. M.
518 (2022). Effects of biochar on soil carbon and nutrient dynamics: A global meta-analysis. *GCB*
519 *Bioenergy*, 14, 25–43.

520 33) Onawumi, O., et al. (2024). Integrating biochar and fertilizer for maize production in West Africa:
521 Evidence from multi-season field trials. *Agronomy*, 14(1), 155.

522 34) Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks
523 (Ed.), *Methods of Soil Analysis: Part 3, Chemical Methods* (pp. 417–435). ASA, SSSA.

524 35) Rukundo, P., et al. (2021). Chlorophyll content and yield components as predictors of maize
525 productivity. *Field Crops Research*, 265, 108108.

526 36) Saaka, M., Abunyewa, A. A., & Denkyirah, E. K. (2021). Soil degradation in the Guinea Savanna:
527 Implications for food security in Ghana. *Sustainability*, 13(5), 2512.

528 37) Sainju, U. M., et al. (2014). Phosphorus thresholds for maize productivity in tropical soils. *Nutrient*
529 *Cycling in Agroecosystems*, 100, 125–137.

530 38) Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past
531 successes and future challenges to the role played by maize in global food security. *Food Security*,
532 3, 307–327.

533 39) Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and
534 function in soil. *Advances in Agronomy*, 105, 47–82.

535 40) Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huisng, J., Merckx, R., Nziguheba, G., ... &
536 Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: From concept to
537 practice. *Nutrient Cycling in Agroecosystems*, 109, 1–18.

538 41) Vanlauwe, B., et al. (2010). Integrated soil fertility management operational definition:
 539 Agricultural systems approach. *Outlook on Agriculture*, 39(1), 17–24.

540 42) Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining
 541 organic carbon in soils. *Soil Science*, 37(1), 29–38.

542 43) Yawson, D. O., Tetteh, F. M., & Frimpong, K. A. (2016). Application of organic amendments and
 543 fertilizer in the Guinea Savanna: Effects on soil fertility and maize yield. *Archives of Agronomy
 544 and Soil Science*, 62(11), 1549–1562.

545 44) Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. (2020). Biochar effects
 546 on crop yields with and without fertilizer: A meta-analysis of field studies. *Soil Use and
 547 Management*, 36(1), 2–18.

548 45) Zhang, H., et al. (2020). Correlation of chlorophyll content and grain yield in maize under different
 549 nutrient management practices. *Agronomy Journal*, 112(3), 1855–1867.

550 46) Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar,
 551 compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions
 552 in a tropical agricultural soil. *Science of the Total Environment*, 543, 295–306.
 553 <https://doi.org/10.1016/j.scitotenv.2015.11.054>

554 47) Laird, D. A., Fleming, P., Wang, B., Horton, R., & Karlen, D. L. (2010). Biochar impact
 555 on nutrient leaching from a Midwestern agricultural soil. *Geoderma*, 158(3–4), 436–442.
 556 <https://doi.org/10.1016/j.geoderma.2010.05.012>

557 48) Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010).
 558 Sustainable biochar to mitigate global climate change. *Nature Communications*, 1, 56.
 559 <https://doi.org/10.1038/ncomms1053>

560 49) Yawson, D. O., Tetteh, F. M., & Ofori, C. S. (2016). Effects of compost and inorganic
 561 fertilizer on maize yield and soil properties in the Guinea Savanna Zone of Ghana. *Ghana
 562 Journal of Agricultural Science*, 51(1), 45–54.

563 50) Asare-Bediako, E., Kwakye, P. K., & Biney, J. (2020). Effect of biochar application on
 564 soil chemical properties and maize yield in the semi-deciduous forest zone of Ghana. *West
 565 African Journal of Applied Ecology*, 28(1), 28–39.

566 **Author Contributions**

567 All authors reviewed and approved the final manuscript. **ALAA** conceived and designed the study,
 568 conducted the investigation, and prepared the original manuscript draft. **ALAA, AH, and AYB** contributed

569 to methodology refinement, supervised data collection and analysis, and participated in manuscript review
570 and editing.

571 **Funding**

572 No funding was received for this study. Declarations Competing interests The authors declare no
573 competing interests.

574 **Consent for publication**

575 All authors have granted their permission for publication.

ARTICLE IN PRESS