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34 22 Abstract

35

36 23 Lead-zinc mining activities generate highly degraded soils enriched with potentially toxic

37 24 elements (PTEs), characterized by acid-generating tailings and low fertility, which collectively

39 25 inhibit vegetation establishment and ecological recovery. This review synthesizes findings from
40 26  studies on phytoremediation vand assisted phytoremediation in lead-zinc mining regions
41 27  worldwide. Phytostabilization was the dominant process, with Pb largely immobilized in the roots
fé 28 and showing minimal movement through the plant. In contrast, Zn showed higher mobility,
44 29 allowing for occasional phytoextraction. Pioneer shrubs and xerophytic grasses effectively
45 30 stabilized nutrient-poor, metal-rich soils in Mediterranean and North African sites, while deep-
j? 31 rooted woody, plants restricted contaminant migration through root immobilization. Genuine
48 32 hyperaccimulatorsiwere rare, suggesting that local metal tolerance rather than hyperaccumulation
gg 33 is the 'dominant adaptive mechanism. Assisted systems enhanced remediation efficiency:

34  arbuscular mycorrhizal fungi (AMF) and earthworms improved fertility and reduced Pb and Zn
52 35 mability, whereas plant growth—promoting rhizobacteria (PGPR) and endophytes stimulated
53 36  growth but‘had variable effects on metal mobility. Biochar consistently decreased Pb, Zn, and Cd
37 bioavailability, improved soil pH and nutrient status, and supported vegetation, though its
56 38 effectiveness depended on feedstock and dose. In conclusion, phytostabilization using tolerant
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native vegetation, supplemented by microbial or biochar amendments, represents the most reliable
and sustainable remediation pathway in lead-zinc mining areas, whereas phytoextraction remains
restricted to specific Zn tolerant species.

Keywords: Lead-zinc mine; earthworms, plant growth-promoting rhizobacteria, arbuscular
mycorrhizal fungi, biochar

1. Introduction

Soil contamination caused by mining activities, particularly lead-zinesmining, constitutes a major
environmental hazard influencing regions involved in such endeavors(Pérez et al 2024). The
impact of lead-zinc mining operations leads to significant soil destruction across extensive areas,
located behind degraded land, that can extend the detrimental environmental effects even after the
cessation of mining activities (Rouhani et al 2025; Asare ‘etral 2024). Tailings and waste rock
dumps often release pollutants to surrounding areas, and their environmental impact frequently
surpasses the direct effects of mining activities themselves (Buchver a/ 2024; Yildiz et al 2024).
The deposition of tailings results in the formation of:spoelic technosols, which are young soils that
develop on unstable materials characterized by 1ow cohesioft (Rouhani ef al 2024). Such soils
exhibit physical, chemical, and biological deficiencies caused by low nutrient and organic matter
content, elevated levels of potentially toxichelements (PTEs) that essentially restrict the
development of plants, animals, and microorganisms.(Ba et a/ 2024; Haghighizadeh et al 2024;
Hudson-Edwards et al 2024). Among the.elements commonly found in Pb—Zn mining soils, Pb,
Zn, Cd, and Cu are the most abundant, asireported by a comprehensive review by Rouhani et al
(2025).

The primary drivers of PTEs in léad-zine.mining areas include mining operations, i.e.: production,
processing, waste management; and atmospheric deposition (Dehkordi et al 2024). Soil
contamination around these miniﬁg sites often occurs as a result of the dumping and accumulation
of mineral tailings containing/PTESs. Due to the discharge of suspended assortments that carry
PTEs into the air, thése'particles.may settle in the vicinity of the contaminated site territories and
contribute to additional contamination (Luo et a/ 2023). The discharge and mobility of PTEs are
influenced by extraction and processing methods, which depend on ore deposit genesis. Tailings
rich in sulfides can generate acid mine drainage, mobilizing PTEs and intensifying contamination
in nearby soil§ and waters (Biamont-Rojas ef a/ 2023). In general, open pit methods of extraction
emit higher'levels of pollution than underground approaches (Munanku et al 2023). The
mineralization type.and metal content in the ore can influence the release of PTEs (Yamazaki ef al
2021). Moreover, older mines frequently generate higher levels of pollution as they lack the
moderns pollution control technologies. Mineral tailings can degrade over time and release
additional PTEs (Mohanty et al 2023). Generally, mines in arid and windy regions release higher
levels,of PTEs due to the lack of humidity and vegetation (Pradhan et a/ 2020). Topography and
climatic conditions also impact the emission and distribution of PTEs to the environment
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(Mendoza et al 2021). Overall, PTEs emissions are influenced by the amount and type of generated
mineral waste.

Over the past several years a number of remediation strategies have been developed for the
management of mine-contaminated soils (Rajput et a/ 2025). However, several of these strategies
have challenges and limitations, notably cost-effectiveness and limited  temediation efficacy
(Davis et al 2021; Dzoujo et al 2024; Zeng et al 2024). In contrast to_traditional remediation
strategies, implied chemical and physical techniques, phytoremediation has been accepted as a
sustainable, socially and economically viable solution to address PTEs-contaminated
environments (Chaudhary et a/ 2024). Phytoremediation utilizes plants_to~eliminate PTEs in the
environment or render them less mobile and harmless through stabilization, filtration,
volatilization, or extraction (Erickson and Pidlisnyuk 202715, Ugrina and Juri¢ 2023).
Phytoremediation of mine tailings can be carried out by two primary methods: phytoextraction and
phytostabilization (Hassan et al 2024). Phytoextraction encompasses the translocation of PTEs
from the mine tailings into the aboveground harvestable part of .the plant biomass. In contrast,
phytostabilization aims to establish a vegetative cover that immobilizes PTEs inside the tailings
instead of shooting accumulation (Keith et al 2024; Meryemeset al 2024).

Biochar, a promising sustainable product of oxygen-free pyrolysis, offers significant potential for
supported remediation of polluted soils owing to its environmentally friendly characteristics,
compatibility with biological systems, and diverse feedstock possibilities (Pidlisnyuk et a/ 2021;
Biney and Gusiatin, 2024; Muema ¢t al 2024).. Rather often, biochar immobilizes and decreases
levels of PTEs and organic contaminants and.concomitantly improves soil properties and promotes
plant growth (Padhi ef al 2024). Tt.can be utilized as an organic amendment in mining regions due
to its improvement of soil waterretention, cation exchange capacity (CEC), available nutrients,
metal sorption capacity, and alkaline pH (Ippolito et al 2024; Forjan et al 2024). Recent studies
from lead-zinc mining areas confirmed that biochar effectively reduced Pb and Zn mobility,
enhanced phytostabilization efficiency, and improved soil physicochemical and microbial
properties (Kabiri et0al2019; Gao et al 2020). Biochar derived from Miscanthus * giganteus
(M xg) also demonstrated potential to support phytoremediation of Zn and Cu contaminated soils,
indicating its applicability.for lead-zinc mine restoration (Pidlisnyuk et al 2025).

The ecological restorationand reclamation of mining areas have emerged as critical components
of sustainable development strategies. In this regard, proper environmental management and
planning are"essential for preserving biodiversity and mitigating the effects of mining on the
surrounding environment (Husain et a/ 2024; Pradhan et al 2024). Several research papers have
shed light on the importance and effectiveness of the varied phytoremediation strategies for
remédiating soils contaminated by PTEs. Within this context, lead-zinc mining areas represent one
of'the most critical cases, as they are characterized by high levels of Pb, Zn, Cd, and Cu, acid-
generating tailings, and poor soil fertility, which together create highly challenging conditions for
sustainable reclamation. Numerous studies have investigated phytoremediation in lead-zinc
mining areas; however, no comprehensive review has yet synthesized and critically assessed these
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findings to evaluate the effectiveness of different phytoremediation strategies” i, such
environments. This gap highlights the need for assessing environmentally sustainable and
economically viable remediation strategies, particularly phytoremediationg, suitable  for
contaminated lead-zinc mining areas. Nevertheless, to the best of our knowledge, this is.the first
study to review and analyze the published data on the application of phyteremediation and/or
assisted phytoremediation strategies to lead-zinc mining areas to mitigate soil PTE contamination.
Specifically, this review evaluates (i) conventional phytoremediation using'non-native and native
plant species, (ii) bioaugmentation-assisted phytoremediation, (iii) phytoremediation supported by
arbuscular mycorrhizal fungi (AMF) and earthworms, (iv) plant growth—promoting rhizobacteria
(PGPR)-assisted systems, and (v) biochar-assisted phytoremediation, aimﬁg to identify effective
practices and highlight research gaps for improving remediation€fficiency it Pb—Zn contaminated
soils.

2. Method

The review involved a keyword search across two primary academic databases: Web of Science,
and Google Scholar, using the following terms: "lead-zinc.mine" AND ("heavy metals" OR
"potentially toxic elements") AND (phytoremediation® OR remediation*). A total of 181 articles
were identified for screening and further analysis, comprising 81 articles from Web of Science and
the top 100 publications from Google Scholar:

The search criteria involved the following:

e Studies published in English language

e Studies conducted in the period 2000-2024

e Only peer-reviewed empirical studies

e Empirical studies where phytoremediation was done on a Pb-Zn mining site or done ex situ
or in a greenhouse with sal collected from a Pb-Zn mining site.

Literature screening‘involved excluding articles based on their titles, abstracts, full texts, and
document types. Specifically, articles with titles indicating the absence of phytoremediation were
excluded. When fitles were unclear, abstracts were screened, and those indicating no
phytoremediation or assisted phytoremediation in sites other than Pb-Zn mining sites were
excluded. If the abstracts*were still unclear, the full texts were screened, and articles irrelevant to
the topic were excluded. Publications such as reviews, books, and other gray literature were
excluded.After the thorough screening process, 43 peer-reviewed research articles focusing on
phytoremediatiof in lead-zinc mining areas were selected and evaluated.

Articles evaluated and discussed in this review were separated into three focused topics as shown
in Figure 1:

e Phytoremediation: phytoremediation of Pb and Zn with suitable phyto agents,
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e Phytoremediation with native plants: phytoremediation potential of plants already growing
on Pb-Zn mining sites

e Assisted phytoremediation: including bioaugmentation-assisted phytoremediation,
phytoremediation supported by plant growth-promoting bacteria (PGPR), and-biochar
assisted phytoremediation.

Google scholar

&
Web of science N
43 papers
Assisted Phytoremediation
Phytoremediation phytoremediation with natid
plants

| 11 papers | 21 papers | 11 papers I

4

AMF and
earthworms

| 8 papers | | 4 papers | | 9 papers I

PGPR Biochar

Figure 1. Number of papers seleeted and reviewed for each topic discussed in the review
3. Lead-zinc mine pollution

Lead and zinc ores are globally di\stributed mineral resources, and the extraction of these minerals
has been an essential component of industry. Globally, at least 226.1 million tonnes of Pb and
610.3 million tonnes of Zn are contained within 851 identified mineral deposits and mine-waste
sites across 67 countries, with an average grade of 0.44% Pb and 1.20% Zn (Mudd et al 2017).
Lead and zinc are primarily utilized in medicine, chemistry, military, electrical, metallurgy,
machinery and light.industry, making them widely employed non-ferrous metal elements (Nayak
et al 2022; Qu et al 2022). However, the extraction and use of these mineral resources can lead to
significant pollution by PTES in soils at the vicinity of the mining sites (Rouhani ez a/ 2025).

Lead-zinc mining has the potential to release and accumulate PTEs in the mining area and the
surrounding territories, in particular Pb, Zn, Cu, and Cd, which pose significant ecological and
enyironmental risks (Zhang et a/ 2023; Pan et a/ 2024). The concentrations of these elements in
soils\from lead-zinc mining areas vary widely worldwide, ranging from 18.49-28,453 mg kg™ for
Pb, 30.30-32,287 mg kg for Zn, 0.26-191 mg kg for Cd, and 0.39-802 mg kg for Cu, as
reported in the comprehensive global review by Rouhani ef al/ (2025), which assessed PTE
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pollution in lead-zinc mining areas worldwide. Such issues are prevalent across non-ferrous.metal
mining regions, highlighting the widespread environmental pollution challenge (Ca0 et al,2022;
He et al 2024). The intensity of impacts resulting from mineral exploitation is influenced by the
site characteristics, the volume of material processed, the chemical composition of the.ore and
adjacent rocks, as well as the extraction methods and technologies employed tonmitigate these
impacts (Dehkordi et al 2024). Furthermore, the process of lead-zinc mining has the potential to
enhance mineral weathering (Hower et a/ 2022). The impacts of runoff diffusioniand atmospheric
sedimentation lead to the accumulation of PTEs within a specific range of soil surrounding the
mining area (Csavina ef al 2012; Zhang and Wang 2020). Consequently, PTEs contents in mining
soils are typically elevated compared to background levels (Chrastny et al?OlS).

Mine wastes and tailings from lead-zinc mining and mineral processing usually have increased
concentrations of PTEs, posing considerable environmental,and health risks when improperly
stored or disposed (Han et al 2023; Rouhani ef al 2025). Aftermineclosure, the runoff and leaching
from tailings and waste rocks lead to an increase in the oxidation of residual sulfides, driven by
biological, electrochemical, and chemical reactions. Additionally, this process can generate ferric
hydroxides and sulfuric acid, resulting in acid mine drainagesthat boosts the leaching possibility
of PTEs and facilitates their movement into soil, surface water and groundwater (Chen ef al 2023;
Rouhani er al 2023). Moreover, once the tailings are processed from a solid form into a powdered
state, the consequences become more severe since powdered particles are more prone to wind from
the tailings dam more intensively overa.larger area. Consequently, this broad contamination leads
to PTEs entering human, animal and plant.food eyeles, therefore compromising the health of living
entities (Ghazi et al 2022).

Once released from lead-zinc mining activities, PTEs discharge into soils, water, and sediments
where they persist due to their non-degradable properties. Elevated concentrations of these PTEs
in soils and waters have toxicological effects for ecosystems. In soils contaminated with PTEs,
these substances disturb soil microbial communities. Metal stress notably decreases microbial
biomass and enzymedactivities, thus inhibiting essential nutrient cycling and the decomposition of
organic matter (Pal e#'al'2022). Such soil contamination also causes phytotoxic effects on plants;
for instance, it induces oxidative stress in plant tissues, damaging cells and inhibiting key
enzymatic processes in photosynthesis, which leads to inhibited growth and reduced biomass
production. Plants grown«in metal polluted soil often accumulate these PTEs in roots and shoots,
raising concerns about transfer through the food chain and crop contamination (Alengebawy et al
2021; Kaurser @l 2025). In aquatic ecosystems, the toxicity and persistence of PTEs pose serious
risks to/biota. These metals can bioaccumulate in aquatic organisms. Once inside the organism,
they bind to enzymes and other biomolecules, disrupting physiological functions. Effects include
inhibited enzymatic activity, organ damage, and impaired nervous and reproductive systems. These
can lead to chronic poisoning or death. The exposure to these metals induces genotoxic and
reproductive dysfunctions, which consequently lead to diminished reproductive success and a
reduction in biodiversity within impacted aquatic ecosystems (Tang et al 2023; Sharma et al 2025).
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Consequently, PTE pollution from lead-zinc mining degrades overall ecosystem health. Soil
fertility declines, plant productivity falls, aquatic fauna suffer population losses, and biodiversity
is diminished, underscoring the profound long-term ecological impacts of heavy metals released
by mining.

4. Phytoremediation

Phytoremediation is a technology that utilizes the ability of plants to absorb PTEs essential for
growth, such as Zn, or metals with no known biological function, such as Pb (Erickson and
Pidlisnyuk 2021; Bastia et al 2023). The careful selection of apprepriate phytotechnologies is a
pivotal step in the successful remediation of PTE-contaminated sites. For the treatment of mining
areas, two primary forms of phytoremediation have been 'studied:’ phytoextraction and
phytostabilization (Keith e al 2024; Hassan et al 2024). Phytoextractionutilizes plants to eliminate
or decrease metal pollutants detected in mine tailings through aceumulating or hyperaccumulating
of PTEs in the above-ground biomass. Plants are subsequently harvested and then either
combusted for the recovery of metals or disposed of as‘hazardous wastes (Huslina et a/ 2024). On
the other hand, phytostabilization focuses on creéating,a vegetative cap where sequestration
processes such as sorption and binding further immobilize PT]gs within the plant rhizosphere. This
process effectively reduces metal bioavailability, thereby minimizing related exposure risks
(Nsanganwimana et a/ 2021). While plant roets assist in preventing water erosion and leaching,
the canopy of a plant helps to mitigate eolian dispersion. Therefore, phytostabilization is a strategy
of confinement that involves the creation of awvegetative cap to stabilize the tailings over the long
term (Alasmary et al 2021; Meryeme et al 2024).

Despite the utilization of phytoextraction or phytostabilization, the plants employed should be
appropriate and able to tolerate'the climatic conditions at the mine tailings site. For example, in
warm climates, tailings are usua].LX waterlogged or saturated, requiring the use of plants suited to
slightly anaerobic and wetland environments (Craw et al 2007; Boi et al 2023). In semi-arid and
arid climates, it is essential fof plants to possess both drought and salt tolerance in order to thrive
in dry, and saline tailings,environments (Mendez and Maier 2008a; Malunguja and Paschal 2024).
Regardless of thesphytoremediation strategy, plants having elevated metal tolerance or
metallophyte characteristics are commonly selected at most tailing sites. These plants have
developed biological.mechanisms that enable them to resist and detoxify PTEs. While some of
these plants have developed adaptation pathways to tolerate very high PTE contents in shoot and
root tissues (hyperaccumulators), others prevent absorbing metal in the rhizosphere or transferring
metals into the shoot tissues (Whiting et al 2004; Azizi et al 2023). Hyperaccumulators have been
thoroughly investigated for their ability to significantly accumulate PTEs. Currently, over 500
hypeéraccumulator species have been identified globally (Reeves 2024). The proper selection of
plant species is an essential factor in phytoremediation technology, as these plants must have
suitableproperties to thrive in adverse conditions and fulfill the phytoremediation goals (Al Souki
et.al 2020; Liu et al 2024). The most suitable plant for phytoremediation has to illustrate rapid
growth, high biomass yield, deep root systems, adaptability to poor soil conditions, tolerance to
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high level of PTEs, and the capacity to accumulate the significant levels of PTEs in harvestable
tissues (Chaudhary et al 2024).

Numerous studies have tested and identified suitable plants for phytoremediation of lead-zinc
mining areas, where some plant species are suitable for phytoextraction (Chehregani ef al,2009;
Ruiz et al 2009a; Shi ef al 2016; Pajak et al 2017; Li et al 2019) and others ‘work sueeessfully in
phytostabilization (Concas et al 2015; Ciarkowska et al 2017; Shi et al 2017; Hesami et al 2018;
Martinez-Martinez et al 2019) based on the ability of plants to accumulate or exclude the Pb or Zn
(Table 1).

~
Table 1. Plant species suitable for phytoremediation of PTEs polluted soils in lead-zinc mining

arcas

Location Plant species Pb and Zn Phytotechnology Conclusions Reference
(Duration) concentrations
(mg kg™

Page 8 of 40

Phytoremediation potential of studied plant species

Angouran  A. retroflexus, P Pb: 16700 Phytoextraction N. mucronata was the best Chehregani
Pb/Zn aviculare, G. accumglator for all Pb and Zn et al (2009)
mine; Iran  fournefortii, N. Zn: 2950
(field mucronata and
study) S. orientalis
Spain Zea mays; Pb: 127-1652  Phytoextraction PTEs concentration in the test crops Ruiz et al
Helianthus followed the order Zn>>Pb > Cu, (2009a)
(8 weeks)  annuus; 7n: 76.2-785 with maize showing the highest
Brassica napus, values. Pb was accumulated mainly
Hordeum in the roots of the crops while Zn and
vulgare; Cu were translocated to the aerial
Lupinus albus parts
Raibl B. laevigata Pb:d4782, Phytoextraction Hyperaccumulation was verified for Fellet et al
Pb/Zn subsp. Pb and Tl in B. laevigata subsp. (2012)
mining Laevigata; M. Zn: 16,930 Laevigata, and M. verna and T.
site; Julian  Verna; T. rotundifolium subsp. Cepaeifolium
Alps, Italy  Rotundifolium for all PTEs
(field subsp.
study) Cepaeifolium
Iglesiente P, lentiScus Pb: 2-354 Phytostabilization The plant is well suited for Concas et al
District; revegetation actions and could (2015)
southwest 7n: 48-628 decrease metal mobility
ern
Sardinia,
Italy (field
study)
Fuyang Avfruticosa; R. Pb: not given  Phytoextraction A. fruticosa was highly tolerant of Shi et al
city; ¢chinensis; L. PTEs. R. chinensis and L. formosana  (2016)
Southern  formosana Zn: not given had significantly higher translocation
China factor values for Pb (0.88) and Zn
(1.78) than A. Fruticosa
6
months)
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Krzeszowi  Dianthus Pb: not given  Phytostabilization Both species were suitable for the Ciarkowska
ce; Poland  carthusianorum phytostabilization of PTEs et al (2017)
(29 ; Biscutella Zn: not given
months) laevigata
Southern Pinus sylvestris ~ Zn not given Phytoextraction Zn concentration in the leayes of Pajak et al
Poland L.; Betula Betula pendula Roth was 4 times (2017)
(field pendula Roth greater than in the Pinus sylvestris L.
study) needles. The needlesand leaves of

both plant species accumulatedsZn
Southern Q. virginiana Pb: not given  Phytostabilization Q. virginiana was metal-tolerant at Shi et al
China the seedling state and was a potential  (2017)

Zn: not given candidate for Pbrand Zn
€ phytostabilization
months)
Tang-e C. dichotomum;  Pb: 2500 Phytostabilization C..dichotomum and M. neglectum Hesami et al
Douzan M. neglectum; were effective for phytstabilization of  (2018)
mine; Iran  C. falcata; O. Zn: 1100, 59 Pb, C. faleata, M. neglectum, O.
(field orthophyllum; orthophyllum, and R. arvensis for
study) R. arvensis; R. phytostabilization of Zn; C. falcata,
hybrid subsp. M. neglectum, O. orthophyllum, and
Dodecandra R.hybrid subsp. Dodecandra for

phytostabilization of Cd
Huize A. alpina Pb: 547.47 Phytoextraction A. alpina as a hyperaccumulator, Lietal
County; could be used for long-term (2019)
China 7n: 4178.24 phytoremediation of PTEs

contaminated soils
(field
study)
Santa Lygeum Pb: not given », Phytostabilization Plants accumulated large Martinez-
Antonieta  spartum; concentrations of metals in the roots, =~ Martinez et
mine; Piptatherum Zn: not given with a little translocation to above al (2019)
Spain miliaceum N part biomass
(field
study)

Numerous studies -have exhibited the potential of various crop and plant species for
phytoextraction and phytostabilization in contaminated lead-zinc mining regions. In
Mediterranean mining soils (Spain), for instance, Ruiz et al (2009a) reported that several crops,
including white lupine (Lupinus albus), barley (Hordeum vulgare), canola (Brassica napus),
sunflower (Helianthus annuus), and maize (Zea mays), showed varying capacities for metal
uptake. Among these crops, maize exhibited the highest biomass yield and metal accumulation
potential. The concentration of metals in the test crops showed the following order: Zn > Pb > Cu.
Pb awas mainly concentrated in the root tissues, whereas Zn and Cu were more mobile and
transferred to aerial parts, indicating differences in element mobility and plant uptake mechanisms.
Notably, in'some cases, the concentration of Zn in shoots was up to twice the total concentration
of this element in the soil. Further evidence of species-specific accumulation has been reported for
hyperaccumulators in another European lead-zinc mining region. Fellet et a/ (2012) confirmed
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Thallium hyperaccumulation in B. laevigata subsp. and co-accumulation of Pb, Zn,‘and, Tl in
Minuartia verna and Thlaspi rotundifolium subsp. Cepaeifolium at the former Raibl Pb and Zn
mining site in the Julian Alps, Italy.

Chehregani et al (2009) identified accumulator species (S. orientalis, N.wmucronata, G.
tournefortii, P. aviculare, and A. retroflexus) at the Angouran lead-zinc mine (Iran);suggesting
their potential for in situ phytostabilization of Pb and Zn. Hesami ef al (2018) examined 69 plant
species from the Tang-e Douzan lead-zinc mine (Iran) for their remediation potential but found
none to meet hyperaccumulation criteria, identifying alternatively severaltolerant species suitable
for phytostabilization, C. falcata for Zn and M. neglectum and C. dichotomum for Pb.

According to Li ef al (2019), 4. alpina can be potentially utilized as a hyperaccumulator for long-
term phytoremediation of soils polluted with Cd, Pb, and Zn. The authors confirmed the plant’s
efficiency in long-term phytoremediation experiment utilized in lead-zinc mine area of Huize
County, China. 4. fruticosa showed high tolerance to Zn,Pb and Cu, as reported by Shi ez al (2016)
in a pot experiment aiming to assess the viability of employing transplanted tree seedlings for the
phytoremediation of lead/zinc tailings from the Fuyang city (Southern China). It was revealed that
the translocation factors for Zn (1.78) and Pb (0.88) were considerably higher in R. chinensis and
L. formosana compared to other species. In another pot experiment from China, Shi et al (2017)
found that Q. virginiana had the highest level of metal tolerance during the seedling stage, making
it as a promising candidate for the phytostabilization of Pb/Zn mine tailings.

Concas et al (2015) found that P. lentiscus in Pb-Zn mining region of the Iglesiente District
(Southwestern Sardinia, Italy) exhibited significant tolerance to the high levels of Zn, Pb and Hg.
The biological coefficients indicated:that this plant relies on an exclusion strategy, characterized
by minimal translocation to the/above-ground parts, stems and leaves. The authors concluded that
P lentiscus was suitable for reqegetation efforts and might reduce PTEs mobility via soil
stabilization strategies. Martinez-Martinez et al/ (2019) found that Lygeum spartum and
Piptatherum miliaceum effectively phytostabilized Pb, Zn, and As in a tailings pond at the Santa
Antonieta mine (Spain) by accumulating significant levels of these elements in the roots, with
minimal translocatiefi'te,aboveground biomass. In Southern Poland, Pajak et al (2017) evaluated
the accumulative response of silver birch (Betula pendula Roth) and Scot’s pine (Pinus sylvestris
L.) to Pb and Zn.seleased by Pb-Zn ore mining. The content of Zn in the leaves of silver birch was
fourfold higher than inthe.needles of Scots pine. Two plant species, Dianthus carthusianorum and
Biscutella laevigata, were shown to be ideal phytoagent for phytostabilization of Zn-Pb post-
flotation’ tailings from the Krzeszowice (SE Poland) over a three-years pot experiment
(Ciarkowska et al 2017).

MXg was evaluated by Pavel et al (2014) for remediation of Pb—Zn contaminated soils near the
Copsa Mica smelter (Romania), where average soil Pb exceeded 680 mg kg™ across a 5000 m?
site. Low bioconcentration factors (<1) confirmed its excluder characteristic, particularly for Pb,
while ted mud amendment further reduced Zn and Pb bioavailability. The results suggest that M xg
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could be successfully grown on heavily contaminated mining soils contaminated by Zn and Pb and
addition of red mud can significantly decrease the concentration of PTEs in the soil and in metal’s
uptake by plant tissues.

Nevertheless, there are some concerns associated with phytoremediation in certain scenarios. It is
noteworthy to mention that the sustainability of phytoremediation depends mainly en how the
biomass is managed (Mukherjee et al 2025). Inappropriate disposal of the plant residues can affect
the soil microbial communities as a result of the pollutants release in bidavailable forms (Khan et
al 2023). Boucher et al (2005) reported the reincorporation of PTEs (Cdiand Zn) to the soil in an
incubation experiment along with the leaf degradation of Arabidopsis-helleri. The secondary
contamination could be stemmed from the contaminated plant litter which is considered a potential
risk and the increase of soluble PTEs concentrations in the soil due,to/mineralization (Cao et al
2018). Similar results were obtained by Al Souki et a/ (2020), who recorded an increase in the
concentrations of mobile PTEs once contaminated miscanthus [eaves were incorporated in the soil.
On the other hand, this incorporation enhanced the soil organi¢.matter and nutrients as well as
supported the microbial populations. The crop residue plays an important role in the enhancement
of the soil’s organic matter dynamics and nutrient ¢ycling (Medina et a/ 2015).

Another concern of phytoremediation is the/consumption of the contaminated biomass by animals.
In fact, the plant-animal interactions represent, an important energy channel transfers via
ecosystems (Banerjee et al 2022). Contaminants can be transferred from animal to another food
such as meat, milk, eggs, or organs (liveryukidney, and muscles) (Granby et al 2012). The
consumption of contaminated feed by dairy animals leads to the accumulation of the metals in
their tissues, which might be transmitted to the'milk (Younus et al 2016). According to Kumar et
al (2018), the high lead absorption mnthe plant will lead to an increased transfer to the animal
consuming them. For instance, Silva ef al (2025) showed that PTEs were lower in the muscle than
in both liver and kidney of ‘beef cattle consuming contaminated plant biomass. The highest
concentrations of Se, As, Cd and Hg'were found in the kidney. On the other hand, the liver had the
highest concentrations, of Fe, Mn, Cu, Co, Mo and Ni.

4.1. Native plants

Recently, there has been a growing interest in the utilization of native plants or, at the very least,
non-invasive /plants to mitigate any adverse impacts on the surrounding ecosystem through
introducing of a new plant species to the phytoagents’ communities (Thomas ef al 2022; Phang et
al 2024; Pandey et.al 2024). This is of utmost importance when it comes to tailings in areas that
are protected and have fragile ecosystems (Rosario et a/ 2007). Furthermore, indigenous plant
speciesithat thrive on mine tailings have shown greater adaptability to local conditions, including
nutrient deficiencies, pollution, and climate (Malunguja and Paschal 2024). However, successful
revegetation of mine spoils often requires an ecologically balanced mixture, combining native
stress-tolerant species with selected non-native plants of proven metal tolerance, to accelerate
vegetation establishment and ecosystem recovery. Implementation of soil management techniques,
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primarily through amendments that enhance soil habitability, is also a crucial factor that'should be
considered when planning the phytoremediation strategy (Bandyopadhyay 2022; Boi et al 2023).

Barrutia et al (2011) identified Thlaspi caerulescens as a Zn-Cd hyperaccumulator ma lead-zinc
mine of northern Spain, confirming the species’ importance as a dominant aceumulator within
natural metallophyte communities. Similarly, Wang et a/ (2012) found that F! buddlejae thrived in
soils severely contaminated with Pb in the Siding lead-zinc mine, with its leaves accumulating Pb
at a concentration of 305 mg.kg ™!, contributing to a balanced community environment alongside
other herbaceous plants. Nouri et al (2011) discovered that the_most efficient species for
phytostabilization of Zn were Scariola orientalis, Echinophora platyloba and Centaurea virgata,
and Scrophularia scoparia for Pb. The authors confirmed that phytoremediation using native plant
species was effective when applied to Pb/Zn contaminated soil. " Ha etral (2011) evaluated the
absorption of metals and metalloids by indigenous plants in alead—zin¢ mining region of Northern
Vietnam, revealing hyperaccumulation levels (mg.kgswdry weight) in P vittata (1020),
Potamogeton oxyphyllus Miq. (4210), and Ageratum houstonianum Mill. (1130) for Pb.

In order to evaluate metal-tolerant flora adapted toumid temperate conditions, Monterroso ef al
(2014) examined plant assemblages at a former lead“zinc mine in northwestern Spain. Several
populations of pseudometallophyte species ineluding S. atrocinerea, B. celtiberica, C. multiflorum,
and C. scoparius were tolerant to the high levels of Pb and Zn despite the unfavorable conditions
for plant growth in this area. Cytisus scoparius and C: multiflorus showed efficacy in Pb and Zn
exclusion, making these species the promising,candidates for phytostabilization strategies and/or
the revegetation of severely polluted mining soils. Salix atrocinerea showed notably elevated
levels of Zn in its above ground biomass (543 £108 mg.kg ') along with a bioconcentration factor
reaching 2.35. This plant could offer potential for phytoextraction of soil with low to moderate
contamination levels. Fernandez et al (2017) identified Coincya monensis as a Zn
hyperaccumulator within the/Cantabrian'lead-zinc mining belt (northern Spain), further expanding
the list of European hyperaccumulators suited for site-specific remediation. The indigenous
Agrostis durieui wasithe predominant species at lead-zinc spoil heaps in Carmina, Spain, and it
was able to tolerate elevated tissue Pb contents between grass species.

A phytoremediation study using native plants at a lead-zinc mine site in Northern Tunisia revealed
that Rumex bucephalophorus contained the highest Zn concentration in its shoots (1048 mg.kg '),
while Chrysdpogon zizamioides had the highest Pb concentration in the roots (381 mg.kg™!).
Although none/met jphytoextraction criteria, their metal tolerance shows their potential in
phytostabilization-based containment of Pb/Zn contaminated soils (Chaabani et al 2017).

Lago=Vilaet.al (2019) reported that despite severe Cd, Pb, and Zn contamination in the abandoned
Rubiais lead-zinc mine (NW Spain), the pioneer species Cytisus scoparius thrived spontaneously
and exhibited selective metal accumulation, Zn in roots and shoots and Pb primarily in roots,
showing its suitability for stabilization under harsh pedological conditions. Assessment of native
vegetation in eastern Morocco revealed that only four of fourteen collected species (Cistus
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libanotis, Artemisia herba-alba, Stipa tenacissima, and Reseda alba) were Pb hyperaccumulators,
while Stipa tenacissima and A. herba-alba were particularly effective for Zn/stabilization
(Hasnaoui et al 2020). By collecting indigenous plants from a lead-zinc mining,area in Inner
Mongolia, Wang et al (2023) examined their potential for phytoremediation of pollutedisoils and
observed that Chinese cinquefoil herb (Potentilla chinensis Ser.) had the capagity torabsorb Pb.and
Zn. In the lead—zinc tailing region of Jiangxi (Southeast China), specifieswoody plant species
showed potential for Pb/Zn remediation (Li et al 2023a); specifically, Paulownia fortunei was
appropriated for Zn remediation. Woody plants are able to absorb higher levels of PTEs compared
to herbaceous plants owing to their higher above-ground biomass and well-developed root
systems. Cultivation of woody plants showing phytoextraction or phytostabh“lzation properties can
restrict the mobility of PTEs and effectively mitigate the migration of seil PTE contamination
caused by soil erosion (Laureysens et al 2004; Marmiroli et @l 2011). However, woody
hyperaccumulators are influenced by regional conditions, and their ability for phytoremediation is
defined essentially by soil conditions (Xiao et al 2018). Owerall; the identification of native
dominating plants that tolerate local soil conditions caniimprove the remediation efficacy in future

phytoremediation endeavors (Heckenroth ez a/ 20165 Zhong et a/ 2020).

In lead-zinc mining regions, indigenous plants/ primarily achieve remediation through
phytostabilization instead of phytoextraction. Persistentspatterns show Pb accumulated in roots
with limited translocation (e.g., Cytisus scoparius,\Chrysopogon zizanioides), while Zn exhibits
greater mobility and above-ground aeeumulation, enabling rare phytoextraction potential (e.g.,
Thlaspi caerulescens, Coincya monensis, Salix atrocinerea). Pioneer shrubs and xerophytic
grasses develop reliable cover on nutrient-poor, metal-rich soils in Spain, Tunisia, and Morocco,
where Cytisus, Stipa tenacissima,»and Artemisia herba-alba stabilize contaminated soils and
reduce erosion. Woody species/(e.g., Paulownia fortunei) contribute through high biomass and
deep rooting, limiting contaminant migration even when shoot metal concentrations remain below
hyperaccumulator thresholds. chlbly, several studies (Iran, Morocco, Inner Mongolia) identified
few or no authentic hyperaccumulators, highlighting that local tolerance is common but
hyperaccumulation is rare and species-specific.

4.2.Bioaugmentation-assisted phytoremediation

The phytoremediation of PTEs in mining areas can face several challenges, such as slow plant
growth and limited biomass production, which are often attributed to low soil fertility and the
bioavailability of these PTEs in the soil (Nouri ef al 2011; Geranian et al 2013). These challenges
are particularly evident in semi-arid and arid soils characterized by limited water availability, low
organic matter, and high pH (Mendez and Maier 2008b; Nirola et al 2016). To improve the
potential forrestablishment of plantation and address these limitations, the application of
biological, organic, or chemical amendments is essential (Mendez and Maier 2008b; Usman and
Mohamed< 2009; Nurzhanova et al 2021). It was revealed that Bioaugmentation-assisted
phytoremediation is an effective strategy for the remediation of severely polluted soils (Zhuang et
al 2007; Lebeau et al 2008; Sessitsch et al 2013). The application of useful soil organisms,
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including earthworms, plant growth-promoting rhizobacteria (PGPR), and arbuscular myeorrhizal
fungi (AMF), has been proven to promote plant growth and productivity, improve‘tolerance of
plants, and protect plants from the toxicity of PTEs. Additionally, these organismstimprove PTEs
uptake and bioaccumulation (Ruiz ef al 2009b; Cabral et al 2015; Wang, 2017; Nurzhanova et al
2023). As a result, recently published studies have focused on enhancing plant preductivity. and
phytoremediation effectiveness by utilizing bioaugmentation with beneficiahsoil microorganisms.

Earthworms, AMF and PGPR are crucial soil co-inhabitants that can improve nutrient acquisition
and promote plant growth. The combined use of these functionally differing organisms can lead to
direct or indirect interactions that positively influence plant productivity and nutrition (Barea et al
2005; Frey-Klett et al 2007; Wu et al 2013) in PTEs polluted soils (Azcon ez al 2009; Sarathambal
et al 2017) or metal-free soils (Wu et al 2013; Dehghanian et al 201 8)sEarthworms, AMF, and
PGPR can interact synergistically to increase PTEs absorption and promote plant growth through
several types of strategies, such as inhibition of plant pathogens, higher metal mobilization, and
enhanced nutrient acquisition (Aghababaei et al 2014; Sarathambal et al 2017). Effective
phytoremediation of soils contaminated with PTEs depend.on the ability of potentially useful soil
organisms to colonize the root zone, and, particularly, on their complicated interactions with the
metal and plant (Lebeau et a/ 2008; Sessitsch et a/2013).

4.2.1. Arbuscular mycorrhizal fungi and earthworms

Ma et al (2003) revealed, in a pot experiment with Leucaena leucocephala grown on lead-zinc
mine tailings, that inoculation with the earthworm Pheretima guillelmi significantly improved
plant growth when tailings were:iamended withi25% unpolluted soil. Earthworm activity enhanced
phosphate availability, enhanced microbial processes, and increased metal bioavailability, leading
to a 53% rise in total metal uptake. In a subsequent greenhouse study, Ma et a/ (2006) evaluated
the combined influence of Glows spp. (AMF) and P. guillelmi on L. leucocephala grown on
amended lead-zinc tailings! Thednfluence of AMF on metal uptake surpassed that of earthworms;
however, their combined effect resulted in a reduction of Pb and Zn mobility in soil by up to 25%.
Furthermore, minor yet substantial negative interactions were detected; for instance, earthworms
increased soil microbiabactivity but diminished the positive impact of AMF on nitrogen fixation.

Wu et al (2010) conducted a field experiment on lead-zinc mine tailings to evaluate the impact of
waste compost and AMF on phytoremediation utilizing vetiver grass slips. The incorporation of
waste compost yielded three times more biomass than the untreated control, mostly due to
improvedssoil characteristics and higher nutrient availability compared to control. The contents of
nitrogen and phosphorus in the shoots were considerably elevated in mycorrhizal treatments
compared to.these lacking AMF inoculation. Furthermore, application of AMF led to a notable
reduction i content of PTEs within the roots, while the levels in the shoots remained unchanged.

While examining the community structure of AMF associated with Veronica rechingeri at the
Anguran zinc-lead mining area (Iran), Zarei ef al (2008) used molecular characterization to reveal
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that AMF diversity, colonization rates, and spore density declined with increasing, PTE
concentrations in soils. Specific AMF sequence types persisted even in zones' of extreme
contamination, suggesting the existence of highly metal-tolerant AMF ecotypes#:A greenhouse
experiment by Solis-Dominguez et al 2010 evaluated AMF effects on thizosphere microbial
dynamics and growth of the native legume Prosopis juliflora in acidic lead-zin¢tailings. AMF
inoculation modified bacterial and fungal community composition and increased biomass, while
shoot metal concentrations remained below US toxicity thresholds (National Research Council,
2005). These results indicate that AMF indirectly enhance phytostabilization by improving

rhizosphere function rather than promoting metal translocation
~

Gu et al (2017) indicated that inoculation of four plant species with the AMF F mosseae effectively
promoted phytostabilization in the Guojiatun lead-zinc tailings (North China) through promoting
plant growth and reducing the accumulation and migration, of PTEs” within plants’ biomass.
Inoculation of mycorrhiza led to a substantial rise in plantibiomassfor 7. pallida, H. spectabile
and F. arundinacea, as well as decreasing PTEs accumulation, and migration into shoots by
immobilizing them within the root system. Zhan et.al (2019) further confirmed, through a pot
experiment with Cynodon dactylon on lead-zinc mine waste seils, that AMF inoculation increased
soil pH, enhanced P and S absorption, and improved overall plant nutrition. It also resulted in
decreasing the levels of available Pb and Zn in the soilsy’and concentration of Pb in shoots. The
translocation factor (TF) and translocation capacity, factor (TF') of Pb and Cd in Bermudagrass
reduced, while the TF and TF' of Zn increased.

Across lead-zinc mine soils, AMF and earthworms mainly promote phytostabilization rather than
phytoextraction. Their presence enhances plant growth by improving soil fertility, increasing
available phosphorus, and, in the case of AMF, raising soil pH and nutrient uptake. When
combined, AMF and earthworms can reduce metal mobility in soil, as shown by Ma et al. (2006),
where Pb and Zn mobility décreased by about 25%. However, minor negative interactions, such
as reduced nitrogen fixation, may occur. The influence of AMF on elemental distribution varies.
In some cases, Pb transport to, shoots decreases, while Zn mobility may remain stable or even
increase. AMF diversity and colonization decline with higher contamination, but metal-tolerant
strains persist and maintain cooperative benefits.

4.2.2. Plant growth-promoting rhizobacteria

Sharma et al (2019) showed that the inoculation of the endophytic community considerably
improvedithe growth'of Arabis alpina in a multi-metals stress conditions at a lead-zinc mining site
in Southwest China. Inoculation of the endophytic community significantly modified the contents
of Pby€d, and Zn in plant tissues. In addition, it significantly reduced the levels of Pb (p<0.05)
and Cd (p>0.05) in shoots. Endophytes are microorganisms living within the internal tissues of
host plants; exhibiting no symptoms of disease. In this mutually beneficial relationship, the host
plant permits the endophyte to live and multiply within its tissues, while the endophyte offers
several'benefits to the plant, such as enhancing its tolerance to both biotic and abiotic stresses
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(Waller et al 2005; Shahzad et al 2017). Endophytes are widely distributed in metal-polluted
environments, and some types can enhance the tolerance of host plants to PTEs and in¢rease plants’
metal absorption potential (Deng ef a/ 2011; Yamaji et al 2016). For this purposey they detoxify
PTEs, modify metal distribution in plant cells and improve antioxidative systems, etc. (Wang et al
2016).

Tang et al (2019) investigated the influence of peat amendment on Pb and Zn stabilization in tailing
soils from Southern China. Several tolerant species, including Sapium wilsoniana, Sapium
sebiferum, Salix matsudana, Ricinus communis, Populus nigra, Hibiscus cannabinus, and
Corchorus capsularis, exhibited strong metal tolerance and stabilization~eapacity. A 10% peat
amendment produced the most effective Pb and Zn immobilizationyin the rhizosphere compared
with both 20% peat and untreated control soils. Similarly, Zhang, etsal (2019) observed that
Paulownia fortunei cultivated in lead-zinc slag with peat @mendments accumulated increasing
levels of Cd, Cu, Zn, and Pb with rising peat amounts. The 30%. peat treatment resulted in the
highest metal accumulation in plant tissues, suggesting that organic amendments enhance metal
mobility and root uptake.

Two PTE-tolerant PGPRs, Agrobacterium radiobacter and .Mesorhizobium loti, enhanced the
phytoremediation potential of Robinia pseudoacacia'in adead-zinc mining area in China (Fan et
al 2018). These two isolates impacted the overall absorption of PTEs in the R. pseudoacacia, either
negatively or positively, based on the content and type of the added PTEs. In Central Iran, native
Scorzonera inflata exhibited strong toleranceito. Pb and Zn in contaminated soils from the Bama
lead-zinc mine. Mahohi and Raiesi (2019) reported that application with metal-resistant
earthworms and PGPR enhanced the mobility and bioavailability of Pb and Zn, facilitating their
transfer through mycorrhizal hyphae and subsequent plant uptake, thereby improving the overall
remediation process. In a lead-zinc mining region in Huayuan County, China, Xiao et a/ (2023)
examined the assistance potential,of<(the rhizosphere bacterial community to facilitate the
phytoremediation process with diffetent species. Artemisia argyi showed a tendency to accumulate
Cd, Boehmeria niveayaceumulated Cr and Sb, and Miscanthus floridulus accumulated Cr and Ni.
In addition, Cyanobacteria/Chloroplast, Acidobacteria and Chloroflexi effectively adsorbed PTEs.
Authors found a strongly positive correlation (p<0.05) between translocation factor of Cd, Cu, Mn,
Pb and Zn and the dominating phylum Cyanobacteria/Chloroplast in Boehmeria nivea.

In lead-zinc contaminated. soils, studies commonly show that PGPR and endophytic microbes
enhance plant growth under metal stress, while their effects on metal response vary with microbial
associations and. amendments. PGPR can either stabilize or mobilize metals depending on the
species involved and the amendment. Reduced peat amendments have enhanced phytostabilization
in tailings, while elevated levels have led to increased metal uptake and accumulation in certain
plant hosts. Similarly, the inoculation of PGPR and earthworms has enhanced soil-metal mobility
and “plant uptake. Community-level analyses indicate that certain taxa (e.g.,
Cyanobacteria/Chloroplast) are associated with higher metal translocation metrics in specific
plant-site contexts.
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4.3 Biochar assisted phytoremediation

Biochar is a by-product rich in carbon that is generated through the pyrolysis of biomass under
conditions of limited oxygen concentration. Beneficial characteristics of bioghar, such as porosity,
diverse functional groups, high surface area, and capacity for adsorbing orgamic and inorganic
contaminants, have improved its efficacy in mitigating environmental pollutants (Pidlisnyuk et al
2021; Tan and Yu 2024). The feedstock characteristics and pyrolysis_conditions primarily
determine the physical and chemical properties of biochar. The temperature is a erucial factor in
the generation of biochar during pyrolysis (Gusiatin and Rouhani 2023). The utilization of biochar
for in situ remediation of PTEs is an attractive option owing to its cost-effectiveness, especially
when generated from organic biomass that would otherwise be discarded. Additionally, its relative
environmental stability may facilitate long-term PTE immobilizationwin comparison to other
organic compounds (Biney and Gusiatin 2024; Muema et ali2024).

The main processes by which biochar immobilizes PTEs in soils involve raising soil pH,
facilitating ion exchange, enabling physical sorption, and promoting precipitation as oxi-
hydroxides, along with carbonate or phosphate (Ghorbani and Amirahmadi 2024). The impact of
biochar remediation on soil in mining areas is influenced by the mining environment, the soil
conditions, the physicochemical properties of biochar, and the method of application. These factors
can result in significant variations in the remediation effectiveness of biochar supported
phytoremediation within various mining areas. Therefore, it is essential to establish standardized
protocols for the use of biochar remédiationinnmining soil (Gao et al 2022).

Metal immobilization and redueed bioavailability in soil amended with biochar occur through
several mechanisms, such as: (i) adsorption and complexation: biochar has a porous structure with
a high surface area and a rich variety of surface functional groups, such as hydroxyl, carboxyl, and
phenolic groups. These characterj{tics allow biochar to effectively adsorb and complex metal ions
like Pb and Zn, binding them todts surface and reducing their mobility and bioavailability in soil
(Anawar et al 2015; Jun et al 2020; Alhar et al 2021); (i1)) pH adjustment: biochar application
generally raises soil pH,especially in acidic soils, by releasing alkaline substances like calcium,
potassium, and magnesium. Metals, such as Pb and Cd, can decrease solubility at higher pH levels.
Consequently, the metals precipitate as less soluble compounds, becoming immobilized and thus
less accessible to-plants and soil organisms (de Souza ef al 2019; Lebrun et al 2021a; Lebrun et al
2021b); (i11) surface. precipitation and mineral transformation: biochar can facilitate the
transformation,of metals into stable mineral forms. For example, metals in the rhizosphere area
can pregcipitate as earbonates or oxides when biochar is present, forming mineral phases that are
less soluble and toxic. This further reduces metal leaching and transport, stabilizing PTEs within
the soil (Gascd'er a/ 2019; Benhabylés et al 2020).

Biochar amendments benefit soil quality, particularly in degraded mining soils, by enhancing the
structure, nutrient content, and microbial activity. It enhances soil aggregation, water retention,
and porosity, thereby improving aeration and reducing compaction. Mining soils are often
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compacted and low in organic matter, limiting root penetration and water movement. Biochar helps
to create a more porous and aerated structure, which improves root growth, water infiltration, and
reduced surface runoff (Nandillon ef a/ 2019; Gusmini ef a/ 2021). Biochar also enhances the soil’s
cation exchange capacity (CEC), reducing nutrient leaching and increasing the availability of
essential elements such as nitrogen and phosphorus, which in turn promotes plant growth,and
phytoremediation efficiency (Gasco et al 2019; Lebrun et al 2021a). Moreover, biochar creates a
favorable habitat for microbial communities that assist in bioremediation: Its porous structure
provides shelter for soil microbes, including those involved in nutrient cycling and metal
transformation. These microbes can promote metal immobilization.through bielogical processes
such as microbial precipitation, further stabilizing PTEs in the soil (Anawa? et al 2015; Lebrun et
al 2021a).

Successful phytoremediation depends on plant growth andbiomass, as’larger plants can uptake
and immobilize more contaminants. Biochar contributes to'these aims mainly through process: (i)
reducing metal toxicity and by immobilizing metals ‘and reducing their bioavailability. This
protects plants from metal toxicity, which can otherwise inhibit plant growth and root
development. This reduction allows plants to thrive /in»comtaminated soils, generating more
biomass and thus improving their capacity for contaminant uptake and stabilization (de Souza et
al 2019; Gusmini et al 2021). (ii) stimulationyof root growth: moreover, biochar increases root
biomass and root length, enhancing the plant®s.capacity to explore and remediate more soil. With
more extensive root systems, plants ean more effectively immobilize metals in the rhizosphere
(root zone), where biochar can adsorb and stabilize metals (Nandillon et al/ 2019; Lebrun et al
2021a). (ii1) increased plant uptake and transloeation factors: for phytoextraction purposes, biochar
has been shown to enhance the uptake of metals such as Cd and Pb in some hyperaccumulator
plants. Enhanced root-to-shoot translocation is beneficial in phytoextraction, where contaminants
need to be transported to aboveground biomass for potential harvest and removal. However, in
phytostabilization, the reduction of translocation factors (TF) due to biochar is favorable as it keeps
contaminants in the roots, preventing them from reaching edible or aerial parts of the plants (Gasco
et al 2019; Alhar et al 2021).

Biochar aids phytoestabilization by facilitating the establishment of a vegetation cover that can
contain and immobilize contaminants within the rhizosphere. By providing an ideal environment
for root growth'and stability, biochar helps to contain contaminants within the rhizosphere, where
they are less likely to migrate or leach into surrounding areas. This containment is critical in
preventingmoff-site _contamination from abandoned mining areas (Benhabyleés et al 2020).
Biochar’s presence in the rhizosphere can enhance PTEs complexation in root-adjacent soil,
allowing plants to sequester contaminants without transporting them into the aerial parts of the
plant (Nandillon ez a/ 2019; Lebrun et al 2021a).

Examples<of biochar-assisted phytoremediation in mining affected soils from various global
regions are summarized in Table 2, while the principal mechanisms and benefits are illustrated in
Figure 2.
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Table 2. Examples of biochar-assisted phytoremediation in multi-metal contaminated soils in
mining areas from different regions

Increase in

Study area tBloechar PTEs isn(iﬂrI;IV{emen ¢ ElTi irleg;u):non plant References
yp p ° biomass (%)
Biochar Reduced Enhanced
Orléans, Pb . bioavailability ~ growth \
France and As Not specified of Pband Asin  (Oxalis Benhabylés et al (2020)
compost .
soil pescaprae)
Pb A
Shuikoushan,  Lychee Cd +0.3-0.6 pH Pb: £2'4 A’_’ Cd: 2209-58.9%~ .
. ; . 11.0%, As: Liu et al (2020)
China biochar Zn unit (Sunflower)
As 4.35%
_5()0
Riotinto, Manure g‘r’l +0.5-1.0pH  Pb: 40-60%, (3; ;Of Gased et al (2019)
Spain biochar unit Zn: 25-50% Y
As napus)
Pb
, . Acai . . Pb: 20-40%, 15-35%
Para, Brazil biochar I};I; +0.4 pH unit Ni: 30=50% (Dettuce) de Souza et al (2019)
Mixed
Orléans, biochar Pb +1.2-1.5 pH Pb: 70490%; & 40-60% .
France and As unit As: 50-75% (Poplar) Nandillon e al (2019)
compost
] ‘b
13

Biochar amendment
« PTE absorbtion, precipitation,

complexation
® Soil pH adjustment

* Soil structure improvement

¢ Nutrient retention

* Microbial activity enhancement
* Root growth stimulation
¢ Rhizosphere stabilisation

Phytoremediation
« Reduction PTE bioavailability
¢ Lowering PTE solubility, PTE
stabilization
¢ Better plant root growth and water

retention
* Improved plant growth

¢ Assistance in PTE immobilization
¢ Improved PTE immobilization
* Minimization off-site contamination
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Figure 2. Summary of the main benefits of phytoremediation and biochar application to the mining
area

Numerous studies have revealed that biochar application effectively mitigates the mobility and
bioavailability of PTEs, particularly Pb, Zn, and Cd, which are major pollutants in Pb-Zn.mining
regions. Kabiri et al (2019) conducted one of the earliest assessmentsof biochar-assisted
phytoremediation in lead-zinc mining soils, studying the impact of walnutdeaves biochar on the
fractionation and phytotoxicity of Pb and Zn in naturally calcareous and heavily contaminated soil
within the Bama lead-zinc mine site. They found that biochar effectively decreased Zn and Pb
levels in plant tissues and improved maize growth performance by altering the/fractions of these
metals. Moreover, Zn and Pb were fractioned by biochar from easily accessible forms (soluble,
exchangeable, coupled with carbonates, coupled to Fe-Mn oxides) to less available partitions
(associated with organic matter and residual), indicating the stabilization of metals and reduced
environmental risk. Using a pot experiment, Gao et al (2020) further evaluated the combined
effects of biochar and other organic amendments (biochar, peat, manure, and non-contaminated
soil) on aided phytostabilization using king grass (Peanisetum purpureum % P. thyphoideum) in
mine tailings. Biochar had a higher immobilization.€apacity.for Cd, Pb, Zn, and As compared to
other amendments. The combination of all four amendments’showed the least amount of metal
uptake into the king grass and the most reduction in metal leaching. Notably, the plant was able to
survive even in unamended tailings, but biochar-rich mixtures significantly enhanced biomass and
physiological vitality, showing the potential of'this approach for in-situ immobilization of PTEs in
Cd and Pb contaminated tailings.

Li et al (2023b) studied effectiveness of sewage sludge biochar amendment with Boehmeria nivea
L. in improving physicochemicalproperties andrehabilitating microbial communities in lead-zinc
mine tailings pond of Meizhou (China). They demonstrated that biochar amendment could directly
immobilize PTEs through chemical reaction and indirectly stabilize them via phytostabilization,
thereby improving soil pH, TC€C and TN content. The amendment also enhanced beneficial soil
microbiota, particularly nitrogen-fixing bacteria such as Mesorhizobium, Bradyrhizobium, and
Rhizobium, which improved plant growth and contributed to soil rehabilitation. Biochar
amendment, particularly,non-woody sewage sludge biochar, obtained a higher comprehensive
performance score (3.1-3.6) compared with woody biochar, highlighting the influence of feedstock
type on remediation efficiency. These results show that the synergy between biochar and
appropriate plant- species’ can improve microbial function and vegetation establishment in
contaminated tailings. In'contrast, woody biochar applied with Amorpha fruticosa did not show
significant positive effects on the phytostabilization of lead-zinc tailings (Sikdar ef a/ 2020).

Recent research has also examined the use of biochar derived from energy crops for circular
remediationy strategies. Biochar derived from Mxg roots cultivated long-term in slightly
contaminated soil was tested in biochar supported phytoremediation experiment using Cu or Zn
spiked.soils (Pidlisnyuk et al 2025). Two biochar doses (1.67 and 5.00%) were evaluated with
varying levels of Cu (200 to 416 mg.kg™") or Zn (202 to 580 mg.kg™") concentrations. The study
revealed a beneficial influence of biochar on plant’s development; specifically, plant height and
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aboveground biomass increased by 20.4 and 115%, respectively, for biochar’s supported process
compared with the control. Moreover, improvements were observed in key phytoremediation
metrics such as tolerance index, bioconcentration factor, translocation faetor, and the
comprehensive bioconcentration index, confirming the suitability of M xg biochar for sustainable
post-remediation management. The results also suggested a potential for valorizing contaminated
biochar in subsequent remediation cycles, providing a sustainable approachito waste utilization.

The studies conducted in lead-zinc mining soils and related contaminated materials showed that
biochar-assisted phytoremediation can effectively reduce the mobility.and bioavailability of PTEs
such as Pb, Zn, and Cd. Biochar also improves soil physicochemical properties, including pH and
nutrient content, and enhances microbial community structure, particularly by promoting nitrogen-
fixing bacteria. These improvements facilitate vegetation establishment and greater plant biomass,
as observed for species such as king grass and M x g (Gao'et al, 2020; Pidlisnyuk et al, 2025).
However, biochar effectiveness is influenced by multiplewvariables, varying with feedstock type,
application rate, plant species, and substrate characteristics, as shown by the limited benefits of
woody biochar with Amorpha fruticosa. In summary, the mechanisms underlying the positive
outcomes of biochar application involve pH-driven precipitation and adsorption complexation
processes. Along with these, rhizosphere improvements enhance plant and microbial functioning.
These factors contribute to more stable and sustainable remediation in lead-zinc mining areas.

5. Conclusion and future perspectives

Lead-zinc mining activities cause long-term soil degradation and accumulation of PTEs,
particularly Pb, Zn, Cd, and Cuy which degrade soil quality and pose environmental risks. This
review critically synthesized twondecades of studies on phytoremediation and assisted
phytoremediation in lead-zinc mining areas worldwide, focusing on the effectiveness of various
plant-based and amendment-supm)rted strategies. The findings revealed that phytostabilization is
the primary remediation pathway, as Pb was largely immobilized in roots, while Zn showed limited
but species-specific phytoextraction potential. Native and tolerant species, including Cytisus
scoparius, Stipa tenacissima, and Artemisia herba-alba, eftectively developed vegetation cover
and reduced metalemobility,<whereas deep-rooted woody plants contributed to long-term
stabilization. Assisted approaches using AMF, PGPR, earthworms, and biochar consistently
improved soil _structure, fertility, and microbial activity while reducing PTE bioavailability.
Combining tolerant vegetation with targeted biological or organic amendments offers the most
sustainable remediation strategy for lead-zinc mine impacted soils.

The received outcomes and conclusions permitted to improve the scientific knowledge and
prognosis concerning PTEs remediation perspectives in the soil mining sector. Further studies are
requested to broaden and fortify the expertise on managing lead-zinc soil contamination without
jeopardizing human and environmental health. Therefore, the following suggestions have to be
taken into account for upcoming studies on effective soil remediation strategies in lead-zinc mining
areas and the adjacent environments:
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a) Numerous studies have reported the suitability of remediation strategies, specifically
application of phytoremediation and/or assisted phytoremediation toward PTEs treatment
in the lead-zinc mining areas. However, there is a lack of comprehensive knowledge on the
processes that control phytotoxicity, availability, and redistribution of PTEs in such’soils.
Therefore, future studies should concentrate on field-scale experiments.to assess the earlier
developed remedial procedures, taking into consideration the associated human health
effects.

b) The utilization of biochar in assisted mining soil remediation has been gaining an increased
popularity. Nevertheless, the efficiency of the approach is defined:by several factors. For
instance, biochar structure has to be modified chemically and physEally creating biochar-
based composites or hybrid materials. The modificatiofis, may influence the application
dose and eventually strengthen the success of the remediation process. The modified
biochar applications should be deeply evaluated and practically targeted to remediate lead-
zinc mining areas.

c) The impact of remediation strategies can be better understood by investigation of chemical,
physical and biological characteristics of theshizesphere soil. Currently, only a few studies
have examined the alterations in these parameters along with the geochemical fractions of
PTEs in rhizosphere soil amended/by biochar. It /is essential to examine the impact of
biochar on the rhizosphere soil s in respeet of PTEs speciation and mobility.

d) The restoration of the ecosystems in the tailing areas depends heavily on the state of the
microbial communities. Howeverstill there is a limited knowledge on the potential of
pioneer vegetation and rhizosphere soil cover in improving function and structure of
microbial communities{in adjacent tailings. Thus, future studies have to investigate the
physical-chemical propertieshof tailings, plant colonization development, changing of
microbial communities, @nzymatic¢activities and functional genes in the tailing area.

¢) Finally, taking into cemsideration that phytoremediation technology is a relatively new
process proposed t0 PTEs mining areas, there is a scarcity of information concerning its
long-term effects of'the utilized in lead-zinc mine soils. The multiyear monitoring and data
recording is recommended for further successful implementation of PTEs remediating
technique applied to mining areas.

Future investigations in lead-zinc mining phytoremediation should be directed towards the
development©f sustainable and field strategies ensuring the long-term stability and safety of the
soil’s remediation. The major challenges that need more attention is the sustainable management
of plant biomass generated after phytoremediation. To prevent the secondary contamination from
the contaminated biomass, the future research could explore environmentally approaches.
Moreover, the sites were phytoremediation is applied require further attention to prevent secondary
contamination. Safe thresholds for land reuse, grazing and biomass by-product should be
determined, due to the food safety risk assessment. These future directions will assist to
strengthening the scientific aspects and practical of phytoremediation as a sustainable solution for
the reclamation of lead zinc mining areas.
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