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Abstract The COVID-19 pandemic has exacer-
bated water quality issues due to the use of substances
such as soaps, detergents, and hand sanitizers, which
contain surfactants as their key ingredient. These
products are modified to enhance their properties,
thereby increasing their hazardous chemical impact
on the environment, necessitating efficient reme-
diation materials and methods. Surfactants are also
released into the environment from various indus-
trial processes. Compared to other surfactant removal
techniques, adsorption offers several advantages,
including ease of design, simplicity of use in the
technical realm, and adaptability to various treatment
formats. Adsorption operates across a wide pH range
and in several environments. Adsorption is efficient,
profitable, requires minimal energy, and has no harm-
ful byproducts. Adsorbents can be developed using
various biomass products, nanomaterials, polymeric
materials, zeolites, and clays. Composites represent
a much efficient alternative material for the elimina-
tion of surfactants. A composite of bentonite, sodium
bisulfite, polyacrylamide, and aluminum sulphate
confirmed a reduction in the surfactant concentration
by 82 %, and Chemical Oxygen Demand (COD) by
65 % from a textile wastewater sample. Composite
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adsorbents made of zeolite and eggshells effectively
removed surfactants from samples. The final adsor-
bent revealed 88% COD removal rate. The presented
manuscript analyses the conventional methods for
surfactant removal, especially focusing on composites
as adsorbents. Future perspectives have been empha-
sized for the use of composites, and the performance
of various composites for surfactant removal has been
discussed at length.
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1 Introduction

Water scarcity is a pressing issue, with only 2.99%
of available water being fresh or accessible for
drinking. Population growth, urban progress, pollu-
tion, and climate change contribute to this shortage.
United Nations International Children’s Emergency
Fund (UNICEF) reports that 750 million people glob-
ally lack access to fresh water, and the World Water
Council (WWC) predicts that 3.9 billion people will
live in water-deficient regions by 2030. Initiatives like
wastewater purification using sustainable techniques
and materials are being implemented to address water
scarcity issues. This ensures availability and sustain-
able management of surface water as per the require-
ment of Sustainable Development Goals (SDGs-6)
of the United Nations (Obaideen et al., 2022). The
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adsorption technique with various adsorbents for
water remediation is one such aspect of water puri-
fication (Jaspal et al., 2023). Figure 1 depicts adsorp-
tion as a process aligned with United Nations Sustain-
able Development Goal 6. Wastewater streams from
domestic and industrial activities contain organic
compounds known as emerging contaminants (ECs),
which comprise of insecticides, medications, hor-
mones, plasticizers, food additives, wood preserv-
ers, detergents, surfactants, decontaminators, flame
retardants, and other organic compounds. These con-
taminants are not subject to regular restrictions and
can be fatal to aquatic and human life. Cost-effective
tertiary treatment techniques are required since con-
ventional primary and secondary water treatment
facilities find it challenging to remove these harmful
contaminants effectively. Owing to its affordable ini-
tial cost, high efficiency, and simple working model,
adsorption is a viable technique for removing EC.
According to research, EC is removed from water
and wastewater using a variety of adsorbents, such as
activated carbons, modified biochar, nano adsorbents,
and composite adsorbents (Sophia and Lima, 2018).

CLEAN WATER
AND SANITATION

Economical

Fig. 1 Adsorption for SDG-6
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Reclamation of wastewater is a sustainable
approach to water scarcity; nevertheless, water con-
tains significant amounts of detergents, including sur-
factants, which are hazardous to the environment and
human health. Since surfactants impede the activity
of microorganisms, biological remedies are ineffi-
cient. Options for chemical therapy can be expensive
and affect the general consensus. Better adsorbents
for treating and eliminating surfactants have been
found in low-priced sustainable materials such as sil-
ica gel, zeolite minerals, activated carbon, biomasses
such as mussel shells, rubber tyre granules, fly ash
and powdered coarse blast furnace slag (James &
Ifelebuegu, 2018).

Adsorption is an established technique that uses
various materials to remove numerous contaminants,
including organic pollutants. Metal oxides and their
composites can be used for the adsorptive removal
and photocatalytic degradation of organic pollut-
ants comprising dyes, insecticides, fertilizers, phar-
maceutical components, organohalides, phenols,
surfactants, and even nutrients. The highly selec-
tive properties of nanostructured metal oxides and
their composites, including their specific crystalline
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nature, high surface area, variable surface chemistry,
controlled morphological and textural features, make
them ideal for the efficient exclusion of organic pol-
lutants through adsorption and photocatalytic degra-
dation (Gusain et al., 2019). Adsorption is a popular
method for removing surfactants from wastewater due
to its simplicity, excellent efficacy, and low operating
costs. Various materials have been used to remove
surfactants, including graphene, kaolinite, metal-
based composites, nanoparticles, activated carbon
and biomass-based adsorbents. Saponite clay and
magnetite-based composite sorbents were suggested
to have a high surfactant sorption capacity. These
magnetic nanocomposite sorbents from clay and mag-
netite have shown higher effectiveness in wastewater
treatment, with two to eight times greater sorption
capacities than native clay minerals. These soft mag-
netic materials efficiently remove spent nanocompos-
ites, making them technologically and economically
advantageous solutions (Oksana Makarchuk et al.,
2017).

Researchers are now increasingly fascinated by
composites as a means of eliminating impurities not
only through adsorption but also via flocculation,
coagulation, ion exchange, electrostatic interactions,
and membrane filtration. Composites are mixtures
of two or more distinct component elements that
offer product-specific attributes. Grafting, function-
alization, and crosslinking are methods for fabricating
composites that enhance their characteristics (Dutt
et al., 2020). Polymer composites have demonstrated
significant potential for implementation in desalina-
tion and water treatment processes when combined
with other materials, such as carbon-based com-
pounds and clays. These composite materials have
enhanced recyclability, selectivity, and adsorption
capacity. Depending on the nature of the adsorbent
and adsorbate, the adsorption mechanisms involved
may be chemisorption or physisorption(Berber,
2020).

Owing to their surface area, functionalization, and
chemical approachability, composites must be more
widely used than individual materials. Composites
are developed by mixing various materials to give
them unique characteristics. Composites comprise
two distinct phases: a discontinuous dispersion phase
and a continuous matrix phase. Composites can pro-
vide enhanced qualities like thermal insulation, low
density, high specific stiffness, specific strength and

many more. Combining materials with distinct quali-
ties yields new materials with combined features that
can be used in many scientific domains, including
wastewater treatment(Magsood et al., 2019; Mushtaq
etal., 2019).

The present manuscript attempts to analyse the
different surfactant removal methods and adsorbent
materials that can be reconsidered, with some modi-
fications, as composites for the efficient eradication of
surfactants. A collection, analysis and in-depth review
of materials as adsorbents in composites will help
researchers working in this domain to easily identify
the potential of materials efficient for the remediation
of wastewater from surfactants. Such a study has not
yet been carried out and is unique.

2 Surfactants in Water

Surfactants and their mixtures are used in various
industrial processes, including enhanced oil recov-
ery, flotation, emulsification, corrosion inhibition,
drug delivery, cosmetics, and dispersion or floccula-
tion. Such applicability of surfactants is because of
their capacity to alter the interfacial properties sig-
nificantly. Thus, an enormous quantity of surfactants
is released daily in the surrounding water bodies.
Surfactants in water harm the microorganisms,
affecting the overall biodegradation process(James
& Ifelebuegu, 2018). Incomplete degradation prod-
ucts of surfactants mimic the hormones of aquatic
life, impacting marine life and terrestrial ecosystems
(Scott & Jones, 2000). Surfactants constitute a sig-
nificant hazard to agricultural production and envi-
ronmental sustainability. They are present not only
in domestic and industrial wastewater but also in
irrigation water streams being a major constituent of
insecticides and pesticides. They may cause soils to
become water-resistant and contribute to a decrease in
soil hydraulic conductivity. Nearly all forms of water
systems in the surrounding environment are now
home to surfactants. Their improved solubility and
hydrophobic nature reduce the bioremediation rates.
All paraffin- or alkane sulfonates, like linear alkylb-
enzene sulfonates (LAS) and alkylbenzene sulfonates
(ABS), are primary surfactants in washing detergents
and health care products. Wastewater contains LAS,
which prevents bacteria from decomposing organic
materials. Cationic surfactants find applications in
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shampoos, conditioners for hair, textile softeners,
bactericides, and beautifying creams. Because of their
effective qualities, surfactants are also known as adju-
vants for pharmaceuticals and pesticides (Kulkarni &
Jaspal, 2023).

A large quantity of surfactants is now utilized and
even further released in marine waters during oil
recovery. Thus, the adsorption of these surfactants
is crucial not only for more remarkable oil recov-
ery from oil reservoirs but also for avoiding mixing
in marine water. Many studies have emerged on sur-
factant removal by adsorption from oil reservoirs. The
surfactant loss resulting from adsorption by the res-
ervoir rocks reduces the oil-water interfacial tension
and lowers the chemical effectiveness of the injected
slurry. When the percentage of clay minerals in the
adsorbents increased by around 5-20 % in the mix-
ture, a direct correlation was observed between the
quantity of nonionic surfactants that were adsorbed
by the adsorbents and the amount of clay minerals
present in the adsorbents (Amirianshoja et al., 2013).

3 Methods for Surfactant Removal
3.1 Biodegradation
3.1.1 Mechanism and Methodical Exploration

Primary biodegradation of surfactant functions when
microorganisms structurally modify the parent mol-
ecule, resulting in the loss of its surface-active char-
acteristics. The microbes degrade the surfactant,
resulting in the formation of products like CO,, H,0,
and mineral salts. This mechanism is controlled by
the type and number of microorganisms, aerobic
or anaerobic growth conditions, temperature, pH,
nutrients, water content, and substrate bioavailabil-
ity (Merrettig-Bruns & Jelen, 2009). In wastewater,
Surfactants are biodegraded by microbes which con-
sume them to produce energy, nutrients, or catabo-
lism. The procedure of biodegradation is furthermore
greatly affected by the chemical composition of the
surfactant and the aerobic or anaerobic environmental
conditions.

Aerobic degradation method accomplishes better
results than anaerobic degradation. During the pro-
cess of degradation, the high surfactant concentra-
tions depolarize the bacterial cell walls, resulting in
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foaming and depriving the air supply. Nevertheless,
biodegradation is constrained to wastewater with
moderate concentrations, provoking doubts about its
utilizations in water bodies with large surfactant con-
centrations (Palmer & Hatley, 2018). Hence, despite
the fact that biodegradation of surfactants is a com-
monly observed phenomenon for their mitigation in
wastewater treatment plants (WWTP), this process
alone appears insufficient for successfully and com-
pletely removing surfactants. In anaerobic condi-
tions, surfactants comprising fatty acid esters (FES),
cationic surfactants, alkyl phenol ethoxylates (APE),
fatty alcohol ethoxylates (AE), linear alkyl benzene
sulphonates (LAS), and secondary alkyl sulphonates
(SAS) are all to a certain degree prone to breakdown
during the degradation process. The following rep-
resents the order of biodegradation: alkyl sulfates >
alkyl ethoxy sulfates > secondary linear alkyl sulfates
> primary alkane sulphonates > LAS (Scott & Jones,
2000).

An exploration of the biodegradability of a sur-
factant (XP-100) with yeast extract, was done in the
presence of active hydrocarbon pollutants like naph-
thalene and hexadecane, revealing that the yeast
extract presence accelerated the surfactant biodegra-
dation process, when compared to its absence. Across
the examined time frame, increase in surfactant con-
centration did not prevent its biodegradation. How-
ever, addition of organic pollutants enhanced sur-
factant biodegradation due to their synergistic effect.
Compared to hexadecane, naphthalene decomposed
more prominently. Surfactants increase the solubility
of organic pollutants, making them more bioavailable
for bioremediation. Although the surfactants them-
selves did not appear to be utilized for growth, they
significantly contributed to improved biodegradation,
by raising the number of pollutants and promoting
bacterial growth on organic contaminants. The find-
ings presented an advanced knowledge of the biore-
mediation process and the destiny of the hazardous
organic compounds in the aquatic environment (Aly
et al., 1998).

3.1.2 Role of Sustainability

Based on the type of surfactant, aerobic and anaerobic
processes play vital roles in its biodegradation. The
breaking down of surfactants during biodegradation
via microbe’s aids in environmental sustainability.
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Surfactant metabolites released into nearby water-
bodies are often resistant to further breakdown, and
mimic the hormones of aquatic organisms. This
adversely affects the life cycle of these aquatic organ-
isms. Furthermore, due to their incomplete biodeg-
radation, many surfactants pose severe hazards to
the environment. Therefore, though biodegradation
appears greener and ecologically sustainable, it is
not a reliable surfactant mitigation technique. Since
biodegradation is a time-consuming procedure, sur-
factant removal needs enhancements via standard
methods like flocculation and aeration for eco-com-
patibility. Co-metabolism combined with flocculation
or chemical treatments is one of the efficient hybrid
approaches that help wastewater treatment facilities
remove surfactants (Olkowska et al., 2013)
Biodegradation of LAS from greywater using
microbial diversity in constructed wetlands is another
trending methodology. In this approach anaerobic
conditions dominate the system, with an average LAS
and Chemical Oxygen Demand (COD) of 32 mg L~}
and 374 mg L™! and removal rates of 43% and 66%,
respectively. Pseudomonas predominated among the
15 species that degraded surfactants. Rhodopseu-
domonas palustris had the highest relative abundance
of operational taxonomic unit (OTU)s in all samples
and the highest richness in the anaerobic chamber,
among all LAS degraders. Microbial community
composition and environmental conditions indicate
that LAS biodegradation occurred throughout the
constructed wetlands system resulting in a wide-
spread eco-effect. (Mascoli Junior et al., 2023).

3.1.3 Techno-Economic Analysis

Due to their low cost, extended shelf life, and
enhanced performance at lower temperatures, petro-
leum-based surfactants are prominently utilized.
However, the exploration for a new ecological,
green, biodegradable substitute is essential due to
their non-renewability and detrimental environmen-
tal impacts. Not only the biodegrading system but
also the surfactants are explored to be more sustain-
able. Hence new biosurfactants are regularly inves-
tigated for real time applications. The price of raw
materials accounts for roughly 30%—50% of overall
biosurfactant production costs. Despite the wide-
spread and environmentally friendly applications

of biosurfactants, the scarcity and high cost of raw
materials hinder industrial biosurfactant manufac-
turing. The market value of biosurfactants was $1.9
billion in 2022, but the global trend of biosurfactant
production mounted dramatically. By 2032, the
market is anticipated to reach $3.2 billion, growing
at a compound annual growth rate (CAGR) of 5.4%
(Singh et al., 2024).

In the manufacturing of conventional alkyl poly-
glucosides (APGs) and sucrose esters (SEs) as bio-
based surfactants, the review by Stubbs et al. (2022)
promotes the use of renewable feedstock, biodegra-
dability, catalysis, atom economy, and safe chemi-
cal design as per the green chemistry principles. It
encourages the use of bio-based surfactants as more
environmentally friendly substitutes. The industry
worldwide must create new and sustainable sys-
tems, business practices, and technology to promote
bio-based surfactants and enhance the commerciali-
zation of APGs and SEs. As a conceivable substi-
tute for synthetic surfactants, green surfactants such
as biosurfactants and oleo surfactants, are being
synthesized as a result of biotechnological advance-
ments and are becoming more and more popular
globally (Nagtode et al., 2023).

The commercial viability of anaerobic mem-
brane bioreactor (AnMBR) integrating with forward
osmosis (FO), reverse osmosis (RO) technologies
for municipal wastewater treatment with energy and
water generation was considered. AnMBR facili-
tated for wastewater treatment and energy genera-
tion, while RO aided in water production and draw
solution regeneration. The FO assisted with pre-
concentration of the AnMBR influent. Restraining
the FO recovery to 50% in a closed-loop approach
resulted in a minimal wastewater treatment expense
of 0.81 euros m~>. FO recoveries of 80% and 90%
resulted in higher costs of 1.01- and 1.27-euros m3,
respectively. The projected costs for producing fresh
water were 0.80 and 1.16 € m™ for a closed-loop
strategy and an open-loop scheme that maximized
water output, respectively. It was suggested that
the FO membrane fluxes of 10 LMH would signifi-
cantly increase the effectiveness of AnMBR tech-
nology and FO-RO. According to a sensitivity anal-
ysis, the low FO membrane fluxes were observed as
a limiting factor (Vinardell et al., 2020).
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3.1.4 Limitations, Industrial Applications and Future
Advances

The increased utility of surfactants and the available
degradation setups at the wastewater treatment plants
show inconsistent and time-consuming results. Nev-
ertheless, many attempts have been made to enhance
the impact of biodegradation, especially associated
with foul smell. In one such effort, the impact of ethyl
alcohol and nitrate on the degradation of linear alky-
Ibenzene sulfonate (LAS) was examined utilizing a
central composite design (CCD). The CCD technique
proposes a tool for optimizing processes and deter-
mining the significance of elements influencing them.
It assists to understand process functionality and its
application in industrial reactors on a small scale after
defining optimal parameters. Nitrate and ethanol (co-
substrate) affect in almost complete decomposition of
surfactants, overcoming the fundamental limitation.
Ethanol and nitrate substantially impact (p < 0.05)
on the degradation of linear alkylbenzene sulfonate
in batch reactors. 99.9% LAS was removed with ideal
values of around 97.49 and 87.99 mg L~! for ethanol
and nitrate, respectively, under agitation at ~119.9
rpm and 29.8°C (Andrade et al., 2017).

An extended granulated sludge bed reactor meant
for the anaerobic digestion of domestic and commer-
cial laundry wastewater was assessed at three stages,
with a 36-hour hydraulic retention period. Tap water
and mixing domestic sewage were used to dilute the
wastewater stream. A reduction in the LAS exclusion
rate from about 77 + 15% (stage 1) to around 55 +
18% (stage III) resulted from the addition of domes-
tic sewage, which raised LAS and organic compounds
concentration in the influent. Thus, a substantial
decline in the rate of LAS removal and an association
between LAS removal and specific organic loading
rate were revealed by data analysis, posing another
limitation in removal of surfactant(de Faria et al.,
2019).

Therefore, in order to overcome this issue, the
microalgal-bacterial processes were employed by
high-rate algal pond (HRAP) systems to eliminate
surfactants and other pollutants from household
wastewater efficiently. In HRAPs, Scenedesmus sp.
algae was introduced at concentrations of 1.4 g L™
for total suspended solids (TSS) and 4.2 g TSS L~! for
activated sludge. In three high-rate algal ponds, the
feeding schedule affected the removal of surfactants,
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nutrients, and biomass production. At 0.1h d7!, the
best results were obtained, with surfactant concentra-
tions of 0.3 mg L~! below the permissible limits for
freshwater outflow (Serejo et al., 2020).

Peroxymonosulfate (PMS) was activated using
sludge-derived biochar (SBC) to break down triclosan
(TCS), a surfactant, in wastewater. SBC had a spe-
cific surface area of around 158 m’g~! and a porous
structure. The ideal conditions for triclosan (0.034
mM) degradation in the activated SBC- PMS system
was pH 7.2, with 0.99 g L~ of SBC, and 0.79 mM of
PMS at 25°C. The results showed that SBC can serve
as a useful PMS activator for the breakdown of sur-
factants in water and wastewater, with a TCS removal
effectiveness of 66.7%, significantly better than the
contributions of pure SBC and PMS (Wang & Wang,
2019).

Recent studies evidently suggest that oilfield
dispersants build up in the water column and sink
with oil to the sea bottom, particularly affecting the
extremely delicate coral reefs and hazarding the
marine ecology. Hence, the biodegradability of oil-
field detergents comprising anionic surfactants was
tested for water samples from the New Calabar river
of the University of Port Harcourt, Nigeria, and the
tap water was obtained from the laboratory taps.
The detergents examined were Bio-Boost, SUR-
500 (SURFONIC® OFS 500 polyol), a dispersant
SW-1000, drilling detergent D.D-Y, and degreaser
D.G-X. This analysis employed to track the biodeg-
radation of methylene blue active substance (MBAS)
while utilising sodium dodecyl sulphate (SDS) as a
reference, signifying a biodegradation observation
practice. Proteus, Acinetobacter, Enterobacter, Staph-
yvlococcus, Bacillus, Pseudomonas, Arthrobacter,
Corynebacterium, and Micrococcus were the micro-
organisms that used the detergent. The detergents met
biodegradability criteria with an average primary bio-
degradation rate of 91%-97 % (Osadebe et al., 2018).

3.2 Coagulation and Flocculation
3.2.1 Mechanism and Methodical Exploration

Coagulation and flocculation are vital processes in
wastewater treatment, employed together on the prin-
ciple to eliminate suspended particles by destabiliz-
ing them, causing them to clump together. As a result,
these processes further facilitate effortless removal
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of the suspended water impurities like surfactants
through sedimentation or filtration. Surfactant mol-
ecules consist both hydrophilic and hydrophobic
ends and Anionic and nonionic surfactants can both
be eliminated by coagulation (Amir Hossein et al.,
2004). The coagulation mechanism for surfactant
elimination involves neutralizing its charges and pro-
moting accumulation. Coagulation-flocculation tech-
niques can often achieve high removal rates while
effectively lowering surfactant concentrations in
wastewater. Adsorptive micellar flocculation (AMF)
is a surfactant-based separation technique that elimi-
nates water-soluble contaminants. In this technique
first the contaminants in surfactant micelles are dis-
solved, which eventually flocculate and then precipi-
tate out of the solution. The ability of surfactants to
produce micelles, encapsulating and concentrating
contaminants, is thus employed for their removal, in
this procedure. The addition of polyvalent cations
causes flocculation, amassing the micelles into big-
ger flocs that are readily removed by sedimentation
or filtration. Due to its exceptional pollutant removal
efficiency, coagulation-flocculation unit processes in
wastewater treatment, has appealed significant con-
sideration (Aboulhassan et al., 2006).

According to previous studies, ferric chloride,
alum, and lime have commonly been used as coagu-
lants. The survey by Jangkorn et al., 2011 examined
the viability of recycling aluminum sulfate (alum)
sludge as a coagulant or coagulation aid to reduce
new alum dosage and improve removal efficiency.
Experimentations were conducted in a jar-test sys-
tem to simulate the coagulation-flocculation process
for removing organic matter, anionic surfactants, sus-
pended particles, and turbidity. The results demon-
strated that alum sludge could effectively eliminate
turbidity, Total Chemical Oxygen Demand (TCOD),
and anionic surfactants at an initial pH of 10 and a
fresh alum content of 400 mg L~!. The use of both
alum sludge and fresh alum improved the removal
efficacy. The TCOD removal efficiency exceeded
80%, which was never achieved with fresh alum
alone. The study suggests that alum sludge can be
recycled to remediate industrial wastewater from the
consumer goods industry. Another study by Tripathi
et al. (2013) revealed that the electrocoagulation-elec-
troflotation approach effectively removes residual sur-
factants from laundry wastewater, reducing COD by
80%, MBAS by 95%, and turbidity by 99.9%.

3.2.2 Role in Sustainability

Chemical coagulants are effective in surfactant
treatment from water treatment plants (WT), but
they are typically costly, hazardous, and responsi-
ble for health problems, and therefore not sustain-
able. Natural coagulants are a renewable substitute
as they are easily accessible, affordable, simple to
use, biodegradable, non-toxic, a greener approach
to environmentally benign chemicals, efficient,
and produce smaller volumes of sludge (Banchon
et al., 2017; Turk et al., 2005). Natural coagulants,
through an adsorption process similar to chemicals,
and have a WT efficiency of 50-500 nephelometric
turbidity units (NTUs). These coagulants can con-
tribute to several health issues in developing coun-
tries. However, their acceptance, commercializa-
tion, and widespread industrial application are still
low (Koul et al., 2022). When using Cicer arieti-
num powder as a bio-coagulant, the ideal coagula-
tion and flocculation parameters were 2.26 g L~!
of coagulant, pH = 4, and flash mixing speed =
170 rpm. Turbidity, surfactant, and chemical oxy-
gen demand (COD) removal efficiencies under this
environment were 88.35 + 4.10 %, 60.30 + 3.10
%, and 54.25 + 2.81 %, respectively. Thus, there is
an urgent need to accept and commercialise natu-
ral coagulants like Cicer arietinum as a sustainable
substitute to chemical coagulants (Dadebo et al.,
2022).

To consider the process of coagulation and floc-
culation from the aspect of sustainability and green
chemistry, an innovative green coagulant, like flax-
seed mucilage (FSM), was used by Mirbahoush and
his team in 2019. The optimal conditions for coagu-
lation of anionic surfactant sodium dodecyl sul-
phate (SDS), employing the response surface meth-
odological approach were a pH of 7.0, 100 mg L~!
of FSM, and 30 min. Heterogeneous photo-Fenton
oxidation was employed in the post-treatment phase
to ensure the complete removal of SDS using an
MnFe,0, nanocatalyst. Complete SDS removal was
accomplished in the photo-Fenton oxidation pro-
cess with 76 mg of the nanocatalyst and 1.07 mL
of H,0, at 17 min. Coagulants and flocculants are
also further associated with changes in the chemical
compositions of water bodies and are not entirely
reliable.

@ Springer



655 Page 8 of 29

Water Air Soil Pollut (2025) 236:655

3.2.3 Techno-Economic Analysis

Coagulation flocculation, though a simple, selective,
and cost-effective method for treating wastewater,
desires concern for the toxic by-products. Apply-
ing adsorptive micellar flocculation (AMF) directly
to wastewater does not cause any eco-toxicity, and
hence makes it a simple, selective, and economically
feasible process. To treat industrial wastewater with a
high concentration of surfactants, Aboulhassan et al.,
in 2006 investigated the effectiveness of the coagula-
tion precipitation process worked, especially in terms
of eliminating organic debris and surfactants. In this
study, the treatment with FeCl; was found effec-
tive at the pH range of 7-9. In addition to increasing
the BODs/COD index from 0.17 to 0.41, the proce-
dure successfully reduced surfactants and COD, with
improved removal rates of 99% and 88%, respectively.

A study investigated electrochemical coagula-
tion utilizing Fe’*ions as an alternative method for
removing surfactants from water samples and model
solutions. The results showed that a concentration
of 10mg L™! of surfactant was removed with 100%
efficiency. The study also examined the impacts of
applied current density, initial concentration, sup-
porting electrolyte concentration, coagulant dosage,
and pH on removal efficiency. This suggested that
electrochemical coagulation is a promising method
for treating detergents polluted water. The high con-
centration of iron hydroxide near the anode enhanced
the coagulation of pollutants, while the negative elec-
trode caused rapid floc movement, which did not sig-
nificantly enhance coagulation. Energy consumption
was lower when the reactor was anode. Evidently
demonstrating a lower energy utilization technique.
However, generating water with 1mg L~! surfactant
is more expensive than producing 2mg L~! water,
and should be considered for the economic evaluation
of the process (Onder et al., 2007).

Eradication of anionic surfactants from wastewa-
ter from the cardboard industry using coagulation-
flocculation was analysed. It was observed that the
statistical approach of response surface methodol-
ogy enables an efficient and cost-effective study of
the interactions between diverse parameters used in
coagulation-flocculation. With the use of cationic
polyacrylamides (c-PAM), poly aluminium chlo-
ride (PAC), and pH at optimal levels, coagulation-
flocculation eliminated the anionic surfactant nearly
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entirely and decrease COD by more than 95% (Harif
et al., 2023). Electrocoagulation and electroflotation
were used in a study by Akarsu and Deniz (2021)
to investigate wastewater treatment from laundry.
The response surface methodology (RSM) was uti-
lized for optimizing the type of electrode (Al-Al,
Al-Fe, Fe—Fe, and Fe—Al), initial pH (5-9), current
(0.54-2.16 A), and time duration (15-60 min). Using
a Fe-Al electrode at 2.16 A current at pH 9 and 60
min reaction time results in the most efficient elimi-
nation. The techno-economic study thus revealed that
at an operating cost of $1.32 m~>, the best removal
efficiency is obtained for COD, colour, surfactant,
and microplastic.

3.2.4 Limitations, Industrial Applications and Future
Advances

The efficiency of the coagulation-flocculation method
depends on the coagulant dose and pH of system.
Coagulants also generate harmful sludge adding to
the impurities in water. As a result, additional fil-
tration is necessary for complete mitigation of the
contaminants in the sludges. Chemical hazards of
coagulant material are another matter of great con-
cern. The coagulation-flocculation is a regularly used
process to treat industrial wastewater produced while
manufacturing detergents, soaps, and other consumer
goods and adding coagulators and utilizing chemi-
cals to change the pH of these industrial effluents
incurs a substantial cost. To decrease the quantity
of fresh alum required and to improve the efficiency
of the removal process, a study was conducted to see
whether the aluminum sulfate (alum) sludge might be
used again as coagulant or a coagulation aid. Exami-
nations were carried out in flocculators to eliminate
turbidity, suspended particles, organic debris, and ani-
onic surfactants. An optimal starting pH of 10 and the
addition of 400 mg L~! alum resulted in the removal
efficiencies for TSS, COD, anionic surfactants (AS),
and turbidity within a range of 70-98% (Jangkorn
et al., 2011) suggesting these as the optimum param-
eters for effective removal.

Recent innovative trends in this sector rec-
ommended a microbubble-enhanced flotation
approach that successfully removed over 95 wt. %
of surfactants, from laundry wastewater (Zhao et al.,
2024). Polyacrylamide (PAM) was also discov-
ered to be an effective coagulant aid for polymeric
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aluminium chloride (PAC) to increase floc charac-
teristics in a dual-coagulation procedure used for
surfactant-kaolin wastewater (Li et al., 2024). Mor-
inga oleifera shows notable coagulation skills far
earlier than other recently used bio coagulants like
Cicer arietinum (Dadebo et al., 2022) and flaxseed
mucilage(Mirbahoush et al., 2019). Moringa oleifera
seed extract was shown to remove surfactants from
aqueous effluents effectively. Among them, Polyoxy-
ethylene (3.5) sodium lauryl ether sulfate (SLES), a
long-chain anionic detergent, was chosen as an exem-
plary molecule to evaluate the coagulation reaction.
The system coagulant-detergent demonstrated high
efficacy and stability across various temperatures and
pH levels. The M. oleifera promises as an efficient
coagulant, with a coagulation capability of 0.245 mg
L~!. Experiment design identified the optimal coagu-
lant dose and initial concentration of surfactant as 234
mg L' and 76 mg L', respectively (Beltran-Heredia
et al., 2012). Further, research is therefore crucial to
explore the mode of action, adoption, and commer-
cialization of similar natural coagulants as a sustain-
able alternate for a circular economy.

3.3 Photocatalytic Degradation or Advanced
Oxidation

3.3.1 Mechanism and Methodical Exploration

Photocatalytic degradation, an advanced oxidation
process (AOP), incorporates light energy in pres-
ence of a catalyst and converts pollutants into innocu-
ous molecules such as CO, and water by producing
reactive oxygen species. Photocatalytic techniques
effectively treat waterbodies contaminated with
organic and inorganic contaminants. Photocatalytic
procedures operate to mineralize a wide range of
surfactants along with many insecticides, dyes and
other such hazardous chemicals. The use of photoac-
tive semiconductors is a favorable approach for these
methods. For photocatalytic applications, titanium
dioxide is the most commonly utilized semiconduct-
ing material. Combining TiO,-based photocatalysis
and sonolysis is a potential mechanism for reducing
organic contaminants like surfactants (Szab6-Bardos
et al.,, 2008). Advanced oxidation process (AOP)
yields extremely reactive intermediates known as
hydroxyl radicals (HOe) by utilizing strong oxidants
such as O; or H,O,. This hydroxyl radical breaks

down the organic compounds quite efficiently. Sur-
factants, including all other organic molecules, are
essentially disintegrated by the (HOe) once it is cre-
ated. As a result, the organic component mineralizes
due to hydroxyl radical assault. Thus, organic pollut-
ants are reduced by AOPs from several hundred parts
per million to fewer than five parts per billion. The
AOP generates an organic radical (eR) by removing a
H atom from an organic molecule (RH) using (HOe).
Numerous oxidation products are produced due to
the several chemical changes the organic radical (eR)
goes through. Fenton’s reagent (H,0,-Fe’*), O;, and
H,0, are the most often utilized oxidants in AOP
(Krishnan et al., 2016).

A hybrid treatment system mechanism was
designed to treat synthetic wastewater spiked with
10.00 + 0.46 mg L™! sodium dodecyl sulfate (SDS),
including an up-flow microbial fuel cell (MFC) with
TiO, or titanium dioxide as a photocathode catalyst.
After passing through a raw laterite sand filter, the
anodic chamber of the MFC’s effluent was followed
by a photo cathodic chamber with a UV-exposed
TiO,-coated cathode. The hybrid system was run in
an MFC anodic chamber for varied hydraulic reten-
tion times (HRT). The hybrid system achieved over
96% removal efficiency of SDS and ~70.99% removal
efficiency of organic materials at various HRTs (Sathe
et al., 2020).

3.3.2 Role in Sustainability

The photocatalytic technique oxidizes the water pol-
lutant in a more sustainable and efficient sequence of
processes. The method is used to effectively decon-
taminate and sterilize wastewater and sanitize ground-
water. Wastewater, including surfactants, heavy
metals, medications, chlorinated hydrocarbons, pesti-
cides, dioxins, diseases, and microorganisms, a wide-
spread of water impurities can be treated by photo-
catalytic oxidation. The photo-catalytic methodology
is more practical, energy-efficient, and chemical-free
than traditional oxidation techniques. Additionally,
photocatalytic degradation works at moderate temper-
atures and pressures, and the method becomes more
effective when heterogeneous photocatalysts are used
(Ahtasham Igbal et al., 2024). suggesting sustainable
and readily available application conditions. Photo
catalysts can alter the chemical compositions of water
reservoirs during treatments(Joseph et al., 2022).
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Hence, the appropriate selection and use of reagents
associated with green chemistry is necessary for sus-
tainable wastewater treatments.

Structural effects of surfactants lead to the devel-
opment of photodegradation products with higher
toxicity than the parent molecule. Recently, cata-
lytic photodegradation of cationic, anionic, and non-
ionic surfactants was explored by Wysokowska et al.
(2024) to determine the effect of their breakdown
products on phytotoxicity of sorghum (cereal grain).
As a result, heterogeneous photocatalysis successfully
mitigates surfactants only at low concentrations in the
aquatic environment. Photodegradation efficacy for
all surfactants improved proportionally to a range of
41-50% for anionic surfactants, 64-70% for non-ionic
chemicals, and 38-43% for cationic cetrimonium bro-
mide (CTAB) and Didecyl dimethyl ammonium chlo-
ride DDAC, while the efficiency of benzalkonium
chloride reached 94%. Non-ionic surfactants provided
the finest toxicity reduction outcomes, followed by
anionic chemicals, whereas cationic surfactants were
correlated with a more substantial negative impact
adding to more toxicity. In contrast to anionic and
non-ionic chemicals, cationic compounds degrade
more slowly due to their decreased reactivity, which
is hampered by their positive charge, thus affecting
the phytotoxicity.

3.3.3 Techno-Economic Analysis

Surfactant removal is a developing concern due to
its stubborn nature, which hinders conventional bio-
logical treatment from meeting wastewater discharge
standards. A laboratory-scale photocatalytic degrada-
tion system employing UV-H,0, was recommended as
an additional treatment for a mixed multiple anaerobic
system facility in Guayaquil, Ecuador, which had inad-
equate surfactant removal (45.9%). The system proved
the synergistic effect of mixing H,O, with UV radia-
tion for 60 min in successfully removing surfactants
(94.3+4.3%) and reaching the treatment objective. After
60 min of continuous treatment with a flow rate of 0.6
mL s~! and a hydrogen peroxide concentration of 26.6
mg s, the highest elimination of anionic surfactant was
92.34+2.5%. The techno-economic analysis of this study
estimates that removing surfactants in an ideal full-scale
system, combined with a decentralized wastewater treat-
ment plant would cost 0.7 $ m~> (Jennifer et al., 2024).
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Recently, electron beam radiation, a clean and sus-
tainable method for SDBS degradation in wastewater,
was explored by Chu et al. (2024). Changes in SDBS
micelles, elevated interfacial tension, and reduced
foaming power resulted from the breakdown pro-
cess. With a COD removal rate of 7-20%, the results
demonstrated a removal efficiency of almost 100%.
Advanced electro-oxidation has become a predominant
method for treating complex wastewater. For domes-
tic wastewater effluent from the wastewater treatment
facility in Ecuador, an electrochemical degradation
method employing a DiaClean® cell in a recirculating
system with boron-doped diamond (BDD) as the anode
and stainless steel as the cathode was found to be eco-
nomically beneficial (Cisneros-Ledn et al., 2023).

3.3.4 Limitations, Industrial Applications and Future
Advances

The requirement for large space, high operation
expenses, high reagents utilization, and high energy
requirements are the commonly observed limita-
tions of photocatalytic techniques. Municipal effluent
samples and distilled water-spiked samples contain-
ing 100 mg L~! of SDS were tested for an advanced
oxidation process employing UV-H,0,. The impacts
of process parameters on SDS degradation, such as
latency, initial SDS concentration, oxidant H,O, dos-
age, and UV absorbance of wastewater at 250 nm,
were analysed. The rate of SDS breakdown increased
with reaction time. Depending on the initial SDS con-
centration, degradation accelerates with increasing
oxidant dose and decreases even further with growing
oxidant dose This confines that degradation does not
increase with increasing the oxidant dose. Through
200 mg L~! of initial concentration, the quadratic
model predicted that the maximum SDS degrada-
tion percentage would be over 80% in 7 min. For the
same, a UV absorbance of around 0.2 at 254 nm was
obtained using a dosage of 2 mol of H,O, per mol of
SDS (Mondal et al., 2019).

The effectiveness of the electro-hybrid ozonation-
coagulation process (E-HOC) for surfactant and micro-
plastic exclusion from laundry wastewater was investi-
gated at various current densities and ozone dosages.
At ideal circumstances (current density 15 mA cm™2,
ozone dosage 66.2 mg L), surfactant and microplastic
removal efficiency exceeds 90%. The E-HOC method
has a better exclusion efficiency of COD, turbidity, and
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LAS than the ozonation and conventional electrocoagu-
lation processes proposing a better practical approach.
The electro-hybrid ozonation-coagulation process
was optimized for three laundry wastewaters: washing
wastewater (15mA cm™2, 66.2 mg L"), primary efflu-
ent (10 mA cm™2, 36.6 mg L"), and secondary efflu-
ent (10 mA cm™2, 36.6 mg L™"). COD, turbidity, and
LAS were removed from washing wastewater at rates
of 93.9%, 99.7%, and 99.9%, respectively (Luo et al.,
2022).

Photocatalytic degradation combined with adsorp-
tion is a hybrid approach boosting traditional yet
affordable processes. As surfactants are discharged
into wastewater in huge quantities, they are detrimen-
tal to aquatic and terrestrial life, necessitating removal.
A recent study attempted to eliminate SDS surfactant
through photocatalytic degradation and adsorption
utilizing Zn (+2) Al-layered double hydroxide and
TiO,-Zn (+2) Al-layered double hydroxide copre-
cipitation materials. The acquired experimental results
were analysed using the Temkin and Langmuir and the
Freundlich adsorption isotherm models. The photo-
catalytic degradation of SDS over Zn (+2) Al-layered
double hydroxide and TiO,-Zn (4+2) Al-layered double
hydroxide exhibited pseudo-first-order kinetics at 9.99
to 100.1 mg L' concentrations. The results showed
that TiO,(3.59)-Zn (+2) Al-layered double hydroxide
displayed substantial photocatalytic activity compared
to the Zn (+2) Al-layered double hydroxide sample
(Aoudjit et al., 2019).

Photocatalytic degradation is a developing trend
that is globally used for surfactant removal to achieve
water remediation. Lately, photocatalytic degradation
combined with adsorption on Fe,Oj-activated carbon
catalyst was found effective in the degradation of sur-
factants like linear alkylbenzene sulfonate. When the
concentration of Fe is changed to 2%, 4%, or 6%, the
capacity of the surfactant waste degrading reaction
using the kernel of coconut catalyst at a time frame of
three hours was determined to be nearly 6.8 mmol g~!,
3.2 mmol g~!, and 1.6 mmol g™ catalyst, respectively
(Amelia et al., 2020).

3.4 Membrane Filtration
3.4.1 Mechanism and Methodical Exploration

Porous membranes featuring specific pore diam-
eters are used in membrane filtration methodology.

Surfactants develop micelles or other more signifi-
cant structures, depending on their concentration
and degree of aggregation. These aggregates are
physically confined and unable to flow through the
membrane as their size exceeds the membrane pore
size. This isolates them from the water stream. The
size exclusion mechanism is the key component in
separating surfactants from water in microfiltration
(MF) and ultrafiltration (UF) procedures, where the
pore diameters range from micrometres to nanom-
eters (Xiarchos et al., 2003). Utilizing a semi-per-
meable membrane, the filtration technique employs
a pressure differential phenomenon to separate com-
ponents in aqueous solutions. This pressure differ-
ence mechanism permits smaller molecules to flow
through, thus retaining bigger molecules in situ. The
technique is based on factors including size, molec-
ular properties, or charge. As a pre-treatment tech-
nique, membrane filtration (MF) is frequently used
to remove various components from wastewater sus-
pension, whereas ultrafiltration (UF) suggests a way
to eliminate surfactants from aqueous solutions with
critical micelle concentration (CMC). Nevertheless,
nanofiltration (NF) is a more successful removal
method when the concentration is as low as that
of monomer. Because of the high concentration of
surfactant monomers, the membrane filtration tech-
nique enables the permeate to be reused during the
cleaning process. In the early 1970s, UF was the
first membrane technique to separate surfactants
(Suarez et al., 2012).

Composite membranes of silica, titania nanorods,
and nanotubes, with photocatalytic capacity, were
explored to remove sodium dodecylbenzene sul-
fonate (SDBS). Using the sol-gel method, colloidal
silica-titania sols have effectively created a multifunc-
tional composite membrane. Blending photocataly-
sis with membrane filtration was an innovative trial
that resulted in an 89% elimination of SDBS after
100 min, according to the experimental results (H.
Zhang et al., 2006). Babaei and team in 2019 (Babaei
et al., 2019) studied the effectiveness of multi-layer
slow sand filter, microfilter (MF) and ultrafilter (UF)
hybrid systems in removing COD, TSS, LAS and tur-
bidity from greywater, and the impact of OLRs on the
performance of the system during 5 months. The fin-
est removal efficiencies were 98.22% for COD, and
>99.97% for TSS, LAS and turbidity also. Further-
more, the average turbidity, TSS, and LAS outputs in
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the hybrid system were 1.04 NTU, 0.04 mg L=}, and
1.55 mg L™}, respectively.

To treat surfactants from detergent wastewater, a
combination method using the multimedia biological
aerated filter (MBAF) and the up-flow multimedium
biological aerated filter (UMBAF) was studied by Ji
et al. (2019). The combined system had an optimal
filtration rate of 1.4 m hr™! and performed best with
an air-to-water ratio of 2:1. Total phosphate (TP),
linear alkyl benzene sulfonate sodium (LAS), and
Chemical Oxygen Demand (COD) were removed at
average rates up to 40%, 88%, and 91%, respectively.

3.4.2 Role in Sustainability

Growing international apprehension about scarcity of
clean water and environmental sustainability drives
revolution in water reclamation techniques. Research
by Barambu et al. (2020) reveals the ability of a tilted
panel system to maximize the impact of air bubble
contact with the membrane surface, hence impos-
ing control over membrane fouling and emerges as a
greener methodology. This technology offers a simple
method for recovering detergent and reusing water.
Hydraulic performance improves when rate of aera-
tion and tilting angle are adjusted to attain permeabil-
ity, implying that almost all reversible fouling can be
avoided. The plateau aeration resulted in a 83% higher
permeability than the unaerated condition, with value
of about 200. Tilting the membrane panel 15 degrees
to the air bubbles increased permeability to around
220. The method further provides 32% detergent
recovery. Overall, the technique proposes a compel-
ling method for membrane fouling management.

Research by Mostafazadeh et al. (2019) focuses
on the treatment and reuse of laundry wastewater uti-
lizing an innovative and sustainable sequential inte-
grated system. Total suspended particles, turbidity,
COD, and surfactants such as nonylphenol ethoxy-
lates (NPEO;—17) are eliminated by polyether sul-
fone (PES) membrane in ultrafiltration (UF) of raw
wastewater and adsorption (AD) procedures of the
filtrate. The UF process separates the wastewater into
an effluent with a minimal organic pollutant; =400
mg L~! of dissolved COD, and a concentrate with a
total COD upto 1200 mg L~!, with around 200 mg
TSS L~'. Thus, using UF and AD procedures, suc-
cessfully eliminates NPEO;—17 surfactant from the
concentrate and filtrate efficiently.
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3.4.3 Techno-Economic Analysis

Recently a microfiltration membrane system with
cationic exchange proceeding a weak-acid-based resin
was proposed to eliminate surfactants and lower efflu-
ent alkalinity from the washing phase. The recovery
efficiency of the system was 88%. About 68% of the
cooling tower water was treated using the ultrafiltra-
tion and reverse osmosis processes, which were deter-
mined to be the most successful in eliminating salts
and biocides. The techno-economic feasibility for the
system was assessed, with an anticipated cost of EUR
245 thousand for the washing phase and EUR 582
thousand for the cooling towers. The revenue from
the treatment techniques was expected to be EUR
0.07 per car for the washing phase and cooling tow-
ers with EUR 0.13. This study highlights the benefits
of membrane treatment in the environmental policy
of the automotive sector, leading to water reuse and
lower effluent discharge (Carvalho et al., 2025).

As per a survey by Sostar-Turk et al. (2005), Slove-
nia implemented two initiatives that enforced techno-
logical and ecological standards for treating wastewa-
ter from modern laundry. On examining prospective
market for membrane water treatment applications, it
was discovered that most Slovenian laundering facili-
ties, out of 140 at that time, employed traditional tech-
niques such as filtration, flocculation, and sedimenta-
tion. Only three laundries with annual water flows
ranging from 35,000 to 45,000 m?> had ultrafiltration
installed. To resolve this issue, a membrane treatment
system combining ultrafiltration and reverse osmosis
was developed in a laboratory, enabling 75% of water
to be recycled. Ten prospective laundries in Slovenia
were found qualified for this system, with five having
water flows ranging from 35,000 m® to 100,000 m®
per year.

3.4.4 Limitation, Industrial Applications and Future
Advances

Despite the beneficiary membrane filtration treatment
on effluent from laundry, particularly when reusing
water and detergent, membrane fouling and regen-
eration significantly limit its performance, particu-
larly when operated at high transmembrane pressure.
Chemical resistance and strength of the membrane
are crucial factors affecting filtration methods. Hence
recently, Bilad et al. (2020) conducted research to
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evaluate a low-pressure immersed membrane filtra-
tion system for processing wastewater from laundry
to overcome the fouling issue. A solution of 15 wt%
polysulfones, 1 wt% polyethene glycol, and dimethy-
lacetamide was employed to fabricate the membrane
in this analysis. This polymeric membrane prom-
ises efficient elimination of surfactant turbidity, total
nitrogen, phosphorus, and chemical oxygen demand
of 52%, 13%, 65%, and 97%, respectively. The system
additionally offers 78% detergent recovery from spent
laundry effluent, proving its potential.

Unique modules of ceramic membrane with a
pore size of 0.14 pm can demonstrate high efficacy
in surfactant wastewater treatment, reducing TOC,
COD, and turbidity by 95%, 93%, and 99%, respec-
tively, when the process was run in concentration
mode, resulting in the recovery of nearly 50% of the
permeate. The study examines the composition of
industrial wastewater, its purification, and concentra-
tion processes using the modules of ceramic mem-
brane. The wastewater was produced from a plant that
manufactures cationic surfactants and was exposed to
membrane filtration in a semi-pilot plant. The regen-
eration operation using NaOH solution was success-
ful, although the permeability of the module was not
fully restored. Applying an acidic washing agent can
reduce the intensity of membrane blockage. Filtration
tests with model solutions confirmed that the sieve
effect dominates surfactant separation during UF and
MF processes. Modules with their pore diameters
similar to or smaller than the size of the surfactant
micelles (150 kDa and 0.45 pm) have more signifi-
cant retention coefficients (above 94%). They are less
susceptible to surfactant fouling (Klimonda & Kowal-
ska, 2021).

In order to remove 18 per- and poly-fluoroalkyl
species (PFAS) from drinking water, Johnson et al.
(2022) proposed an amphiphilic coating to function-
alize aluminum oxide hydroxide membrane. Eleven
of the 18 PFAS in the challenge water were removed
with >99% efficiency using dynamic filtration. Fif-
teen were removed with greater than 90% efficiency
using gravity filtration. For perfluorooctanoic acid
adsorption capacity, the novel amphiphilic coating
performs better than granular activated carbon (GAC)
under dynamic filtering conditions, and even better
for perfluorooctane sulfonic acid. The free energy,
enthalpy, and entropy of interactions between six

PFAS pollutants and coatings were calculated using
molecular dynamics simulations.

Membrane-based technologies provide a novel
approach for reclaiming water from laundry wastewa-
ter (LWW), with pollutants being removed at an effi-
ciency of 85-95% when appropriately adjusted. These
systems are adaptable and provide water that is suitable
for laundry reuse. Investigate advancements in both
independently operable and hybrid membrane systems
for treating LWW. Membrane-based techniques can
remove critical LWW components such as surfactants
and suspended particles. The combination of mem-
brane processes and conventional techniques improve
performance by 45-50% while reducing energy con-
sumption by up to 25% (Zakaria et al., 2025).

4 Adsorption for Surfactant Removal
4.1 Mechanism and Methodical Exploration

Surfactants primarily adsorb on adsorption surfaces
by electrostatic attraction and van der Waals forces.
The cationic surfactant adsorbs when the positive
charge on its headgroup attracts negative charges
on the adsorptive surface. Anionic surfactants with
a negative charge on their headgroup and the posi-
tively charged adsorptive surface may be attracted
to each other electrostatically. The principal adsorp-
tion mechanism for nonionic surfactants is hydrogen
bonding (Kalam et al., 2021b, 2021a). Surfactant
adsorption, or the concentration of surfactant mole-
cules at interfaces, is triggered by various forces com-
prising electrostatic attraction, hydrophobic interac-
tions, and hydrogen bonding. It is further contingent
on the surfactant and surface attributes (Siyal et al.,
2020). Adsorption depends on various physicochemi-
cal properties of the adsorbents and the surrounding
atmosphere. Pore size, temperature, adsorbent dose,
the concentration of surfactant to be removed, pH, and
functional groups on adsorbents are the common gov-
erning factors for adsorption. One such comparative
study showed that adsorbents and ion exchange resins
with functional groups impede mass movement of the
surfactant perfluoro-octane sulfonate (PFOS), which
lowers the sorption rate. The sequence in which the
total PFOS capacities of adsorbents rise is polymer
adsorbents > activated carbons > anion exchange res-
ins; the selectivity of functional groups influences the
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adsorption process (Schuricht et al., 2017). Surfactant
adsorption on polymers is crucial for maintaining pol-
ymer latex colloidal stability. Ionic surfactants bind
neutral polymers through hydrophobic interactions,
whereas oppositely charged polymers bind surfactants
through electrostatic and hydrophobic interactions.
The efficiency of surfactant adsorption depends upon
the capacity of the polymer surface and the molecu-
lar structure of surfactants. The hydrophobicity of the
polymer surface, its ionic nature, its curvature radius,
the structure of the surface-active material, and the
bulk fluid phase parameters such as temperature and
electrolyte concentration are the factors governing
adsorption (EI Feky et al., 2010).

Various minerals and soil types also facilitate
surfactant removal. A study observed the extent of
adsorption of anionic surfactant and amphoteric sur-
factants betaine and sulfo-betaine during oil recov-
ery. Adsorption of ionic surfactants on sandstone
and dolomite was lower than that of amphoteric
surfactants, while amphoteric surfactants adsorbed
similarly or lower on limestone. Adsorption of ani-
onic surfactants followed an electrostatic mechanism,
while amphoteric surfactants adsorbed through a
complex interplay (Mannhardt et al., 1992).

As adsorbents play a vital role in the adsorption of
surfactants, some major adsorbents with implemented
modifications used previously for surfactant removal
are listed in Table 1

4.2 Role in Sustainability

Biodegradable adsorptive materials, including bio-
mass or biopolymers, are essential for protecting the
environment, especially in wastewater treatment. Bio-
polymers, like chitosan, alginate, and tannin compos-
ites, have shown potential as attractive adsorbents for
the future. They may substitute traditional adsorbents
like silicates, aluminates, and activated carbon, offer-
ing competing adsorption capacity, cost-effectiveness,
and biocompatibility. However, their applications
for wastewater treatment have not been thoroughly
explored, indicating a need for further exploration
(Biswas & Pal, 2021). Sen et al. (2012) used pine
cone biomass to remove sodium dodecyl sulfate, an
anionic surfactant. Using Posidonia oceanica (L.),
a cheap, plentiful, and renewable marine biomass,
adsorption has been used in batch mode to remove
anionic and non-ionic surfactants (Ncibi et al., 2008).
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Post-treatment of primary and secondary sewage
wastewater utilizing slow sand filtration and adsorp-
tion by activated carbon (AC) made from eco-friendly
residual coffee dregs reduced surfactants and tur-
bidity by approximately 95% and 94%, respectively
(Marcelo & Alexandre, 2021). Lately, Nacar et al.
(2022) successfully removed up to 90% of detergent
(Sodium Lauryl Sulphate) and achieved an average
of 68% COD removal from the car wash wastewater
using Phragmites australis, a sustainable species in a
subsurface flow constructed wetland. Many biomass-
based adsorbents satisfying green technology and
suitable for surfactant removal are already listed in
Table 1.

4.3 Techno-Economic Analysis

Using synthetic (e.g., nanosized) materials for pol-
lutant removal makes adsorption techniques distinc-
tive. Because of their low cost and ease of use, modi-
fied clay minerals and biochar have shown excellent
potential for eliminating organic and heavy metal
pollutants from drinking, industrial, and eutrophic
wastewater, despite activated carbon being the most
widely used adsorbent (Han et al., 2019). Biochar can
absorb physicochemical pollutants like surfactants,
costing 60% less than granular activated carbon
(GAC) (Kumar et al., 2018). James and Ifelebuegu
(2018) researched a few inexpensive, environmen-
tally friendly materials for detergent treatment and
removal. Activated carbon (19-2.5 $ kg™, silica gel
(1-1.5 $ kg™"), mussel shells (1.5-2.3 $ kg™!), and
zeolite (1.5-2.2 $ kg™!) are among the biomasses that
are promising and potentially sustainable adsorption
materials for the reclamation of grey water, accord-
ing to this study. The commercial price of some eas-
ily accessible biomass and mineral adsorbents, such
as chitosan (5-10 $ kg™!), red mud (0.025 $ kg™!),
bagasse fly ash (0.02 $ kg™'), and carbonaceous
adsorbent from fertilizer industry waste (0.1 $ kg™,
reclaims these materials as sustainable, cost-effective,
and potential adsorbents for wastewater treatment(De
Gisi et al., 2016). Adsorption is therefore a relatively
inexpensive and environmentally benign technique
for removing surfactants. Still, it has to be improved
further by using new, innovative, environmentally
friendly, and easily accessible biomass adsorbents.
The degradation of surfactants with a single appli-
cation of adsorbent is problematic and is hence a
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leading drawback of adsorption. An admirable strat-
egy for improving surfactant removal and process
cost-effectiveness would be blending with other
removal methods that tend to degrade.

4.4 Industrial Applications and Future Advances

The successful removal of synthetic surfactants
from industrial wastewater (x99.9%) was exhibited
by a hybrid ion exchange fibre material (FM) that
improved its operational cycle to 200 L. A hybrid ion
exchange FM with both anion-active (A-FM) and cat-
ion-active matrices (C-FM) was created by blending
different ratios. In four sorption columns with varying
ion-exchange fibre material compositions, working
life tests of the hybrid IFM were carried out concur-
rently. These columns processed industrial wastewa-
ter at a rate of 0.13 L min~!, pre-purified on a ceramic
membrane. Hybrid ion exchange FM, utilized in the
ratio of C-FM (3): A-FM (7), achieved the highest
and most steady degree of purification(Artemenko
et al., 1997).

Recently, a study revealed the efficiency of Iraqi
reed (IR) as a biomass precursor for IRAC synthesis
and anionic surfactant removal from industrial waste-
water. Iraqi reed (IR) biomass waste was recently pro-
cessed into activated carbon (AC) using a pyrolysis-
assisted H;PO, activation process. In contrast to the
IR surface area of 0.5542 m? g~!, the BET surface
area significantly increased upon pyrolysis. SDBS a
model anionic surfactant, was eliminated using Iraqi
reed-activated carbon (IRAC). The adsorption kinet-
ics and equilibrium data demonstrated that SDBS
adsorption follows the pseudo-second-order and
Langmuir models under kinetic and equilibrium con-
ditions. The maximum adsorption capacity for SDBS
was 121.5 mg g~! (Ahmed et al., 2023).

Zeolites can eradicate many organic pollutants,
including cationic surfactants. Zeolites are employed
in various applications because of their appreciable
capacity for cation exchange, specific surface area,
and lattice stability. The tendency of reversible sorp-
tion in zeolites makes them reusable. Nano-zeolites
(N-Zeo), inorganic-N-Zeo composites, polymer-N-
Zeo composites, and zeolite-nanoparticle compos-
ites have all been developed to eliminate pollutants
like surfactants using sorption or ion exchange batch
techniques (Rahman et al., 2022). Innovative mate-
rials like B-cyclodextrin-functionalized coffee husk

@ Springer

biochar(de Benedicto et al., 2024), activated carbon
obtained from waste tires(Ramirez-Arias et al., 2020),
pine wood activated carbon (Azoulay et al., 2023),
metal oxides using quartz crystal microbalance with
dissipation (Medina et al., 2020) are a few of the
recent advances in surfactant adsorption.

Fortifying new materials for the enhancement of
adsorbents can be helpful for improved adsorption of
surfactants on their surface. Various chemicals, nano-
particles, biomaterials and minerals modify the adsor-
bents (Liu et al., 2021; Zhou et al., 2018). Developing
new composites from such modifications is an emerg-
ing field in surfactant adsorbents. The following sec-
tion discusses the employment of such composite
adsorbents for surfactant removal. Figure 2 illustrates
the mechanism of surfactant adsorption through forti-
fying adsorbents for composite formation.

5 Composites for Surfactant Removal

Advanced technologies such as photo-catalysis, Fen-
ton, electro-Fenton, adsorption, and catalytic ozo-
nation processes have employed metal composites
based on biochar (BC) due to their good efficiency
and cheaper cost. These metal composites have also
been used to break down surfactants (Ahmad et al.,
2022). Composite adsorbents appear to be a better
option than normal adsorbents since they combine
two or more components, imparting strong adsorbent
ability to the resultant material, cost reduction and
are readily available(Aguilar-Bolados et al., 2019).
Water pollution is a significant issue in the modern
era, and research relies on building effective poly-
meric adsorbents and membranes. The fabrication of
polymeric nanocomposites that are non-toxic, bio-
compatible, economical, and effective continues to be
explored, though. The use of nanofillers or nanopar-
ticles enhances the mechanical, thermophysical, and
physicochemical properties of these nanocomposites.
Methods of fabrication and enhancement include
mixing, in-situ polymerization, melt-mixing, elec-
trospinning, and selective laser sintering. Emerging
technologies strive to create polymer nanocomposites
that are efficient, long-lasting, and profitable, with
uniform dispersion and minimum errors. Polymer
nanocomposites serve as adsorbents and filter mem-
branes to remove organic pollutants and surfactants
from aqueous media (Adeola & Nomngongo, 2022).
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Electrostatic attraction - Adsorption favorable
+ + + + + + +

Electrostatic repulsion - Adsorption unfavorable

1R

Fortifying adsorbents

v

Composites

v

+ + + +

Enhanched adsorption

Fig. 2 Fortifying adsorbents for composite formation

Figure 3 illustrates various adsorbent materials used Designing a composite based on the requirements of
in composites for surfactant removal. Composites can functional groups, cheaper biomass with easy avail-
facilitate better, cheaper, and eco-friendly adsorption ability and disposal ability is currently being explored
processes for easy pollutant removal from wastewater. to the maximum.
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Fig. 3 Adsorbents for composites

A composite of PEI-PVA nanospheres was devel-
oped by combining polyvinyl alcohol (PVA) with
polymer polyethyleneimine (PEI). This combination
applied a series of chemical changes, utilizing the
adequate oxygen-containing functional groups on the
PVA surface. Under acidic and alkaline conditions,
PEI-PVA composite nanospheres showed admira-
ble adsorption effects for anionic surfactants in the
wastewater. The adsorption capacity increased as the
treatment duration was extended, eventually stabiliz-
ing after 24 hours (Liu et al., 2023). Some composites
for surfactant removal to date have been enlisted in
Table 2.

6 Future Perspectives

Membrane filtration, coagulation, flocculation, and
sedimentation are the standard pre-treatment pro-
cesses that selectively remove harmful pollutants
from wastewater units. Though these approaches
are practical for surfactant removal, they unavoid-
ably raise overall operating costs and environmental
impact. Subsequently, the future opportunity rests
in making them cheaper and more environmentally
friendly. Hence, hybrid approaches can be helpful

@ Springer

for surfactant removal in addition to obligating the
least energy, labour, and operating costs.

Green adsorbents as composites appear to be a bet-
ter option in this consideration. Exploring more agri-
cultural wastes as surfactant adsorbents is necessary
to sustain the market for adsorbent composites while
lowering production costs (Faccenda et al., 2021).
Enhancing the processability of biomass feedstock
(Ramirez-Arias et al., 2020) and pretreatment meth-
ods to make it more suitable for use as an adsorbent
in surfactant removal will be advantageous. Degra-
dable waste material is another aspect that needs to
be explored while designing composites. An amal-
gamation of low-cost biosorbent carriers with poly-
mers, minerals, nano adsorbents or other materials to
increase bulk production at low cost can be explored.
Figure 4 portrays an ideal composite design for sur-
factant removal during water remediation.

Investigating novel functional materials and
developing hybrid technologies can improve the
surfactant adsorption efficiency of composites.
Improving composites under various optimal envi-
ronmental circumstances by thoroughly examining
the adsorption mechanism to comprehend the sci-
ence underlying the surfactant adsorption behaviors
is essential.
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Fig. 4 Designing an ideal
composite for surfactant
removal

Polluted Water

7 Conclusion

A concrete and assured surfactant removal mate-
rials and methodologies are still lacking. Effica-
cious commercialization and field-scale application
of carbon-based adsorbents for surfactant removal
in wastewater treatment require addressing sev-
eral limitations. Energy-intensive synthesis restricts
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large-scale production, necessitating the develop-
ment of low-cost technologies for activated carbon
synthesis. The low conductivity, limited adsorption
capacity, and low stability of raw biochar are some
of its limitations, which make its modification essen-
tial. The synthesis of magnetic biochar composite
can aid in the retrieval and reusability of biochar.
Upcoming research should also explore the risk of
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secondary contamination to evaluate the sustainabil-
ity of carbon-based technologies for real-world appli-
cations of surfactant removal. The utility of photo-
catalysts like TiO, combined with various adsorbents
in hybrid techniques for surfactant removal needs
modifications. Due to their significant band gaps,
these photocatalysts can access significantly less
of the solar spectrum in the photocatalytic process;
hence, they need to reduce the band gap for appro-
priate electronic excitation. Novel yet biodegradable
polymer adsorbent and some waste disposal adsor-
bent materials as composites need to be explored.
Future studies should concentrate on combining nano
adsorbent materials with bio-sorbent carriers, investi-
gating novel functional materials, and enhancing the
adsorbents’selectivity and operating expenses for sur-
factant mitigation. Though some composites facilitate
surfactant removal, their real-time application still
seems complicated. Developing hybrid surfactant
removal technologies and adsorbents from compos-
ite or mixed biomass sources can be used in real-field
applications, requiring further research.
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