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Abstract  The COVID-19 pandemic has exacer-
bated water quality issues due to the use of substances 
such as soaps, detergents, and hand sanitizers, which 
contain surfactants as their key ingredient. These 
products are modified to enhance their properties, 
thereby increasing their hazardous chemical impact 
on the environment, necessitating efficient reme-
diation materials and methods. Surfactants are also 
released into the environment from various indus-
trial processes. Compared to other surfactant removal 
techniques, adsorption offers several advantages, 
including ease of design, simplicity of use in the 
technical realm, and adaptability to various treatment 
formats. Adsorption operates across a wide pH range 
and in several environments. Adsorption is efficient, 
profitable, requires minimal energy, and has no harm-
ful byproducts. Adsorbents can be developed using 
various biomass products, nanomaterials, polymeric 
materials, zeolites, and clays. Composites represent 
a much efficient alternative material for the elimina-
tion of surfactants. A composite of bentonite, sodium 
bisulfite, polyacrylamide, and aluminum sulphate 
confirmed a reduction in the surfactant concentration 
by 82 %,  and Chemical Oxygen Demand (COD) by 
65 % from a textile wastewater sample. Composite 

adsorbents made of zeolite and eggshells effectively 
removed surfactants from samples. The final adsor-
bent revealed 88% COD removal rate. The presented 
manuscript analyses the conventional methods for 
surfactant removal, especially focusing on composites 
as adsorbents. Future perspectives have been empha-
sized for the use of composites, and the performance 
of various composites for surfactant removal has been 
discussed at length.

Keywords  Composites · Surfactants · Wastewater 
Treatment · Adsorption · Adsorbents

1  Introduction

Water scarcity is a pressing issue, with only 2.99% 
of available water being fresh or accessible for 
drinking. Population growth, urban progress, pollu-
tion, and climate change contribute to this shortage. 
United Nations International Children’s Emergency 
Fund (UNICEF) reports that 750 million people glob-
ally lack access to fresh water, and the World Water 
Council (WWC) predicts that 3.9 billion people will 
live in water-deficient regions by 2030. Initiatives like 
wastewater purification using sustainable techniques 
and materials are being implemented to address water 
scarcity issues. This ensures availability and sustain-
able management of surface water as per the require-
ment of Sustainable Development Goals (SDGs-6) 
of the United Nations (Obaideen et  al., 2022). The 
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adsorption technique with various adsorbents for 
water remediation is one such aspect of water puri-
fication (Jaspal et al., 2023). Figure 1 depicts adsorp-
tion as a process aligned with United Nations Sustain-
able Development Goal 6. Wastewater streams from 
domestic and industrial activities contain organic 
compounds known as emerging contaminants (ECs), 
which comprise of insecticides, medications, hor-
mones, plasticizers, food additives, wood preserv-
ers, detergents, surfactants, decontaminators, flame 
retardants, and other organic compounds. These con-
taminants are not subject to regular restrictions and 
can be fatal to aquatic and human life. Cost-effective 
tertiary treatment techniques are required since con-
ventional primary and secondary water treatment 
facilities find it challenging to remove these harmful 
contaminants effectively. Owing to its affordable ini-
tial cost, high efficiency, and simple working model, 
adsorption is a viable technique for removing EC. 
According to research, EC is removed from water 
and wastewater using a variety of adsorbents, such as 
activated carbons, modified biochar, nano adsorbents, 
and composite adsorbents (Sophia and Lima, 2018).

Reclamation of wastewater is a sustainable 
approach to water scarcity; nevertheless, water con-
tains significant amounts of detergents, including sur-
factants, which are hazardous to the environment and 
human health. Since surfactants impede the activity 
of microorganisms, biological remedies are ineffi-
cient. Options for chemical therapy can be expensive 
and affect the general consensus. Better adsorbents 
for treating and eliminating surfactants have been 
found in low-priced sustainable materials such as sil-
ica gel, zeolite minerals, activated carbon, biomasses 
such as mussel shells, rubber tyre granules, fly ash 
and powdered coarse blast furnace slag (James & 
Ifelebuegu, 2018).

Adsorption is an established technique that uses 
various materials to remove numerous contaminants, 
including organic pollutants. Metal oxides and their 
composites can be used for the adsorptive removal 
and photocatalytic degradation of organic pollut-
ants comprising dyes, insecticides, fertilizers, phar-
maceutical components, organohalides, phenols, 
surfactants, and even nutrients. The highly selec-
tive properties of nanostructured metal oxides and 
their composites, including their specific crystalline 

Fig. 1   Adsorption for SDG-6
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nature, high surface area, variable surface chemistry, 
controlled morphological and textural features, make 
them ideal for the efficient exclusion of organic pol-
lutants through adsorption and photocatalytic degra-
dation (Gusain et al., 2019). Adsorption is a popular 
method for removing surfactants from wastewater due 
to its simplicity, excellent efficacy, and low operating 
costs. Various materials have been used to remove 
surfactants, including graphene, kaolinite, metal-
based composites, nanoparticles, activated carbon 
and biomass-based adsorbents. Saponite clay and 
magnetite-based composite sorbents were suggested 
to have a high surfactant sorption capacity. These 
magnetic nanocomposite sorbents from clay and mag-
netite have shown higher effectiveness in wastewater 
treatment, with two to eight times greater sorption 
capacities than native clay minerals. These soft mag-
netic materials efficiently remove spent nanocompos-
ites, making them technologically and economically 
advantageous solutions (Oksana Makarchuk et  al., 
2017).

Researchers are now increasingly fascinated by 
composites as a means of eliminating impurities not 
only through adsorption but also via flocculation, 
coagulation, ion exchange, electrostatic interactions, 
and membrane filtration. Composites are mixtures 
of two or more distinct component elements that 
offer product-specific attributes. Grafting, function-
alization, and crosslinking are methods for fabricating 
composites that enhance their characteristics (Dutt 
et al., 2020). Polymer composites have demonstrated 
significant potential for implementation in desalina-
tion and water treatment processes when combined 
with other materials, such as carbon-based com-
pounds and clays. These composite materials have 
enhanced recyclability, selectivity, and adsorption 
capacity. Depending on the nature of the adsorbent 
and adsorbate, the adsorption mechanisms involved 
may be chemisorption or physisorption(Berber, 
2020).

Owing to their surface area, functionalization, and 
chemical approachability, composites must be more 
widely used than individual materials. Composites 
are developed by mixing various materials to give 
them unique characteristics. Composites comprise 
two distinct phases: a discontinuous dispersion phase 
and a continuous matrix phase. Composites can pro-
vide enhanced qualities like thermal insulation, low 
density, high specific stiffness, specific strength and 

many more. Combining materials with distinct quali-
ties yields new materials with combined features that 
can be used in many scientific domains, including 
wastewater treatment(Maqsood et al., 2019; Mushtaq 
et al., 2019).

The present manuscript attempts to analyse the 
different surfactant removal methods and adsorbent 
materials that can be reconsidered, with some modi-
fications, as composites for the efficient eradication of 
surfactants. A collection, analysis and in-depth review 
of materials as adsorbents in composites will help 
researchers working in this domain to easily identify 
the potential of materials efficient for the remediation 
of wastewater from surfactants. Such a study has not 
yet been carried out and is unique.

2 � Surfactants in Water

Surfactants and their mixtures are used in various 
industrial processes, including enhanced oil recov-
ery, flotation, emulsification, corrosion inhibition, 
drug delivery, cosmetics, and dispersion or floccula-
tion. Such applicability of surfactants is because of 
their capacity to alter the interfacial properties sig-
nificantly. Thus, an enormous quantity of surfactants 
is released daily in the surrounding water bodies. 
Surfactants in water harm the microorganisms, 
affecting the overall biodegradation process(James 
& Ifelebuegu, 2018). Incomplete degradation prod-
ucts of surfactants mimic the hormones of aquatic 
life, impacting marine life and terrestrial ecosystems 
(Scott & Jones, 2000). Surfactants constitute a sig-
nificant hazard to agricultural production and envi-
ronmental sustainability. They are present not only 
in domestic and industrial wastewater but also in 
irrigation water streams being a major constituent of 
insecticides and pesticides. They may cause soils to 
become water-resistant and contribute to a decrease in 
soil hydraulic conductivity. Nearly all forms of water 
systems in the surrounding environment are now 
home to surfactants. Their improved solubility and 
hydrophobic nature reduce the bioremediation rates. 
All paraffin- or alkane sulfonates, like linear alkylb-
enzene sulfonates (LAS) and alkylbenzene sulfonates 
(ABS), are primary surfactants in washing detergents 
and health care products. Wastewater contains LAS, 
which prevents bacteria from decomposing organic 
materials. Cationic surfactants find applications in 
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shampoos, conditioners for hair, textile softeners, 
bactericides, and beautifying creams. Because of their 
effective qualities, surfactants are also known as adju-
vants for pharmaceuticals and pesticides (Kulkarni & 
Jaspal, 2023).

A large quantity of surfactants is now utilized and 
even further released in marine waters during oil 
recovery. Thus, the adsorption of these surfactants 
is crucial not only for more remarkable oil recov-
ery from oil reservoirs but also for avoiding mixing 
in marine water. Many studies have emerged on sur-
factant removal by adsorption from oil reservoirs. The 
surfactant loss resulting from adsorption by the res-
ervoir rocks reduces the oil-water interfacial tension 
and lowers the chemical effectiveness of the injected 
slurry. When the percentage of clay minerals in the 
adsorbents increased by around 5-20 % in the mix-
ture, a direct correlation was observed between the 
quantity of nonionic surfactants that were adsorbed 
by the adsorbents and the amount of clay minerals 
present in the adsorbents (Amirianshoja et al., 2013).

3 � Methods for Surfactant Removal

3.1 � Biodegradation

3.1.1 � Mechanism and Methodical Exploration

Primary biodegradation of surfactant functions when 
microorganisms structurally modify the parent mol-
ecule, resulting in the loss of its surface-active char-
acteristics. The microbes degrade the surfactant, 
resulting in the formation of products like CO2, H2O, 
and mineral salts. This mechanism is controlled by 
the type and number of microorganisms, aerobic 
or anaerobic growth conditions, temperature, pH, 
nutrients, water content, and substrate bioavailabil-
ity (Merrettig-Bruns & Jelen, 2009). In wastewater, 
Surfactants are biodegraded by microbes which con-
sume them to produce energy, nutrients, or catabo-
lism. The procedure of biodegradation is furthermore 
greatly affected by the chemical composition of the 
surfactant and the aerobic or anaerobic environmental 
conditions.

Aerobic degradation method accomplishes better 
results than anaerobic degradation. During the pro-
cess of degradation, the high surfactant concentra-
tions depolarize the bacterial cell walls, resulting in 

foaming and depriving the air supply. Nevertheless, 
biodegradation is constrained to wastewater with 
moderate concentrations, provoking doubts about its 
utilizations in water bodies with large surfactant con-
centrations (Palmer & Hatley, 2018). Hence, despite 
the fact that biodegradation of surfactants is a com-
monly observed phenomenon for their mitigation in 
wastewater treatment plants (WWTP), this process 
alone appears insufficient for successfully and com-
pletely removing surfactants. In anaerobic condi-
tions, surfactants comprising fatty acid esters (FES), 
cationic surfactants, alkyl phenol ethoxylates (APE), 
fatty alcohol ethoxylates (AE), linear alkyl benzene 
sulphonates (LAS), and secondary alkyl sulphonates 
(SAS) are all to a certain degree prone to breakdown 
during the degradation process. The following rep-
resents the order of biodegradation: alkyl sulfates > 
alkyl ethoxy sulfates > secondary linear alkyl sulfates 
> primary alkane sulphonates > LAS (Scott & Jones, 
2000).

An exploration of  the biodegradability of a sur-
factant (XP-100) with yeast extract, was done in the 
presence of active hydrocarbon pollutants like naph-
thalene and hexadecane, revealing  that the yeast 
extract presence accelerated the surfactant biodegra-
dation process, when compared to its absence. Across 
the examined time frame, increase in surfactant con-
centration did not prevent its biodegradation. How-
ever, addition of organic pollutants enhanced sur-
factant biodegradation due to their synergistic effect. 
Compared to hexadecane, naphthalene decomposed 
more prominently. Surfactants increase the solubility 
of organic pollutants, making them more bioavailable 
for bioremediation. Although the surfactants them-
selves did not appear to be utilized for growth, they 
significantly contributed to improved biodegradation, 
by raising the number of pollutants and promoting 
bacterial growth on organic contaminants. The find-
ings presented an advanced knowledge of the biore-
mediation process and the destiny of the hazardous 
organic compounds in the aquatic environment (Aly 
et al., 1998).

3.1.2 � Role of Sustainability

Based on the type of surfactant, aerobic and anaerobic 
processes play vital roles in its biodegradation. The 
breaking down of surfactants during biodegradation 
via microbe’s aids in environmental sustainability. 
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Surfactant metabolites released into nearby water-
bodies are often resistant to further breakdown, and 
mimic the hormones of aquatic organisms. This 
adversely affects the life cycle of these aquatic organ-
isms. Furthermore, due to their incomplete biodeg-
radation, many surfactants pose severe hazards to 
the environment. Therefore, though biodegradation 
appears greener and ecologically sustainable, it is 
not a reliable surfactant mitigation technique. Since 
biodegradation is a time-consuming procedure, sur-
factant removal needs enhancements via standard 
methods like flocculation and aeration for eco-com-
patibility. Co-metabolism combined with flocculation 
or chemical treatments is one of the efficient hybrid 
approaches that help wastewater treatment facilities 
remove surfactants (Olkowska et al., 2013)

Biodegradation of LAS from greywater using 
microbial diversity in constructed wetlands is another 
trending methodology. In this approach anaerobic 
conditions dominate the system, with an average LAS 
and Chemical Oxygen Demand (COD) of 32 mg L−1 
and 374 mg L−1 and removal rates of 43% and 66%, 
respectively. Pseudomonas predominated among the 
15 species that degraded surfactants. Rhodopseu‑
domonas palustris had the highest relative abundance 
of operational taxonomic unit (OTU)s in all samples 
and the highest richness in the anaerobic chamber, 
among all LAS degraders. Microbial community 
composition and environmental conditions indicate 
that LAS biodegradation occurred throughout the 
constructed wetlands system resulting in a wide-
spread eco-effect. (Mascoli Junior et al., 2023).

3.1.3 � Techno‑Economic Analysis

Due to their low cost, extended shelf life, and 
enhanced performance at lower temperatures, petro-
leum-based surfactants are prominently utilized. 
However, the exploration for a new ecological, 
green, biodegradable substitute is essential due to 
their non-renewability and detrimental environmen-
tal impacts. Not only the biodegrading system but 
also the surfactants are explored to be more sustain-
able. Hence new biosurfactants are regularly inves-
tigated for real time applications. The price of raw 
materials accounts for roughly 30%−50% of overall 
biosurfactant production costs. Despite the wide-
spread and environmentally friendly applications 

of biosurfactants, the scarcity and high cost of raw 
materials hinder industrial biosurfactant manufac-
turing. The market value of biosurfactants was $1.9 
billion in 2022, but the global trend of biosurfactant 
production mounted dramatically. By 2032, the 
market is anticipated to reach $3.2 billion, growing 
at a compound annual growth rate (CAGR) of 5.4% 
(Singh et al., 2024).

In the manufacturing of conventional alkyl poly-
glucosides (APGs) and sucrose esters (SEs) as bio-
based surfactants, the review by Stubbs et al. (2022) 
promotes the use of renewable feedstock, biodegra-
dability, catalysis, atom economy, and safe chemi-
cal design as per the green chemistry principles. It 
encourages the use of bio-based surfactants as more 
environmentally friendly substitutes. The industry 
worldwide must create new and sustainable sys-
tems, business practices, and technology to promote 
bio-based surfactants and enhance the commerciali-
zation of APGs and SEs. As a conceivable substi-
tute for synthetic surfactants, green surfactants such 
as biosurfactants and oleo surfactants, are being 
synthesized as a result of biotechnological advance-
ments and are becoming more and more popular 
globally (Nagtode et al., 2023).

The commercial viability of anaerobic mem-
brane bioreactor (AnMBR) integrating with forward 
osmosis (FO), reverse osmosis (RO) technologies 
for municipal wastewater treatment with energy and 
water generation was considered. AnMBR facili-
tated for wastewater treatment and energy genera-
tion, while RO aided in water production and draw 
solution regeneration. The FO assisted with pre-
concentration of the AnMBR influent. Restraining 
the FO recovery to 50% in a closed-loop approach 
resulted in a minimal wastewater treatment expense 
of 0.81 euros m−3. FO recoveries of 80% and 90% 
resulted in higher costs of 1.01- and 1.27-euros m−3, 
respectively. The projected costs for producing fresh 
water were 0.80 and 1.16 € m−3 for a closed-loop 
strategy and an open-loop scheme that maximized 
water output, respectively. It was suggested that 
the FO membrane fluxes of 10 LMH would signifi-
cantly increase the effectiveness of AnMBR tech-
nology and FO-RO. According to a sensitivity anal-
ysis, the low FO membrane fluxes were observed as 
a limiting factor (Vinardell et al., 2020).
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3.1.4 � Limitations, Industrial Applications and Future 
Advances

The increased utility of surfactants and the available 
degradation setups at the wastewater treatment plants 
show inconsistent and time-consuming results. Nev-
ertheless, many attempts have been made to enhance 
the impact of biodegradation, especially associated 
with foul smell. In one such effort, the impact of ethyl 
alcohol and nitrate on the degradation of linear alky-
lbenzene sulfonate (LAS) was examined utilizing a 
central composite design (CCD). The CCD technique 
proposes a tool for optimizing processes and deter-
mining the significance of elements influencing them. 
It assists to understand process functionality and its 
application in industrial reactors on a small scale after 
defining optimal parameters. Nitrate and ethanol (co-
substrate) affect in almost complete decomposition of 
surfactants, overcoming the fundamental limitation. 
Ethanol and nitrate substantially impact (p < 0.05) 
on the degradation of linear alkylbenzene sulfonate 
in batch reactors. 99.9% LAS was removed with ideal 
values of around 97.49 and 87.99 mg L−1 for ethanol 
and nitrate, respectively, under agitation at ≈119.9 
rpm and 29.8°C (Andrade et al., 2017).

An extended granulated sludge bed reactor meant 
for the anaerobic digestion of domestic and commer-
cial laundry wastewater was assessed at three stages, 
with a 36-hour hydraulic retention period. Tap water 
and mixing domestic sewage were used to dilute the 
wastewater stream. A reduction in the LAS exclusion 
rate from about 77 ± 15% (stage I) to around 55 ± 
18% (stage III) resulted from the addition of domes-
tic sewage, which raised LAS and organic compounds 
concentration in the influent. Thus, a substantial 
decline in the rate of LAS removal and an association 
between LAS removal and specific organic loading 
rate were revealed by data analysis, posing another 
limitation in removal of surfactant(de Faria et  al., 
2019).

Therefore, in order to overcome this issue, the 
microalgal-bacterial processes were employed by 
high-rate algal pond (HRAP) systems to eliminate 
surfactants and other pollutants from household 
wastewater efficiently. In HRAPs, Scenedesmus sp. 
algae was introduced at concentrations of 1.4 g L−1 
for total suspended solids (TSS) and 4.2 g TSS L−1 for 
activated sludge. In three high-rate algal ponds, the 
feeding schedule affected the removal of surfactants, 

nutrients, and biomass production. At 0.1h d−1, the 
best results were obtained, with surfactant concentra-
tions of 0.3 mg L−1 below the permissible limits for 
freshwater outflow (Serejo et al., 2020).

Peroxymonosulfate (PMS) was activated using 
sludge-derived biochar (SBC) to break down triclosan 
(TCS), a surfactant, in wastewater. SBC had a spe-
cific surface area of around 158 m2g−1 and a porous 
structure. The ideal conditions for triclosan (0.034 
mM) degradation in the activated SBC- PMS system 
was pH 7.2, with 0.99 g L−1 of SBC, and 0.79 mM of 
PMS at 250C. The results showed that SBC can serve 
as a useful PMS activator for the breakdown of sur-
factants in water and wastewater, with a TCS removal 
effectiveness of 66.7%, significantly better than the 
contributions of pure SBC and PMS (Wang & Wang, 
2019).

Recent studies evidently suggest that oilfield 
dispersants build up in the water column and sink 
with oil to the sea bottom, particularly affecting the 
extremely delicate coral reefs and hazarding the 
marine ecology. Hence, the biodegradability of oil-
field detergents comprising anionic surfactants was 
tested for water samples from the New Calabar river 
of the University of Port Harcourt, Nigeria, and the 
tap water was obtained from the laboratory taps. 
The detergents examined were Bio-Boost, SUR-
500 (SURFONIC® OFS 500 polyol), a dispersant 
SW-1000, drilling detergent D.D-Y, and degreaser 
D.G-X. This analysis employed to track the biodeg-
radation of methylene blue active substance (MBAS) 
while utilising sodium dodecyl sulphate (SDS) as a 
reference, signifying a biodegradation observation 
practice. Proteus, Acinetobacter, Enterobacter, Staph‑
ylococcus, Bacillus, Pseudomonas, Arthrobacter, 
Corynebacterium, and Micrococcus were the micro-
organisms that used the detergent. The detergents met 
biodegradability criteria with an average primary bio-
degradation rate of 91%–97 % (Osadebe et al., 2018).

3.2 � Coagulation and Flocculation

3.2.1 � Mechanism and Methodical Exploration

Coagulation and flocculation are vital processes in 
wastewater treatment, employed together on the prin-
ciple to eliminate suspended particles by destabiliz-
ing them, causing them to clump together. As a result, 
these processes further facilitate effortless removal 
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of the suspended water impurities like surfactants 
through sedimentation or filtration. Surfactant mol-
ecules consist both hydrophilic and hydrophobic 
ends and Anionic and nonionic surfactants can both 
be eliminated by coagulation (Amir Hossein et  al., 
2004). The coagulation mechanism for surfactant 
elimination involves neutralizing its charges and pro-
moting accumulation. Coagulation-flocculation tech-
niques can often achieve high removal rates while 
effectively lowering surfactant concentrations in 
wastewater. Adsorptive micellar flocculation (AMF) 
is a surfactant-based separation technique that elimi-
nates water-soluble contaminants. In this technique 
first the contaminants in surfactant micelles are dis-
solved, which eventually flocculate and then precipi-
tate out of the solution. The ability of surfactants to 
produce micelles, encapsulating and concentrating 
contaminants, is thus employed for their removal, in 
this procedure. The addition of polyvalent cations 
causes flocculation, amassing the micelles into big-
ger flocs that are readily removed by sedimentation 
or filtration. Due to its exceptional pollutant removal 
efficiency, coagulation-flocculation unit processes in 
wastewater treatment, has appealed significant con-
sideration (Aboulhassan et al., 2006).

According to previous studies, ferric chloride, 
alum, and lime have commonly been used as coagu-
lants. The survey by Jangkorn et al., 2011 examined 
the viability of recycling aluminum sulfate (alum) 
sludge as a coagulant or coagulation aid to reduce 
new alum dosage and improve removal efficiency. 
Experimentations were conducted in a jar-test sys-
tem to simulate the coagulation-flocculation process 
for removing organic matter, anionic surfactants, sus-
pended particles, and turbidity. The results demon-
strated that alum sludge could effectively eliminate 
turbidity, Total Chemical Oxygen Demand (TCOD), 
and anionic surfactants at an initial pH of 10 and a 
fresh alum content of 400 mg L−1. The use of both 
alum sludge and fresh alum improved the removal 
efficacy. The TCOD removal efficiency exceeded 
80%, which was never achieved with fresh alum 
alone. The study suggests that alum sludge can be 
recycled to remediate industrial wastewater from the 
consumer goods industry. Another study by Tripathi 
et al. (2013) revealed that the electrocoagulation-elec-
troflotation approach effectively removes residual sur-
factants from laundry wastewater, reducing COD by 
80%, MBAS by 95%, and turbidity by 99.9%.

3.2.2 � Role in Sustainability

Chemical coagulants are effective in surfactant 
treatment from water treatment plants (WT), but 
they are typically costly, hazardous, and responsi-
ble for health problems, and therefore not sustain-
able. Natural coagulants are a renewable substitute 
as they are easily accessible, affordable, simple to 
use, biodegradable, non-toxic, a greener approach 
to environmentally benign chemicals, efficient, 
and produce smaller volumes of sludge (Banchon 
et al., 2017; Turk et al., 2005). Natural coagulants, 
through an adsorption process similar to chemicals, 
and have a WT efficiency of 50-500 nephelometric 
turbidity units (NTUs). These coagulants can con-
tribute to several health issues in developing coun-
tries. However, their acceptance, commercializa-
tion, and widespread industrial application are still 
low (Koul et  al., 2022). When using Cicer arieti‑
num powder as a bio-coagulant, the ideal coagula-
tion and flocculation parameters were 2.26 g L−1 
of coagulant, pH = 4, and flash mixing speed = 
170 rpm. Turbidity, surfactant, and chemical oxy-
gen demand (COD) removal efficiencies under this 
environment were 88.35 ± 4.10 %, 60.30 ± 3.10 
%, and 54.25 ± 2.81 %, respectively. Thus, there is 
an urgent need to accept and commercialise natu-
ral coagulants like Cicer arietinum as a sustainable 
substitute to chemical coagulants (Dadebo et  al., 
2022).

To consider the process of coagulation and floc-
culation from the aspect of sustainability and green 
chemistry, an innovative green coagulant, like flax-
seed mucilage (FSM), was used by Mirbahoush and 
his team in 2019. The optimal conditions for coagu-
lation of anionic surfactant sodium dodecyl sul-
phate (SDS), employing the response surface meth-
odological approach were a pH of 7.0, 100 mg L−1 
of FSM, and 30 min. Heterogeneous photo-Fenton 
oxidation was employed in the post-treatment phase 
to ensure the complete removal of SDS using an 
MnFe2O4 nanocatalyst. Complete SDS removal was 
accomplished in the photo-Fenton oxidation pro-
cess with 76 mg of the nanocatalyst and 1.07 mL 
of H2O2 at 17 min. Coagulants and flocculants are 
also further associated with changes in the chemical 
compositions of water bodies and are not entirely 
reliable.
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3.2.3 � Techno‑Economic Analysis

Coagulation flocculation, though a simple, selective, 
and cost-effective method for treating wastewater, 
desires concern for the toxic by-products. Apply-
ing adsorptive micellar flocculation (AMF) directly 
to wastewater does not cause any eco-toxicity, and 
hence makes it a simple, selective, and economically 
feasible process. To treat industrial wastewater with a 
high concentration of surfactants, Aboulhassan et al., 
in 2006 investigated the effectiveness of the coagula-
tion precipitation process worked, especially in terms 
of eliminating organic debris and surfactants. In this 
study, the treatment with FeCl3 was found effec-
tive at the pH range of 7-9. In addition to increasing 
the BOD5/COD index from 0.17 to 0.41, the proce-
dure successfully reduced surfactants and COD, with 
improved removal rates of 99% and 88%, respectively.

A study investigated electrochemical coagula-
tion utilizing Fe2+ions as an alternative method for 
removing surfactants from water samples and model 
solutions. The results showed that a concentration 
of  10 mg L−1 of surfactant was removed with 100% 
efficiency. The study also examined the impacts of 
applied current density, initial concentration, sup-
porting electrolyte concentration, coagulant dosage, 
and pH on removal efficiency. This suggested that 
electrochemical coagulation is a promising method 
for treating detergents polluted water. The high con-
centration of iron hydroxide near the anode enhanced 
the coagulation of pollutants, while the negative elec-
trode caused rapid floc movement, which did not sig-
nificantly enhance coagulation. Energy consumption 
was lower when the reactor was anode. Evidently 
demonstrating a lower energy utilization technique. 
However, generating water with  1 mg L−1 surfactant 
is more expensive than producing  2 mg L−1 water, 
and should be considered for the economic evaluation 
of the process (Önder et al., 2007).

Eradication of anionic surfactants from wastewa-
ter from the cardboard industry using coagulation-
flocculation was analysed. It was observed that the 
statistical approach of response surface methodol-
ogy enables an efficient and cost-effective study of 
the interactions between diverse parameters used in 
coagulation-flocculation. With the use of cationic 
polyacrylamides (c-PAM), poly aluminium chlo-
ride (PAC), and pH at optimal levels, coagulation-
flocculation eliminated the anionic surfactant nearly 

entirely and decrease COD by more than 95% (Harif 
et  al., 2023). Electrocoagulation and electroflotation 
were used in a study by Akarsu and Deniz (2021) 
to investigate wastewater treatment from laundry. 
The response surface methodology (RSM) was uti-
lized for optimizing the type of electrode (Al–Al, 
Al–Fe, Fe–Fe, and Fe–Al), initial pH (5–9), current 
(0.54–2.16 A), and time duration (15–60 min). Using 
a Fe-Al electrode at 2.16 A current at pH 9 and 60 
min reaction time results in the most efficient elimi-
nation. The techno-economic study thus revealed that 
at an operating cost of $1.32 m−3, the best removal 
efficiency is obtained for COD, colour, surfactant, 
and microplastic.

3.2.4 � Limitations, Industrial Applications and Future 
Advances

The efficiency of the coagulation-flocculation method 
depends on the coagulant dose and pH of system. 
Coagulants also generate harmful sludge adding to 
the impurities in water. As a result, additional fil-
tration is necessary for complete mitigation of the 
contaminants in the sludges. Chemical hazards of 
coagulant material are another matter of great con-
cern. The coagulation-flocculation is a regularly used 
process to treat industrial wastewater produced while 
manufacturing detergents, soaps, and other consumer 
goods and adding coagulators and utilizing chemi-
cals to change the pH of these industrial effluents 
incurs a substantial cost.  To decrease the quantity 
of fresh alum required and to improve the efficiency 
of the removal process, a study was conducted to see 
whether the aluminum sulfate (alum) sludge might be 
used again as coagulant or a coagulation aid. Exami-
nations were carried out in flocculators to eliminate 
turbidity, suspended particles, organic debris, and ani-
onic surfactants. An optimal starting pH of 10 and the 
addition of 400 mg L−1 alum resulted in the removal 
efficiencies for TSS, COD, anionic surfactants (AS), 
and turbidity within a range of 70-98% (Jangkorn 
et al., 2011) suggesting these as the optimum param-
eters for effective removal.

Recent innovative trends in this sector rec-
ommended a microbubble-enhanced flotation 
approach that successfully removed over 95  wt. % 
of surfactants, from laundry wastewater (Zhao et al., 
2024). Polyacrylamide (PAM) was also discov-
ered to be an effective coagulant aid for polymeric 
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aluminium chloride (PAC) to increase floc charac-
teristics in a dual-coagulation procedure used for 
surfactant-kaolin wastewater (Li et  al., 2024). Mor‑
inga oleifera shows notable coagulation skills far 
earlier than other recently used bio coagulants like 
Cicer arietinum (Dadebo et  al., 2022) and flaxseed 
mucilage(Mirbahoush et al., 2019). Moringa oleifera 
seed extract was shown to remove surfactants from 
aqueous effluents effectively. Among them, Polyoxy-
ethylene (3.5) sodium lauryl ether sulfate (SLES), a 
long-chain anionic detergent, was chosen as an exem-
plary molecule to evaluate the coagulation reaction. 
The system coagulant-detergent demonstrated high 
efficacy and stability across various temperatures and 
pH levels. The M. oleifera promises as an efficient 
coagulant, with a coagulation capability of 0.245 mg 
L−1. Experiment design identified the optimal coagu-
lant dose and initial concentration of surfactant as 234 
mg L−1 and 76 mg L−1, respectively (Beltrán-Heredia 
et al., 2012). Further, research is therefore crucial to 
explore the mode of action, adoption, and commer-
cialization of similar natural coagulants as a sustain-
able alternate for a circular economy.

3.3 � Photocatalytic Degradation or Advanced 
Oxidation

3.3.1 � Mechanism and Methodical Exploration

Photocatalytic degradation, an advanced oxidation 
process (AOP), incorporates light energy in pres-
ence of a catalyst and converts pollutants into innocu-
ous molecules such as CO2 and water by producing 
reactive oxygen species. Photocatalytic techniques 
effectively treat waterbodies contaminated with 
organic and inorganic contaminants. Photocatalytic 
procedures operate to mineralize a wide range of 
surfactants along with many insecticides, dyes and 
other such hazardous chemicals. The use of photoac-
tive semiconductors is a favorable approach for these 
methods. For photocatalytic applications, titanium 
dioxide is the most commonly utilized semiconduct-
ing material. Combining TiO2-based photocatalysis 
and sonolysis is a potential mechanism for reducing 
organic contaminants like surfactants (Szabó-Bárdos 
et  al., 2008). Advanced oxidation process (AOP) 
yields extremely reactive intermediates known as 
hydroxyl radicals (HO•) by utilizing strong oxidants 
such as O3 or H2O2. This hydroxyl radical breaks 

down the organic compounds quite efficiently. Sur-
factants, including all other organic molecules, are 
essentially disintegrated by the (HO•) once it is cre-
ated. As a result, the organic component mineralizes 
due to hydroxyl radical assault. Thus, organic pollut-
ants are reduced by AOPs from several hundred parts 
per million to fewer than five parts per billion. The 
AOP generates an organic radical (•R) by removing a 
H atom from an organic molecule (RH) using (HO•). 
Numerous oxidation products are produced due to 
the several chemical changes the organic radical (•R) 
goes through. Fenton’s reagent (H2O2-Fe2+), O3, and 
H2O2 are the most often utilized oxidants in AOP 
(Krishnan et al., 2016).

A hybrid treatment system mechanism was 
designed to treat synthetic wastewater spiked with 
10.00 ± 0.46 mg L−1 sodium dodecyl sulfate (SDS), 
including an up-flow microbial fuel cell (MFC) with 
TiO2 or titanium dioxide as a photocathode catalyst. 
After passing through a raw laterite sand filter, the 
anodic chamber of the MFC’s effluent was followed 
by a photo cathodic chamber with a UV-exposed 
TiO2-coated cathode. The hybrid system was run in 
an MFC anodic chamber for varied hydraulic reten-
tion times (HRT). The hybrid system achieved over 
96% removal efficiency of SDS and ≈70.99% removal 
efficiency of organic materials at various HRTs (Sathe 
et al., 2020).

3.3.2 � Role in Sustainability

The photocatalytic technique oxidizes the water pol-
lutant in a more sustainable and efficient sequence of 
processes. The method is used to effectively decon-
taminate and sterilize wastewater and sanitize ground-
water. Wastewater, including surfactants, heavy 
metals, medications, chlorinated hydrocarbons, pesti-
cides, dioxins, diseases, and microorganisms, a wide-
spread of water impurities can be treated by photo-
catalytic oxidation. The photo-catalytic methodology 
is more practical, energy-efficient, and chemical-free 
than traditional oxidation techniques. Additionally, 
photocatalytic degradation works at moderate temper-
atures and pressures, and the method becomes more 
effective when heterogeneous photocatalysts are used 
(Ahtasham Iqbal et al., 2024). suggesting sustainable 
and readily available application conditions. Photo 
catalysts can alter the chemical compositions of water 
reservoirs during treatments(Joseph et  al., 2022). 
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Hence, the appropriate selection and use of reagents 
associated with green chemistry is necessary for sus-
tainable wastewater treatments.

Structural effects of surfactants lead to the devel-
opment of photodegradation products with higher 
toxicity than the parent molecule. Recently, cata-
lytic photodegradation of cationic, anionic, and non-
ionic surfactants was explored by Wysokowska et al. 
(2024) to determine the effect of their breakdown 
products on phytotoxicity of sorghum (cereal grain). 
As a result, heterogeneous photocatalysis successfully 
mitigates surfactants only at low concentrations in the 
aquatic environment. Photodegradation efficacy for 
all surfactants improved proportionally to a range of 
41-50% for anionic surfactants, 64-70% for non-ionic 
chemicals, and 38-43% for cationic cetrimonium bro-
mide (CTAB) and Didecyl dimethyl ammonium chlo-
ride DDAC, while the efficiency of benzalkonium 
chloride reached 94%. Non-ionic surfactants provided 
the finest toxicity reduction outcomes, followed by 
anionic chemicals, whereas cationic surfactants were 
correlated with a more substantial negative impact 
adding to more toxicity. In contrast to anionic and 
non-ionic chemicals, cationic compounds degrade 
more slowly due to their decreased reactivity, which 
is hampered by their positive charge, thus affecting 
the phytotoxicity.

3.3.3 � Techno‑Economic Analysis

Surfactant removal is a developing concern due to 
its stubborn nature, which hinders conventional bio-
logical treatment from meeting wastewater discharge 
standards. A laboratory-scale photocatalytic degrada-
tion system employing UV-H2O2 was recommended as 
an additional treatment for a mixed multiple anaerobic 
system facility in Guayaquil, Ecuador, which had inad-
equate surfactant removal (45.9%). The system proved 
the synergistic effect of mixing H2O2 with UV radia-
tion for 60 min in successfully removing surfactants 
(94.3±4.3%) and reaching the treatment objective. After 
60 min of continuous treatment with a flow rate of 0.6 
mL s−1 and a hydrogen peroxide concentration of 26.6 
mg s−1, the highest elimination of anionic surfactant was 
92.3±2.5%. The techno-economic analysis of this study 
estimates that removing surfactants in an ideal full-scale 
system, combined with a decentralized wastewater treat-
ment plant would cost 0.7 $ m−3 (Jennifer et al., 2024).

Recently, electron beam radiation, a clean and sus-
tainable method for SDBS degradation in wastewater, 
was explored by Chu et al. (2024). Changes in SDBS 
micelles, elevated interfacial tension, and reduced 
foaming power resulted from the breakdown pro-
cess. With a COD removal rate of 7–20%, the results 
demonstrated a removal efficiency of almost 100%. 
Advanced electro-oxidation has become a predominant 
method for treating complex wastewater. For domes-
tic wastewater effluent from the wastewater treatment 
facility in Ecuador, an electrochemical degradation 
method employing a DiaClean® cell in a recirculating 
system with boron-doped diamond (BDD) as the anode 
and stainless steel as the cathode was found to be eco-
nomically beneficial (Cisneros-León et al., 2023).

3.3.4 � Limitations, Industrial Applications and Future 
Advances

The requirement for large space, high operation 
expenses, high reagents utilization, and high energy 
requirements are the commonly observed limita-
tions of photocatalytic techniques. Municipal effluent 
samples and distilled water-spiked samples contain-
ing 100 mg L−1 of SDS were tested for an advanced 
oxidation process employing UV-H2O2. The impacts 
of process parameters on SDS degradation, such as 
latency, initial SDS concentration, oxidant H2O2 dos-
age, and UV absorbance of wastewater at 250 nm, 
were analysed. The rate of SDS breakdown increased 
with reaction time. Depending on the initial SDS con-
centration, degradation accelerates with increasing 
oxidant dose and decreases even further with growing 
oxidant dose This confines that degradation does not 
increase with increasing the oxidant dose. Through 
200 mg L−1 of initial concentration, the quadratic 
model predicted that the maximum SDS degrada-
tion percentage would be over 80% in 7 min. For the 
same, a UV absorbance of around 0.2 at 254 nm was 
obtained using a dosage of 2 mol of H2O2 per mol of 
SDS (Mondal et al., 2019).

The effectiveness of the electro-hybrid ozonation-
coagulation process (E-HOC) for surfactant and micro-
plastic exclusion from laundry wastewater was investi-
gated at various current densities and ozone dosages. 
At ideal circumstances (current density 15 mA cm−2, 
ozone dosage 66.2 mg L−1), surfactant and microplastic 
removal efficiency exceeds 90%. The E-HOC method 
has a better exclusion efficiency of COD, turbidity, and 
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LAS than the ozonation and conventional electrocoagu-
lation processes proposing a better practical approach. 
The electro-hybrid ozonation-coagulation process 
was optimized for three laundry wastewaters: washing 
wastewater (15mA cm−2, 66.2 mg L−1), primary efflu-
ent (10 mA cm−2, 36.6 mg L−1), and secondary efflu-
ent (10 mA cm−2, 36.6 mg L−1). COD, turbidity, and 
LAS were removed from washing wastewater at rates 
of 93.9%, 99.7%, and 99.9%, respectively (Luo et  al., 
2022).

Photocatalytic degradation combined with adsorp-
tion is a hybrid approach boosting traditional yet 
affordable processes. As surfactants are discharged 
into wastewater in huge quantities, they are detrimen-
tal to aquatic and terrestrial life, necessitating removal. 
A recent study attempted to eliminate SDS surfactant 
through photocatalytic degradation and adsorption 
utilizing Zn (+2) Al-layered double hydroxide and 
TiO2-Zn (+2) Al-layered double hydroxide copre-
cipitation materials. The acquired experimental results 
were analysed using the Temkin and Langmuir and the 
Freundlich adsorption isotherm models. The photo-
catalytic degradation of SDS over Zn (+2) Al-layered 
double hydroxide and TiO2-Zn (+2) Al-layered double 
hydroxide exhibited pseudo-first-order kinetics at 9.99 
to 100.1 mg L−1 concentrations. The results showed 
that TiO2(3.59)-Zn (+2) Al-layered double hydroxide 
displayed substantial photocatalytic activity compared 
to the Zn (+2) Al-layered double hydroxide sample 
(Aoudjit et al., 2019).

Photocatalytic degradation is a developing trend 
that is globally used for surfactant removal to achieve 
water remediation. Lately, photocatalytic degradation 
combined with adsorption on Fe2O3-activated carbon 
catalyst was found effective in the degradation of sur-
factants like linear alkylbenzene sulfonate. When the 
concentration of Fe is changed to 2%, 4%, or 6%, the 
capacity of the surfactant waste degrading reaction 
using the kernel of coconut catalyst at a time frame of 
three hours was determined to be nearly 6.8 mmol g−1, 
3.2 mmol g−1, and 1.6 mmol g−1 catalyst, respectively 
(Amelia et al., 2020).

3.4 � Membrane Filtration

3.4.1 � Mechanism and Methodical Exploration

Porous membranes featuring specific pore diam-
eters are used in membrane filtration methodology. 

Surfactants develop micelles or other more signifi-
cant structures, depending on their concentration 
and degree of aggregation. These aggregates are 
physically confined and unable to flow through the 
membrane as their size exceeds the membrane pore 
size. This isolates them from the water stream. The 
size exclusion mechanism is the key component in 
separating surfactants from water in microfiltration 
(MF) and ultrafiltration (UF) procedures, where the 
pore diameters range from micrometres to nanom-
eters (Xiarchos et  al., 2003). Utilizing a semi-per-
meable membrane, the filtration technique employs 
a pressure differential phenomenon to separate com-
ponents in aqueous solutions. This pressure differ-
ence mechanism permits smaller molecules to flow 
through, thus retaining bigger molecules in situ. The 
technique is based on factors including size, molec-
ular properties, or charge. As a pre-treatment tech-
nique, membrane filtration (MF) is frequently used 
to remove various components from wastewater sus-
pension, whereas ultrafiltration (UF) suggests a way 
to eliminate surfactants from aqueous solutions with 
critical micelle concentration (CMC). Nevertheless, 
nanofiltration (NF) is a more successful removal 
method when the concentration is as low as that 
of monomer. Because of the high concentration of 
surfactant monomers, the membrane filtration tech-
nique enables the permeate to be reused during the 
cleaning process. In the early  1970 s, UF was the 
first membrane technique to separate surfactants 
(Suárez et al., 2012).

Composite membranes of silica, titania nanorods, 
and nanotubes, with photocatalytic capacity, were 
explored to remove sodium dodecylbenzene sul-
fonate (SDBS). Using the sol-gel method, colloidal 
silica-titania sols have effectively created a multifunc-
tional composite membrane. Blending photocataly-
sis with membrane filtration was an innovative trial 
that resulted in an 89% elimination of SDBS after 
100 min, according to the experimental results (H. 
Zhang et al., 2006). Babaei and team in 2019 (Babaei 
et  al., 2019) studied the effectiveness of multi-layer 
slow sand filter, microfilter (MF) and ultrafilter (UF) 
hybrid systems in removing COD, TSS, LAS and tur-
bidity from greywater, and the impact of OLRs on the 
performance of the system during 5 months. The fin-
est removal efficiencies were 98.22% for COD, and 
>99.97% for TSS, LAS and turbidity also. Further-
more, the average turbidity, TSS, and LAS outputs in 
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the hybrid system were 1.04 NTU, 0.04 mg L−1, and 
1.55 mg L−1, respectively.

To treat surfactants from detergent wastewater, a 
combination method using the multimedia biological 
aerated filter (MBAF) and the up-flow multimedium 
biological aerated filter (UMBAF) was studied by Ji 
et  al. (2019). The combined system had an optimal 
filtration rate of 1.4 m hr−1 and performed best with 
an air-to-water ratio of 2:1. Total phosphate (TP), 
linear alkyl benzene sulfonate sodium (LAS), and 
Chemical Oxygen Demand (COD) were removed at 
average rates up to 40%, 88%, and 91%, respectively.

3.4.2 � Role in Sustainability

Growing international apprehension about scarcity of 
clean water and environmental sustainability drives 
revolution in water reclamation techniques. Research 
by Barambu et al. (2020) reveals the ability of a tilted 
panel system to maximize the impact of air bubble 
contact with the membrane surface, hence impos-
ing control over membrane fouling and emerges as a 
greener methodology. This technology offers a simple 
method for recovering detergent and reusing water. 
Hydraulic performance improves when rate of aera-
tion and tilting angle are adjusted to attain permeabil-
ity, implying that almost all reversible fouling can be 
avoided. The plateau aeration resulted in a 83% higher 
permeability than the unaerated condition, with value 
of about 200. Tilting the membrane panel 15 degrees 
to the air bubbles increased permeability to around 
220. The method further provides 32% detergent 
recovery. Overall, the technique proposes a compel-
ling method for membrane fouling management.

Research by Mostafazadeh et  al. (2019) focuses 
on the treatment and reuse of laundry wastewater uti-
lizing an innovative and sustainable sequential inte-
grated system. Total suspended particles, turbidity, 
COD, and surfactants such as nonylphenol ethoxy-
lates (NPEO3−17) are eliminated by polyether sul-
fone (PES) membrane in ultrafiltration (UF) of raw 
wastewater and adsorption (AD) procedures of the 
filtrate. The UF process separates the wastewater into 
an effluent with a minimal organic pollutant; ≈400 
mg L−1 of dissolved COD, and a concentrate with a 
total COD upto 1200 mg L−1, with   around 200 mg 
TSS L−1. Thus, using UF and AD procedures, suc-
cessfully eliminates NPEO3−17 surfactant from the 
concentrate and filtrate efficiently.

3.4.3 � Techno‑Economic Analysis

Recently a microfiltration membrane system with 
cationic exchange proceeding a weak-acid-based resin 
was proposed to eliminate surfactants and lower efflu-
ent alkalinity from the washing phase. The recovery 
efficiency of the system was 88%. About 68% of the 
cooling tower water was treated using the ultrafiltra-
tion and reverse osmosis processes, which were deter-
mined to be the most successful in eliminating salts 
and biocides. The techno-economic feasibility for the 
system was assessed, with an anticipated cost of EUR 
245 thousand for the washing phase and EUR 582 
thousand for the cooling towers. The revenue from 
the treatment techniques was expected to be EUR 
0.07 per car for the washing phase and cooling tow-
ers with EUR 0.13. This study highlights the benefits 
of membrane treatment in the environmental policy 
of the automotive sector, leading to water reuse and 
lower effluent discharge (Carvalho et al., 2025).

As per a survey by Šostar-Turk et al. (2005), Slove-
nia implemented two initiatives that enforced techno-
logical and ecological standards for treating wastewa-
ter from modern laundry. On examining prospective 
market for membrane water treatment applications, it 
was discovered that most Slovenian laundering facili-
ties, out of 140 at that time, employed traditional tech-
niques such as filtration, flocculation, and sedimenta-
tion. Only three laundries with annual water flows 
ranging from 35,000 to 45,000 m3 had ultrafiltration 
installed. To resolve this issue, a membrane treatment 
system combining ultrafiltration and reverse osmosis 
was developed in a laboratory, enabling 75% of water 
to be recycled. Ten prospective laundries in Slovenia 
were found qualified for this system, with five having 
water flows ranging from 35,000 m3 to 100,000 m3 
per year.

3.4.4 � Limitation, Industrial Applications and Future 
Advances

Despite the beneficiary membrane filtration treatment 
on effluent from laundry, particularly when reusing 
water and detergent, membrane fouling and regen-
eration significantly limit its performance, particu-
larly when operated at high transmembrane pressure. 
Chemical resistance and strength of the membrane 
are crucial factors affecting filtration methods. Hence 
recently, Bilad et  al. (2020) conducted research to 
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evaluate a low-pressure immersed membrane filtra-
tion system for processing wastewater from laundry 
to overcome the fouling issue. A solution of 15 wt% 
polysulfones, 1 wt% polyethene glycol, and dimethy-
lacetamide was employed to fabricate the membrane 
in this analysis. This polymeric membrane prom-
ises efficient elimination of surfactant turbidity, total 
nitrogen, phosphorus, and chemical oxygen demand 
of 52%, 13%, 65%, and 97%, respectively. The system 
additionally offers 78% detergent recovery from spent 
laundry effluent, proving its potential.

Unique modules of ceramic membrane with a 
pore size of 0.14 μm can demonstrate high efficacy 
in surfactant wastewater treatment, reducing TOC, 
COD, and turbidity by 95%, 93%, and 99%, respec-
tively, when the process was run in concentration 
mode, resulting in the recovery of nearly 50% of the 
permeate. The study examines the composition of 
industrial wastewater, its purification, and concentra-
tion processes using the modules of ceramic mem-
brane. The wastewater was produced from a plant that 
manufactures cationic surfactants and was exposed to 
membrane filtration in a semi-pilot plant. The regen-
eration operation using NaOH solution was success-
ful, although the permeability of the module was not 
fully restored. Applying an acidic washing agent can 
reduce the intensity of membrane blockage. Filtration 
tests with model solutions confirmed that the sieve 
effect dominates surfactant separation during UF and 
MF processes. Modules with their pore diameters 
similar to or smaller than the size of the surfactant 
micelles (150 kDa and 0.45 μm) have more signifi-
cant retention coefficients (above 94%). They are less 
susceptible to surfactant fouling (Klimonda & Kowal-
ska, 2021).

In order to remove 18 per- and poly-fluoroalkyl 
species (PFAS) from drinking water, Johnson et  al. 
(2022) proposed an amphiphilic coating to function-
alize aluminum oxide hydroxide membrane. Eleven 
of the 18 PFAS in the challenge water were removed 
with >99% efficiency using dynamic filtration. Fif-
teen were removed with greater than 90% efficiency 
using gravity filtration. For perfluorooctanoic acid 
adsorption capacity, the novel amphiphilic coating 
performs better than granular activated carbon (GAC) 
under dynamic filtering conditions, and even better 
for perfluorooctane sulfonic acid. The free energy, 
enthalpy, and entropy of interactions between six 

PFAS pollutants and coatings were calculated using 
molecular dynamics simulations.

Membrane-based technologies provide a novel 
approach for reclaiming water from laundry wastewa-
ter (LWW), with pollutants being removed at an effi-
ciency of 85-95% when appropriately adjusted. These 
systems are adaptable and provide water that is suitable 
for laundry reuse. Investigate advancements in both 
independently operable and hybrid membrane systems 
for treating LWW. Membrane-based techniques can 
remove critical LWW components such as surfactants 
and suspended particles. The combination of mem-
brane processes and conventional techniques improve 
performance by 45-50% while reducing energy con-
sumption by up to 25% (Zakaria et al., 2025).

4 � Adsorption for Surfactant Removal

4.1 � Mechanism and Methodical Exploration

Surfactants primarily adsorb on adsorption surfaces 
by electrostatic attraction and van der Waals forces. 
The cationic surfactant adsorbs when the positive 
charge on its headgroup attracts negative charges 
on the adsorptive surface. Anionic surfactants with 
a negative charge on their headgroup and the posi-
tively charged adsorptive surface may be attracted 
to each other electrostatically. The principal adsorp-
tion mechanism for nonionic surfactants is hydrogen 
bonding (Kalam et  al., 2021b, 2021a). Surfactant 
adsorption, or the concentration of surfactant mole-
cules at interfaces, is triggered by various forces com-
prising electrostatic attraction, hydrophobic interac-
tions, and hydrogen bonding. It is further contingent 
on the surfactant and surface attributes (Siyal et  al., 
2020). Adsorption depends on various physicochemi-
cal properties of the adsorbents and the surrounding 
atmosphere. Pore size, temperature, adsorbent dose, 
the concentration of surfactant to be removed, pH, and 
functional groups on adsorbents are the common gov-
erning factors for adsorption. One such comparative 
study showed that adsorbents and ion exchange resins 
with functional groups impede mass movement of the 
surfactant perfluoro-octane sulfonate (PFOS), which 
lowers the sorption rate. The sequence in which the 
total PFOS capacities of adsorbents rise is polymer 
adsorbents > activated carbons > anion exchange res-
ins; the selectivity of functional groups influences the 
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adsorption process (Schuricht et al., 2017). Surfactant 
adsorption on polymers is crucial for maintaining pol-
ymer latex colloidal stability. Ionic surfactants bind 
neutral polymers through hydrophobic interactions, 
whereas oppositely charged polymers bind surfactants 
through electrostatic and hydrophobic interactions. 
The efficiency of surfactant adsorption depends upon 
the capacity of the polymer surface and the molecu-
lar structure of surfactants. The hydrophobicity of the 
polymer surface, its ionic nature, its curvature radius, 
the structure of the surface-active material, and the 
bulk fluid phase parameters such as temperature and 
electrolyte concentration are the factors governing 
adsorption (El Feky et al., 2010).

Various minerals and soil types also facilitate 
surfactant removal. A study observed the extent of 
adsorption of anionic surfactant and amphoteric sur-
factants betaine and sulfo-betaine during oil recov-
ery. Adsorption of ionic surfactants on sandstone 
and dolomite was lower than that of amphoteric 
surfactants, while amphoteric surfactants adsorbed 
similarly or lower on limestone. Adsorption of ani-
onic surfactants followed an electrostatic mechanism, 
while amphoteric surfactants adsorbed through a 
complex interplay (Mannhardt et al., 1992).

As adsorbents play a vital role in the adsorption of 
surfactants, some major adsorbents with implemented 
modifications used previously for surfactant removal 
are listed in Table 1

4.2 � Role in Sustainability

Biodegradable adsorptive materials, including bio-
mass or biopolymers, are essential for protecting the 
environment, especially in wastewater treatment. Bio-
polymers, like chitosan, alginate, and tannin compos-
ites, have shown potential as attractive adsorbents for 
the future. They may substitute traditional adsorbents 
like silicates, aluminates, and activated carbon, offer-
ing competing adsorption capacity, cost-effectiveness, 
and biocompatibility. However, their applications 
for wastewater treatment have not been thoroughly 
explored, indicating a need for further exploration 
(Biswas & Pal, 2021). Sen et  al. (2012) used pine 
cone biomass to remove sodium dodecyl sulfate, an 
anionic surfactant. Using Posidonia oceanica (L.), 
a cheap, plentiful, and renewable marine biomass, 
adsorption has been used in batch mode to remove 
anionic and non-ionic surfactants (Ncibi et al., 2008). 

Post-treatment of primary and secondary sewage 
wastewater utilizing slow sand filtration and adsorp-
tion by activated carbon (AC) made from eco-friendly 
residual coffee dregs reduced surfactants and tur-
bidity by approximately 95% and 94%, respectively 
(Marcelo & Alexandre, 2021). Lately, Nacar et  al. 
(2022) successfully removed up to 90% of detergent 
(Sodium Lauryl Sulphate) and achieved an average 
of 68% COD removal from the car wash wastewater 
using Phragmites australis, a sustainable species in a 
subsurface flow constructed wetland. Many biomass-
based adsorbents satisfying green technology and 
suitable for surfactant removal are already listed in 
Table 1.

4.3 � Techno‑Economic Analysis

Using synthetic (e.g., nanosized) materials for pol-
lutant removal makes adsorption techniques distinc-
tive. Because of their low cost and ease of use, modi-
fied clay minerals and biochar have shown excellent 
potential for eliminating organic and heavy metal 
pollutants from drinking, industrial, and eutrophic 
wastewater, despite activated carbon being the most 
widely used adsorbent (Han et al., 2019). Biochar can 
absorb physicochemical pollutants like surfactants, 
costing 60% less than granular activated carbon 
(GAC) (Kumar et  al., 2018). James and Ifelebuegu 
(2018) researched a few inexpensive, environmen-
tally friendly materials for detergent treatment and 
removal. Activated carbon (19-2.5 $ kg−1), silica gel 
(1-1.5 $ kg−1), mussel shells (1.5-2.3 $ kg−1), and 
zeolite (1.5-2.2 $ kg−1) are among the biomasses that 
are promising and potentially sustainable adsorption 
materials for the reclamation of grey water, accord-
ing to this study. The commercial price of some eas-
ily accessible biomass and mineral adsorbents, such 
as chitosan (5–10 $ kg−1), red mud (0.025 $ kg−1), 
bagasse fly ash (0.02 $ kg−1), and carbonaceous 
adsorbent from fertilizer industry waste (0.1 $ kg−1), 
reclaims these materials as sustainable, cost-effective, 
and potential adsorbents for wastewater treatment(De 
Gisi et al., 2016). Adsorption is therefore a relatively 
inexpensive and environmentally benign technique 
for removing surfactants. Still, it has to be improved 
further by using new, innovative, environmentally 
friendly, and easily accessible biomass adsorbents. 
The degradation of surfactants with a single appli-
cation of adsorbent is problematic and is hence a 
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leading drawback of adsorption. An admirable strat-
egy for improving surfactant removal and process 
cost-effectiveness would be blending with other 
removal methods that tend to degrade.

4.4 � Industrial Applications and Future Advances

The successful removal of synthetic surfactants 
from industrial wastewater (≈99.9%) was exhibited 
by a hybrid ion exchange fibre material (FM) that 
improved its operational cycle to 200 L. A hybrid ion 
exchange FM with both anion-active (A-FM) and cat-
ion-active matrices (C-FM) was created by blending 
different ratios. In four sorption columns with varying 
ion-exchange fibre material compositions, working 
life tests of the hybrid IFM were carried out concur-
rently. These columns processed industrial wastewa-
ter at a rate of 0.13 L min−1, pre-purified on a ceramic 
membrane. Hybrid ion exchange FM, utilized in the 
ratio of C-FM (3): A-FM (7), achieved the highest 
and most steady degree of purification(Artemenko 
et al., 1997).

Recently, a study revealed the efficiency of Iraqi 
reed (IR) as a biomass precursor for IRAC synthesis 
and anionic surfactant removal from industrial waste-
water. Iraqi reed (IR) biomass waste was recently pro-
cessed into activated carbon (AC) using a pyrolysis-
assisted H3PO4 activation process. In contrast to the 
IR surface area of 0.5542 m2 g−1, the BET surface 
area significantly increased upon pyrolysis. SDBS a 
model anionic surfactant, was eliminated using Iraqi 
reed-activated carbon (IRAC). The adsorption kinet-
ics and equilibrium data demonstrated that SDBS 
adsorption follows the pseudo-second-order and 
Langmuir models under kinetic and equilibrium con-
ditions. The maximum adsorption capacity for SDBS 
was 121.5 mg g−1 (Ahmed et al., 2023).

Zeolites can eradicate many organic pollutants, 
including cationic surfactants. Zeolites are employed 
in various applications because of their appreciable 
capacity for cation exchange, specific surface area, 
and lattice stability. The tendency of reversible sorp-
tion in zeolites makes them reusable. Nano-zeolites 
(N-Zeo), inorganic-N-Zeo composites, polymer-N-
Zeo composites, and zeolite-nanoparticle compos-
ites have all been developed to eliminate pollutants 
like surfactants using sorption or ion exchange batch 
techniques (Rahman et  al., 2022). Innovative mate-
rials like β-cyclodextrin-functionalized coffee husk 

biochar(de Benedicto et  al., 2024), activated carbon 
obtained from waste tires(Ramírez-Arias et al., 2020), 
pine wood activated carbon (Azoulay et  al., 2023), 
metal oxides using quartz crystal microbalance with 
dissipation (Medina et  al., 2020) are a few of the 
recent advances in surfactant adsorption.

Fortifying new materials for the enhancement of 
adsorbents can be helpful for improved adsorption of 
surfactants on their surface. Various chemicals, nano-
particles, biomaterials and minerals modify the adsor-
bents (Liu et al., 2021; Zhou et al., 2018). Developing 
new composites from such modifications is an emerg-
ing field in surfactant adsorbents. The following sec-
tion discusses the employment of such composite 
adsorbents for surfactant removal. Figure 2 illustrates 
the mechanism of surfactant adsorption through forti-
fying adsorbents for composite formation.

5 � Composites for Surfactant Removal

Advanced technologies such as photo-catalysis, Fen-
ton, electro-Fenton, adsorption, and catalytic ozo-
nation processes have employed metal composites 
based on biochar (BC) due to their good efficiency 
and cheaper cost. These metal composites have also 
been used to break down surfactants (Ahmad et  al., 
2022). Composite adsorbents appear to be a better 
option than normal adsorbents since they combine 
two or more components, imparting strong adsorbent 
ability to the resultant material, cost reduction and 
are readily available(Aguilar-Bolados et  al., 2019). 
Water pollution is a significant issue in the modern 
era, and research relies on building effective poly-
meric adsorbents and membranes. The fabrication of 
polymeric nanocomposites that are non-toxic, bio-
compatible, economical, and effective continues to be 
explored, though. The use of nanofillers or nanopar-
ticles enhances the mechanical, thermophysical, and 
physicochemical properties of these nanocomposites. 
Methods of fabrication and enhancement include 
mixing, in-situ polymerization, melt-mixing, elec-
trospinning, and selective laser sintering. Emerging 
technologies strive to create polymer nanocomposites 
that are efficient, long-lasting, and profitable, with 
uniform dispersion and minimum errors. Polymer 
nanocomposites serve as adsorbents and filter mem-
branes to remove organic pollutants and surfactants 
from aqueous media (Adeola & Nomngongo, 2022). 
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Figure 3 illustrates various adsorbent materials used 
in composites for surfactant removal. Composites can 
facilitate better, cheaper, and eco-friendly adsorption 
processes for easy pollutant removal from wastewater. 

Designing a composite based on the requirements of 
functional groups, cheaper biomass with easy avail-
ability and disposal ability is currently being explored 
to the maximum.

Fig. 2   Fortifying adsorbents for composite formation
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A composite of PEI-PVA nanospheres was devel-
oped by combining polyvinyl alcohol (PVA) with 
polymer polyethyleneimine (PEI). This combination 
applied a series of chemical changes, utilizing the 
adequate oxygen-containing functional groups on the 
PVA surface. Under acidic and alkaline conditions, 
PEI-PVA composite nanospheres showed admira-
ble adsorption effects for anionic surfactants in the 
wastewater. The adsorption capacity increased as the 
treatment duration was extended, eventually stabiliz-
ing after 24 hours (Liu et al., 2023). Some composites 
for surfactant removal to date have been enlisted in 
Table 2.

6 � Future Perspectives

Membrane filtration, coagulation, flocculation, and 
sedimentation are the standard pre-treatment pro-
cesses that selectively remove harmful pollutants 
from wastewater units. Though these approaches 
are practical for surfactant removal, they unavoid-
ably raise overall operating costs and environmental 
impact. Subsequently, the future opportunity rests 
in making them cheaper and more environmentally 
friendly. Hence, hybrid approaches can be helpful 

for surfactant removal in addition to obligating the 
least energy, labour, and operating costs.

Green adsorbents as composites appear to be a bet-
ter option in this consideration. Exploring more agri-
cultural wastes as surfactant adsorbents is necessary 
to sustain the market for adsorbent composites while 
lowering production costs (Faccenda et  al., 2021). 
Enhancing the processability of biomass feedstock 
(Ramírez-Arias et  al., 2020) and pretreatment meth-
ods to make it more suitable for use as an adsorbent 
in surfactant removal will be advantageous. Degra-
dable waste material is another aspect that needs to 
be explored while designing composites. An amal-
gamation of low-cost biosorbent carriers with poly-
mers, minerals, nano adsorbents or other materials to 
increase bulk production at low cost can be explored. 
Figure 4 portrays an ideal composite design for sur-
factant removal during water remediation.

Investigating novel functional materials and 
developing hybrid technologies can improve the 
surfactant adsorption efficiency of composites. 
Improving composites under various optimal envi-
ronmental circumstances by thoroughly examining 
the adsorption mechanism to comprehend the sci-
ence underlying the surfactant adsorption behaviors 
is essential.

Fig. 3   Adsorbents for composites
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7 � Conclusion

A concrete and assured surfactant removal mate-
rials and methodologies are still lacking. Effica-
cious commercialization and field-scale application 
of carbon-based adsorbents for surfactant removal 
in wastewater treatment require addressing sev-
eral limitations. Energy-intensive synthesis restricts 

large-scale production, necessitating the develop-
ment of low-cost technologies for activated carbon 
synthesis. The low conductivity, limited adsorption 
capacity, and low stability of raw biochar are some 
of its limitations, which make its modification essen-
tial. The synthesis of magnetic biochar composite 
can aid in the retrieval and reusability of biochar. 
Upcoming research should also explore the risk of 

Fig. 4   Designing an ideal 
composite for surfactant 
removal
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secondary contamination to evaluate the sustainabil-
ity of carbon-based technologies for real-world appli-
cations of surfactant removal. The utility of photo-
catalysts like TiO2 combined with various adsorbents 
in hybrid techniques for surfactant removal needs 
modifications. Due to their significant band gaps, 
these photocatalysts can access significantly less 
of the solar spectrum in the photocatalytic process; 
hence, they need to reduce the band gap for appro-
priate electronic excitation. Novel yet biodegradable 
polymer adsorbent and some waste disposal adsor-
bent materials as composites need to be explored. 
Future studies should concentrate on combining nano 
adsorbent materials with bio-sorbent carriers, investi-
gating novel functional materials, and enhancing the 
adsorbents’selectivity and operating expenses for sur-
factant mitigation. Though some composites facilitate 
surfactant removal, their real-time application still 
seems complicated. Developing hybrid surfactant 
removal technologies and adsorbents from compos-
ite or mixed biomass sources can be used in real-field 
applications, requiring further research.
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