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ABSTRACT

The widespread use of PFAS in nonstick cookware, hydrophobic textiles, stain-resistant fabrics, cosmetics, and floor coverings
has led to their persistent presence in wastewater streams, posing significant human health and ecological risks. Exposure to
PFAS is linked to adverse reproductive outcomes and elevated blood pressure in pregnant individuals, and it negatively impacts
aquatic ecosystems, particularly algal populations and microbial communities. This evaluation focuses on biochar's efficacy and
cost-efficiency in removing PFAS from water, highlighting its potential as a sustainable remediation method. Biochar's high
microporous volumes (0.1-1.0 cm3/g), aromaticity, and surface oxygen-containing functional groups make it effective for PFAS
adsorption. Various biochar production methods, such as pyrolysis of biomass waste, and innovative modification techniques
like acid treatment, ball milling, and metal nanoparticle incorporation are explored to enhance PFAS adsorption capacity. The
mechanisms, kinetics, and thermodynamics of PFAS adsorption onto biochar are examined, providing insights into molecular-
level interactions and adsorption isotherms. Furthermore, machine learning models are utilized to understand the impact of
processing parameters on PFAS removal efficiency. The review also presents toxicological studies on the harmful effects of
PFAS exposure on organisms and humans, emphasizing the urgent need for effective remediation strategies. Ultimately, the
potential of biochar-based approaches in treating PFAS-contaminated water is underscored by optimizing its physicochemical
properties through innovative production and modification methods, along with predictive modeling of adsorption behavior.

1 | Introduction This has raised significant concerns about their potential for

bioaccumulation and antithetical ramifications on ecological

PFAS, or Per- and polyfluoroalkyl substances, constitute a
category of artificial compounds extensively employed across
consumer and industrial sectors since the 1940s owing to their
favorable characteristics, including resistance to staining and
water repellency [1]. However, the carbon-fluorine bonds that
give PFAS these properties also make them impervious to
degradation and extremely insistent in the environment [2].

systems and anthropogenic well-being. In 2016, the United
States Environmental Protection Agency (EPA) delineated
health advisory benchmarks at 70.0 parts per trillion (ppt) or
0.07 g per liter (ug L™") for perfluorooctanoic acid (PFOA)
and perfluorooctane sulfonate (PFOS) in drinking water,
aiming to offer Americans, particularly vulnerable groups, a
safeguard against potential long-term exposure to these
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substances. A drawback associated with PFAS usage is their
entry into the water cycle, either via direct routes like runoff
and infiltration into groundwater from nonpoint sources, or
through specific sources like firefighting training areas, in-
dustrial sites, and discharge from wastewater treatment plants
—both municipal and industrial—or even through deposition
from the atmosphere [3]. A growing body of epidemiological
evidence links PFAS exposure to a variety of adverse health
outcomes in humans, including impacts on vital organs like
the liver, kidneys, immune system, and thyroid [4, 5]. PFAS
have also been shown to exhibit bioaccumulative behavior
within the environment, posing risks to wildlife across aquatic
and terrestrial food webs [4, 6]. Their ubiquitous presence,
even in remote areas, underscores their remarkable persistence
and mobility [2, 4].

In light of these concerns, effective remediation approaches are
crucial to address PFAS contamination in water sources. The
review discusses the hazard index, a tool the EPA (Environ-
mental Protection Agency) uses to evaluate health risks asso-
ciated with chemical mixtures containing PFAS compounds. It
takes into account the different toxicities of specific PFAS (Per-
and polyfluoroalkyl substances) like PFNA (Perfluorononanoic
acid), GenX chemicals, PFHxS (Perfluorohexane sulfonate), and
PFBS (Perfluorobutane sulfonate) to determine if their joint
levels in drinking water systems are alarming. Also explores the
potential of biochar, a carbonaceous substance derived from the
pyrolytic decomposition of biomass, as an efficacious adsorbent
for the removal of per- and polyfluoroalkyl substances (PFAS)
from aqueous solutions [7-9]. It also delves into the toxicolog-
ical impacts of PFAS, their mechanisms of entry into the envi-
ronment, and the adsorption processes involved in using
biochar for their removal [10-12]. It highlights the importance
of tailoring biochar's chemical and physical properties through
careful selection of feedstock materials, pyrolysis conditions,
hydrothermal carbonization, gasification, torrefaction, flash
carbonization process, and modification techniques to enhance
its PFAS adsorption efficiency [13, 14]. It also provides insights
into the underlying adsorption mechanisms, kinetics, and
thermodynamics [15, 16]. Furthermore, confers the potential of
machine learning approaches, for example, tree-based methods
and neural networks, for accurately predicting PFAS removal

rates based on various process factors like adsorbent charac-
teristics and equilibrium concentrations [17]. Overall, this re-
view serves as a treasured resource for understanding the
challenges posed by PFAS contamination and the potential of
biochar-based solutions, coupled with machine learning models,
for sustainable and scalable treatment of PFAS-contaminated
water [18, 19].

2 | PFAS and Its Toxicity

PFAS, denoting perfluoroalkylated and polyfluoroalkylated
substances, encompass a spectrum of artificial compounds
distinguished by a hydrophobic alkyl chain of varying lengths,
commonly comprising between 4 and 16 carbon atoms. These
chains can be partially fluorinated or fully fluorinated, meaning
some or all of the hydrogen atoms are replaced by fluorine
atoms, respectively. Additionally, PFAS contains a hydrophilic
group [20]. When the alkyl chain undergoes partial fluorination,
these compounds are denoted as polyfluoroalkyl substances,
while those with fully fluorinated chains, except for specific
hydrogen atoms that may be part of functional groups, are
known as perfluoroalkyl substances. Polyfluoroalkyl substances
can probably convert into perfluoroalkyl substances through
environmental degradation processes [21]. Figure 1 describes
two main categories: 1. Non-polymeric perfluoroalkylated sub-
stances, which consist of - Perfluoroalkylated acids (PFAA), are
further divided into subcategories such as perfluoroalkane sul-
fonic acids (PFSA) and per-fluoroalkyl carboxylic acids
(PFCAs). (a) phosphinic acids (PFPIAs) and Perfluoroalkyl
phosphonic (PFPAs). (b) Perfluoroalkane sulfonamide (PFA-
SAs). (c) Perfluoroalkyl iodide (PFAIs). 2. Non-polymeric poly-
fluoroalkylated substances, which include: (a) Perfluoroalkane
sulfonamides. (b) Fluorotelomer substances, subdivided into
fluorotelomer alcohols (FTOH) and polyfluoroalkyl phosphoric
acid esters, fluorotelomer phosphates (PAP), and poly-
fluoroalkyl phosphates. The image provides a detailed break-
down of each category and subcategory, along with examples of
specific compounds.

The potential deleterious health ramifications of PFAS may
exhibit significant variability contingent upon parameters such
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FIGURE 1 |

Categorization of per-fluoroalkylated and polyfluoroalkylated compounds.
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as the magnitude, duration, and modality of exposure, alongside
individual attributes encompassing age, sex, ethnicity, overall
physiological state, and genetic predisposition [22]. Based on
contemporary scientific understandings, the multifaceted toxi-
cological effects of PFOAs are notably due to nuclear receptor
activation, the induction of oxidative stress, or the direct trepi-
dation of cellular membranes [23]. Even at the diminished
concentrations, there exists the potential for the onset of thyroid
dysfunctions, and adverse repercussions on fertility rates, em-
bryonic development, or impairments of motor functions. In
aquatic organisms such as zebrafish, the change in steroid levels
was observed at a concentration of 107> g/L. The toxic effects on
insect larvae such as dragonflies or chironomids are being
affected at a concentration range of (2-10) x 107> g/L. Africa
clawed frogs exhibited hepatic cellular degeneration; moreover,
at a mere 0.1 ug L™ concentration of PFOS, there was an
upregulation in the expression of TRbA mRNA within the ce-
rebral and caudal tissues, serving as a sensitive indicator for
thyroid dysfunction. The growth of invertebrates, including
reptiles like Bahama Anolis, is notably diminished when
exposed to low concentrations of PFOS.

Figure 2 depicts the certainty levels concerning the presence
of PFAS within the human body and the organs they affect.
The dotted lines represent areas of low certainty, indicating
uncertainty regarding PFAS presence or their impact on spe-
cific organs. In contrast, the straight lines signify high cer-
tainty, suggesting a well-established understanding of PFAS
distribution and their effects on particular organs. Once
ingested the PFAS are absorbed into the bloodstream and
distributed throughout the body, where they exhibit a pro-
pensity to bioaccumulate in protein-dense tissues, notably the
hepatic and renal systems [25]. It also tends to affect the
thyroid, immune system, and the embryo inside the pregnant

High certainty
------------ Low certainty

woman. The liver especially susceptible, with PFAS exposure
correlated with modifications in hepatic enzyme levels and
potential hepatotoxicity [26]. The renal system is similarly
compromised, as PFAS can impair renal function and elevate
the risk of chronic nephropathy [27]. Furthermore, PFAS can
interfere with thyroid dysfunction. The immune system is
another pivotal target, with research indicating that PFAS
exposure can attenuate antibody production and heighten
vulnerability to infections. Endocrine disruptions in pregnant
women have been documented even at relatively low con-
centrations of PFAS, particularly those with long-chain
structures. These compounds notably perturb thyroid hor-
mone levels and sex hormone balance, leading to profound
and enduring ramifications [28]. In a developing fetus, PFAS
can cross through the placenta, leading to in-utero exposure
which is associated with detrimental gestational outcomes,
including pre-eclampsia and reduced neonatal birth weight. In
the developing fetus, this hormonal imbalance can adversely
affect the maturation of critical organs such as the genitals,
liver, kidneys, and brain. For the mother, such disruptions are
linked to metabolic disorders, including gestational diabetes,
underscoring the extensive impact of PFAS on both maternal
and fetal health [26].

Per-fluoroalkyl and poly-fluoroalkyl substances (PFAS),
encompassing over 4700 synthetic chemicals, have had wide-
spread industrial and consumer applications since the 1940s due
to their desirable properties like stain repellency and water
resistance. However, these properties, conferred by robust
carbon-fluorine bonds, raise concerns regarding their potential
for environmental persistence, bioaccumulation, and toxico-
logical effects. A growing body of epidemiological evidence links
PFAS exposure elicits a spectrum of detrimental health out-
comes in humans, impacting crucial organs, including the
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FIGURE 2 | Certainty of PFAS in the human body and organs it affects. Reprinted with permission from [24]. Copyright 2020, Wiley.
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hepatic systems, renal systems, immune apparatus, and thyroid
gland [29]. Early-life exposure is particularly worrisome as
PFAS can readily traverse the placenta and accumulate in breast
milk. Studies have established correlations between PFAS
exposure and elevated cholesterol levels, compromised hepatic
function, diminished immune response, thyroid dysfunction,
reduced fertility, developmental anomalies, and even an
increased risk of cancers [4] The threat extends beyond human
health, as PFAS exhibit bio accumulative behavior within the
environment, posing a significant risk to wildlife across aquatic
and terrestrial food webs [30, 31]. Scientific investigations have
documented a variety of adverse effects in exposed animals,
including hepatic damage, thyroid disorders, immunotoxicity,
reproductive and developmental impairments, neurotoxicity,
and tumor formation [30, 31]. The ubiquitous presence of PFAS,
even in remote areas, underscores their remarkable persistence
and mobility [2, 4]. Aquatic organisms are particularly suscep-
tible, with documented cases of developmental delays, fin
erosion, and mortality in fish populations PFAS exposure in
avian species has been linked to diminished hatching success
and hormonal disruptions, potentially contributing to
population-level declines observed in sea otters, for instance [4].
While the intricate effects of PFAS mixtures on ecosystems
require further elucidation, studies have demonstrated their
toxicity toward various algal and microbial communities. This
disrupts algal growth and reproduction, potentially cascading
negative effects throughout the food web [2].

O\

FIGURE 3 | PFAS associated disruption.

Figure 3 shows a few significant indirect ways that exposure to
PFAS may affect neurological health by impairing the activities
of the kidney, liver, and peripheral immune system. Toxic drug
accumulation and inflammatory molecule buildup in the
bloodstream can harm neurons, impair the blood-brain barrier,
and exacerbate neurodegenerative disorders. Additionally,
PFAS are PPAR agonists, and as PPARs are abundant in the
brain, liver, kidneys, and immune system, they provide a sig-
nificant molecular target for the direct and indirect impact of
PFAS on neurological health [32].

Risk assessments play a crucial role in defining public health
exposure thresholds, which in turn establish requirements for
exposure mitigation tactics and ecological remediation initia-
tives. Table 1 conducts a comprehensive analysis of the impacts
of PFAS on the environment and various organisms.

Considering the adverse ecological consequences of PFAS and
PFOS on the environment and their persistence in water sys-
tems research has been conducted to remediate this problem
and a multitude of materials have been employed in this field.
Therefore, the maximum permissible concentration of per-
fluorooctanoic acid is 100 ng L™*. The temporal resolution for
detecting PFAS in wastewater could be exceptionally rapid,
frequently within 10 min, utilizing sophisticated methodologies
such as time-series data analysis and microfluidics-based sen-
sors. These advanced techniques facilitate the expeditious
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TABLE 1 | Effect of PFAS on various organisms in the ecosystem.

Organism
Sr. (common Organism
No. Name) (scientific name) PFAS type Toxic effects References
1 Green mussel Perna viridis PFOS, PFOA, DNA damage, oxidative damage, membrane [33]
PFNA, and PFDA instability, and reduced body weight
2 Pear]l mussel Hyriopsis cumingii PFOS Oxidative stress, cellular detoxification [34]
3 Chinese Eriocheir sinensis PFOS Affects gill respiratory metabolic enzyme [35]
mitten crabs cytochrome C oxidase and hemolymph
hemocyanin content.
4 Sea urchin Glyptocidaris PFOS Decrease in red blood cells, transient diminution [36]
crenularis of movement, increased methylation levels
5 Red worm Limnodrilus PFOS Changes on GSH levels, MDA content and SOD [37]
hoffmeisteri activity
6 Typical Daphnia magna PFOS Increased heart rate, inhibitory effects on [38]
water flea breeding rates.
7 Freshwater Brachionus PFOS Juvenile period, affecting body size, net [39]
rotifer calyciflorus reproductive rate, and smaller egg size.
8 Green algae Tetradesmus PFOA, PFDOA, Inhibited proliferation rate, decrease in [40, 41]
obliquus PFTEA, PFOS chlorophyll content
9 Microalgae  Pseudokirchneriella PFOS, PFOA, PFBS, Reduced growth rate after prolonged exposure [37]
subcaptitata and APFO
10 Chlorella Chlorella vulgaris PFOS Concentration-dependent ROS elevation, [42]
augmented malondialdehyde (MDA) levels,
alterations in chlorophyll concentration and
chloroplast morphology, and oxidative injury
11 Marine Vibrio fischeri PFOS and PF-656 Luminescence inhibition. [43]
bacterium
12 Purple sea  Strongylocentrotus PFOS and PFOA Highly toxic [44]
urchin purpuratus
13 Water flea Daphnia carinata PFOS Damaged genetic makeup, high mortality, and [45]
elevated birth defects
14 American Rana catesbeiana PFOS and PFOA Variation in snout-vent length [46]
bullfrog

classification and quantification of PFAS by analyzing their
distinct chemical signatures [47].

Figure 4a illustrates the concentrations of the presence of per-
fluorooctanoic acid (PFOA) and per-fluorooctane sulfonate
(PFOS) in potable water sources and distribution systems
worldwide, with notably elevated levels observed in the United
States (US) and Sweden. In the US, both drinking water sources
and supplies exhibited maximum PFOA concentrations of
11,000 ng L™ and 4300 ng L7%, respectively, In Swedish
drinking water sources, the most elevated levels of PFOS were
detected, with concentrations reaching 2280 ng L™, while in
distribution systems, they peaked at 8000 ng L™". These nations,
well-known for their substantial per- and poly-fluoroalkyl sub-
stances (PFAS) manufacturing and utilization activities, repre-
sent significant contamination hotspots. Despite the cessation of
PFAS production in initial manufacturing nations, there has
been a discernible surge in manufacturing within developing
regions. In Ghana, tap water obtained from River Kakum and
River Pr supplied to nearby communities exhibited relatively

elevated concentrations of perfluorooctanoic acid (PFOA:
190.0 ng L™) and PFOS (168.30 ng L™"). Brazil likewise docu-
mented PFAS acquaintance through tap water (PFOA:
46.0 ng L™'; PFOS: 44.0 ng L™) and bottled water (PFOA:
12.0 ng L), with variations noted among bottled water samples
from distinct marketplaces. Korean tap water specimens dis-
played notably higher mean PFOA concentrations
(12.87 ng L) compared to bottled water samples (0.16 ng L™%),
suggesting the potential presence of PFAS in the primary
potable water reservoir, specifically surface water, signifies a
significant concern within the domain of environmental and
public health. Analogously, Hong Kong's water distribution
exhibited elevated PFOA levels in tap water (39.7 ng L™) and
bottled water (32.6 ng L), followed by PFOS. Remarkably,
bottled water in Thailand demonstrated higher PFAS levels
compared to tap water, indicating a potential influence of
bottled materials on water quality. Furthermore, the graphical
representations in Figure 4b,c elucidate the proportional con-
centrations of per-fluorooctanoic acid (PFOA) and per-fluoro
octane sulfonate (PFOS) global potable water sources and
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acid (PFOA) and perfluoro octane sulfonate (PFOS) in worldwide potable

water sources and distribution systems, (b) depicts the percentage levels of PFOA, and (c) Illustrates the proportions of PFOS present in drinking
water sources and distributions worldwide. Reprinted with permission from [48]. Copyright 2023, Nature.

distribution networks, unveiling analogous pollution levels
across diverse regions worldwide [30-58]

3 | Hazard Index

The Hazard index is a longstanding instrument employed by the
EPA to assess the health risks posed by chemical mixtures, such

as in the Superfund program. A Hazard Index MCL is being
proposed by the EPA to limit any mixture that includes one or
more of PFHxS, PFNA, PFBS, and/or GenX Chemicals. The
Hazard Index takes into account the different toxicities of PFNA,
GenX Chemicals, PFHxS, and PFBS. Water systems would
practice the use of hazard index calculation for these PFAS to
determine whether the total quantity of these PFAS in the
drinking water in the system is alarming and requires action.

57 of 96

85UB017 SUOWIWIOD 8AFe81D 3]qeojdde au3 Aq pausenob afe saofife YO ‘8SN JO S8inJ o A%eIq1T 8UIUO A8|IM UO (SUO I IPUOD-pUB-SWR}/LI0D A8 | 1M ARe.d 1 [Bu1UO//SARU) SUORIPUOD PUe SWiB | 8U3 89S *[GZ02/T0/#0] Uo ARIqI]8uliuo A8|IM ‘9T We[0/200T OT/I0p/WoD A8 | AReiq 1Bul|uo//Sdny Wwoly papeo|umoq ‘T ‘v20Z ‘22.9.£82



Enumeration of the Hazard Index:

The Hazard Index is composed of a total of fractions (HI). Each
percentage compares the maximum amount of PFAS that has
been shown to be safe for human health to the amount of PFAS
present in the water. Equation (1) represents the following.

Equation:

Hazard Index (HI) = ([GenX water]) ([PFBS water])

[10 ppt] [2000 ppt]
([PFNA Water]) ([PF HxS Water])
[10 ppt] [9.0 ppt]
1

Stage I: Divide the measured Gen X concentration by the 10 ppt
health-based threshold.

Stage II: Divide the PFBS concentration that was measured by
the 2000 ppt health-based threshold.

Stage III: Divide the PFNA concentration that was measured by
the 10 ppt health-based value.

Stage IV: Divide the recorded PFHxS concentration by the 9 ppt
health-based threshold.

Stage V: Combine these ratios acquired in Stage I with those
from Stage IV.

Stage VI: Repeat steps 1 through 5 for each sample obtained
during the previous year to determine HI compliance. Next,
calculate the mean HI for all samples collected during the
preceding year.

Stage VII: If the ongoing yearly average HI surpasses 1.0, it
constitutes a breach of the suggested HIMCL

4 | Chemical Mechanisms for PFAS Destruction

PFAS (Per-fluoroalkyl and poly-fluoroalkyl) substances are a
Category of synthetic chemicals known for their environmental
persistence due to their strong C-F (carbon-fluorine bonds).
Their occurrence in water is a growing alarm due to their
probable health risks. Although thermal treatment, landfill
disposal, and underground injection are employed for PFAS
management, thermal treatment provides a certain level of
destruction.

4.1 | Defluorination

Defluorination is a well-established linkage for initiating the
degradation of per and PFAS (polyfluoroalkyl substances) during
remediation. It typically serves as the first step in various treat-
ment technologies, including reduction, photocatalysis, hydro
defluorination, and HALT (hydrothermal alkaline treatment),
microbial metabolism. These processes can be categorized by the

type of defluorination employed: reductive (electron transfer) or
nucleophilic replacement (hydroxide ion). The location of
defluorination within the PFAS molecule is influenced by the
inherent weakness of specific carbon-fluorine (C-F) bonds and
the distribution of the smallest lying c*C-F orbitals. However, the
overall degradation pathway and products are significantly
affected by reaction situations, such as temperature, solvent, and
the occurrence of other reactive species. Following defluorina-
tion, a cascade of secondary reactions can ensue, including
hydrogen abstraction, further electron transfer and defluorina-
tion, and radical addition. These secondary reactions can lead to
a diverse array of products, including perfluoroalkyl radicals,
perfluoroalkenes, shortened perfluoroalkyl chains (PFCAs), and
a complex mixture of fluorinated compounds from radical
recombination. Notably, hydrodefluorination using silylium-
carborane catalysts represents a new and promising technique
for PFAS degradation, but further research is required to validate
its efficacy across a wider range of PFAS contaminants.

4.2 | Ablation of the Polar Head Moiety

Beyond defluorination, the elimination of the polar head group
(carboxylate for PFOA and sulfonate for PFOS) is another key
mechanism for PFAS degradation. This mechanism is observed
in oxidation (e.g., activated persulfate), photocatalysis, plasma
treatment, and potentially other techniques. Oxidation with
strong oxidants like sulfate radicals creates a perfluoroalkyl
radical intermediate. For PFCAs, this intermediate undergoes a
cyclic decarboxylation-hydroxylation-elimination-hydrolysis
(DHEH) process, leading to the gradual shortening of the per-
fluoroalkyl chain. While a similar mechanism hasn't been
confirmed for PFOS desulfonation, plasma treatment cleaves
the sulfonate group and potentially utilizes the DHEH mecha-
nism for chain shortening. Plasma treatment likely involves
both head group removal and defluorination via electron
transfer. Recent research suggests argon cations in plasma
promote head group oxidation while aqueous electrons
contribute to defluorination. Interestingly, studies report PFAS
degradation in polar aprotic solvents with sodium hydroxide,
potentially via a decarboxylation mechanism forming a per-
fluorinated carbanion. This carbanion undergoes a proposed
three-carbon chain shortening (C3) mechanism, but the
requirement for non-aqueous solvents limits its real-world
applicability.

4.3 | Unimolecular Bond Scission and Other
Initialization Mechanisms

Thermal decomposition and sonolysis are two key mechanisms
for PFAS destruction. The high bond strength in PFAS
(> 85 kcal mol™ for C-C and > 100 kcal mol™" for C-F) makes
unimolecular bond scission unlikely at typical temperatures.
Thermal decomposition, dominating at high temperatures, in-
volves a series of reactions. Initially, PFCAs and PFSAs undergo
HF elimination to form unstable intermediates (c-sultone and
a-lactone correspondingly). These intermediates then react
further to form perfluoroacyl fluoride products. At even higher
temperatures, H-shift and removal of CO, and HF lead to the
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creation of perfluoro-1-alkenes. All these products can further
degrade into volatile fluoro organic compounds. Sonolysis, on
the other hand, utilizes high localized temperatures generated
during bubble rupture in ultrasound treatment. This extreme
heat is believed to cause cleavage of the polar head group (C-S or
C-C bond) through unimolecular scission. The mechanism
likely proceeds via repetitive oxidation and truncation or py-
rolysis inside the bubble. However, the variability in tempera-
ture, presence of reactive intermediates, and the type of PFAS
undergoing degradation leads to a complex overall mechanism
and a mixture of products.

Conventional methods for PFAS remediation, like landfill
disposal, underground injection, and thermal treatment have
significant drawbacks. While thermal treatment offers some
destruction, it requires high energy and can generate harmful
byproducts. Landfills and injections simply concentrate PFAS,
posing future contamination risks if liners fail [49]. Biochar
emerges as a potentially superior alternative due to its ability to
both adsorb and potentially degrade PFAS molecules. This of-
fers a more sustainable destruction pathway compared to mere
concentration. Additionally, biochar is produced from organic
waste materials, promoting waste diversion and carbon
sequestration. Furthermore, its production from readily avail-
able materials makes it cost-effective compared to high-energy
thermal treatment [50].

5 | Biochar and Production Techniques of Biochar

Biochar is a carbon-rich material generated from the thermo-
lytic degradation of organic biomass in Anaerobic conditions
and has garnered noteworthy consideration in current years due
to its diverse applications and likely benefits. The utilization of
biochar for diverse applications has spurred heightened modi-
fication of biomass into biochar. Biochar is favored over alter-
native adsorbents due to its economic viability, exceptional
adsorption efficacy, and environmentally benign characteristics.
Also, one of the advantages of utilizing biochar is that it could
be tailored according to the contaminant sequestration [51, 52].
Thermochemical conversion serves as a prevalent method for
biochar production, encompassing techniques like pyrolysis,
gasification, hydrothermal carbonization, and torrefaction.
Synthesized from biomass via pyrolysis, biochar exhibits an
elevated specific surface area, intricate porous architecture, and
a plethora of functional groups, rendering it exceptionally pro-
ficient in the adsorption of a diverse array of pollutants [53]. To
achieve extreme biochar yield, the selection of the production
technique must be tailored to the biomass nature, and optimal
process settings such as heating rate, residence time, and tem-
perature are essential. These conditions are critical as they can
impact biochar's chemical and physical properties throughout
production [54]. The properties of biochar can be varied ac-
cording to the feedstock and the modifications done on the
surface of the biochar by inducing chemical and physical
modifications. These biochar capabilities have attracted a lot of
attention in the field of wastewater treatment. To generate
biochar, thermochemical methods such as pyrolysis, hydro-
thermal carbonization, gasification, torrefaction, and flash
carbonization are routinely utilized [55, 56]. In pyrolysis, the

factors determining the biochar production depend on the
temperature and the type of biomass used. Usually, the tem-
perature range is 200°C-950°C. The waste biomass is converted
into value-added products such as biochar, biogas, and bio-oil.
The mechanism of the pyrolysis is represented in Figure 5a [57].
Figure 5b represents the low-temperature circulating fluidized
bed gasifier that utilizes high contents of low-melting ash
compounds. The temperature of such a reactor is kept below the
melting point of the ash components to avoid corrosion [58]. In
hydrothermal carbonization, the temperature range is kept low
around 150°C-300°C, and the product is referred to as Hydro-
char. The biomass is mixed along with water and placed in a
closed reactor. The different types of products produced during
this process include biochar, bio-oil, and syngas (Figure 5c) [57].
Torrefaction is a method that is conducted in oxygen oxygen-
deprived environment with a lagging heating rate. This
method is carried out in 4 steps: heating, dehydrating, torrefy,
and condensing (Figure 5d) [59]. Figure 5 illustrates various
methods for producing biochar, including pyrolysis (a), gasifi-
cation (b), hydrothermal carbonization (c), and torrefaction (d).

Table 2 below describes the different categorization techniques
of biochar Chemical, Physical, and stability of Biochar. The ta-
ble summarizes key physical and chemical properties of biochar
compositions. It includes measurements such as elemental
analysis (CHNS, EDS, XPS), and metal/ash content determina-
tion (XRD, ICP, XRF). Proximate analysis via TGA reveals hy-
drous content, volatile constituents, and ash residue. Surface
functionality is assessed using FTIR and Raman spectroscopy,
while Boehm titration is used to measure surface acidity/alka-
linity. Surface aromaticity is analyzed via Raman spectroscopy
and 13C NMR. Physical properties include surface area, size,
pore volume, density measurements, pycnometer, and laser
sizing for particle size distribution. Lastly, stability is evaluated
with TGA-DSC and thermogravimetric analysis, shedding light
on thermal properties and degradation behavior. A detailed
analysis of biochar's characterization is provided below in
Table 2.

6 | Biochar Modification Techniques

Engineered biochar shows an enhanced contamination sorption
through an enhanced sorption mechanism to vanquish this lack
of pristine biochar, synthesizing composites is envisioned to
improve electrostatic attraction between anionic (PFAS) [2].
Biochar can be modified using various techniques to meet the
demands of certain applications. Biochar undergoes discernible
alterations at both physical and chemical levels. Physical modi-
fications encompass changes in surface morphology, pore struc-
ture, and specific surface area, while chemical modifications
involve alterations in functional groups, elemental composition,
and surface reactivity, while physical modifications include ball
milling. Excellent performance can be obtained via chemical
techniques, which require a low activation temperature and are
upfront to accomplish. Physical and chemical modifications of
biochar play a pivotal role in augmenting its properties for diverse
applications. Through techniques such as activation and pyrolysis
temperature control, biochar's porosity can be finely tuned,
leading to increased surface area and enhanced adsorption
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FIGURE 5 | Schematic representation of (a) Pyrolysis. Reprinted with permission from [57]. Copyright 2020, Elsevier; (b) Gasification. Reprinted

with permission from [58]. Copyright 2015, Elsevier; (c) Hydrothermal Carbonization. Reprinted with permission from [57]. Copyright 2020, Elsevier;
and (d) Torrefaction. Reprinted with permission from [59]. Copyright 2024, Springer.

TABLE 2 | An in-depth overview of the characterization of biochar.

Characterization

Detailed analysis

Chemical property

e Biochar compositions (CHNS, XPS, EDS)

e Metallic/ash contents (XRD, XRF, ICP) proximate analysis (TGA)

e Surface functionality (Raman, FTIR)

e Boehmtitration surface, aromaticity, surface, acidity/alkalinity (Raman

Physical property

Stability

spectroscopy, 13C NMR)

e Surface area and pore volume
e Particle size distribution (lasersizing)

e Density (mercury porosity, pycnometer)

TGA-DSC DSC (differential scanning calorimetry) and TGA

(thermogravimetric analysis)

capacity for contaminants and nutrients. Also, this mechanical
treatment of ball milling breaks down the biochar particles into
finer sizes, enhancing their surface reactivity and interaction with
contaminants by the modification of surface functional groups.

Additionally, chemical treatments such as impregnation with
alkali or acids can introduce functional groups (hydroxyl,
carboxyl, amino groups) onto the biochar surface that in turn
increases the biochar's affinity toward PFAS through
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mechanisms such as hydrogen bonding, electrostatic in-
teractions, and ion exchange, improving its reactivity and
adsorption properties. For instance, acid modification results in
incorporation of oxygen-bearing functional moieties enhancing
cation exchange capacity. While alkali on the other side increases
the aromaticity and hydrophobicity of biochar improving its
ability to adsorb contaminants through 7w-7 interactions [60].
These modifications not only boost biochar's ability to adsorb
various contaminants, including heavy metals and organic pol-
lutants but also enhance its capacity to retain essential nutrients
like nitrogen and phosphorus, fostering soil fertility and plant
growth. Moreover, modified biochar exhibits increased stability,
prolonging its effectiveness as a sustainable soil amendment and
environmental remediation tool [61].

Figure 6 shows Innovative approaches such as internally
modified pyrolysis and steam modification methodologies are
employed to augment biochar's surface area and sorption
characteristics. Ball milling techniques yield substantial en-
hancements in pollutant adsorption efficacy by mechanically
reducing the particle size of biochar. It can enhance the precise
surface area of biochar to a range of 200-400 m?* g™* [62]. At the
same time, acid and alkali modifications elicit alterations in
surface chemistry and pore morphology, respectively, thereby
ameliorating the environmental remediation potential of bio-
char materials. Acid treatments with agents such as HCl or
HNO; introduce a substantial quantity of oxygen-bearing
functional groups including, carboxyl and hydroxyl moieties,
thereby augmenting the cation exchange capacity and adsorp-
tion efficacy for organic pollutants. Conversely, alkaline modi-
fications employing substances like KOH or NaOH bolster 7t-7t
interactions between the adsorbate and the pollutants, further
improving adsorption performance [60].

Table 3 outlines various modifications of biochar, detailing their
associated processing parameters and specific surface area
values. Each entry includes a type of biomass used, the specific
modification applied, the effects of the modification, relevant

processing parameters, specific surface area values achieved,
and corresponding references for further information.

7 | Remediation of PFAS Containing Wastewater
Using Biochar-Based Adsorption

Since the beginning adsorption has emerged as a vital process
for pollutant removal across various scientific disciplines due to
its effectiveness and relative simplicity [66]. Biochar, a carbo-
naceous material produced from biomass pyrolysis, has
garnered significant attention as a promising adsorbent for its
high microporous volume, surface aromaticity, and cost-
effectiveness [67]. Employing a modified biochar for the abate-
ment of PFAS is highly efficacious owing to its superior
adsorption capacity and the presence of diverse functional
moieties that facilitate the cleavage of the resilient C-F bonds
inherent in PFAS compounds. A recent study by Krebsbach
et al. (2023) explored optimizing biochar design for enhanced
removal of per- and polyfluoroalkyl compounds (PFAS) from
water [68] Their research suggests that pore size plays a critical
role in PFAS adsorption, with biochars exhibiting smaller pores
and produced at higher pyrolysis temperatures demonstrating
superior removal efficiency. Furthermore, research conducted
by Patel et al. investigating the use of biochar derived from
biosolids for both anaerobic digestions, a process generating
biogas from wastewater, and subsequent PFAS removal [61].
This approach presents a sustainable wastewater treatment
strategy by combining resource recovery through biogas pro-
duction with pollutant capture. Moving forward, further
research is necessary to validate biochar's effectiveness in real-
world environmental settings and refine its composition for
widespread PFAS remediation efforts [68].

Table 4 below provides a condensed overview of numerous
studies focusing on the adsorption of per- and polyfluoroalkyl
compounds from water using biochar. Each entry in the table
delineates critical information, including the type of biomass

Ball Milling: Specific surface
area and oxygen containing
groups increases and grain size
decreases .

( Acidic: Surface area increases,
better porosity, Removes impurity,
'Creates charged and hydrophilic
surface functional groups.

Alkaline: surface area, porosity
and surface charge increases,
introduces oxygen containing

\ functional groups

FIGURE 6 | Description: Enhancing biochar properties through modifications.
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employed as the precursor for biochar production, any modifi-
cation or pre-treatment applied to the biomass, details regarding
the biochar utilized, such as its source material and processing
parameters, and the resultant adsorption capacity and removal
efficiency of PFAS. Furthermore, insights into the sorption
mechanism underlying PFAS adsorption onto biochar surfaces
are provided, along with the specific kinetic models or adsorp-
tion isotherms employed to characterize the adsorption
behavior [76].

8 | Adsorption Mechanisms

The distinctive attributes of biochar in adsorbing the PFAS are
elucidated through its adsorption mechanisms, kinetics, and
thermodynamics. The augmented surface area and porosity of
biochar, are enhanced via physical and chemical modification
methods. Physical methods such as ball milling provide
numerous active sites for binding, acid modifications introduce
oxygen-bearing functional moieties for cation exchange capacity,
and alkali modifications facilitate m-m interactions. Kinetic
studies reveal the adsorption of PFAS involvement in pseudo-first,
second-order kinetic models. For instance, the pseudo-2nd-order
kinetic model is indicative of chemisorption involving valence
forces. Thermodynamic analyses demonstrate the endothermic
and spontaneous adsorption process. These synergistic properties
render biochar an exceptionally efficacious material for the
adsorption and removal of PFAS from wastewater.

8.1 | Adsorption Kinetics

Adsorption kinetics involves examining how quickly adsorption
occurs at which particles stick to the surface and the amount of
time needed. A mechanism consisting of three consecutive
steps can be used to define the total adsorption procedure on
porous adsorbents. The 1st phase is intraparticle diffusion; The
2nd stage involves film diffusion, while the third step pertains
to reaching equilibrium, characterized by the adsorption of
adsorptive molecules onto the active sites of the porous
adsorbent [77]. Table 5 illustrates the kinetics of adsorption
processes through various models provided in the table. It of-
fers a concise overview of the kinetic models utilized in
research on the adsorption of per- and polyfluoroalkyl com-
pounds (PFAS) onto biochar surfaces. Each table entry presents
a distinct mathematical equation representing a kinetic model

TABLE 5 | Adsorption kinetic models and their respective equations.

utilized to elucidate the temporal rate of PFAS adsorption onto
the biochar surface over time. Various adsorption kinetic
models have been developed to characterize the adsorption
kinetic process, including the pseudo 1st order (PFO) model,
pseudo-second-order (PSO) model, Ritchie's equation (RE),
mixed-order (MO) model the Elovich model (EM), and
phenomenological mass transfer models. The table below
(Table 5) lists these adsorption kinetic models along with their
respective equations.

8.2 | Adsorption Isotherm

Adsorption isotherm models are essential tools in adsorption
processes, offering crucial insights pertaining to the interaction
between adsorbate and adsorbent under equilibrium conditions
and isothermal circumstances. They play a fundamental role in
understanding solute-adsorbent interactions and improving
their utilization. Innumerable models are employed to correlate
experimental data, with the best-fitting model providing valu-
able information on adsorption behavior. While These methods
elucidate underlying adsorption mechanisms and assist in
designing efficient adsorption systems. Isotherm models also
offer insights into maximum adsorption capacity, crucial for
evaluating adsorbent performance. Several models, including
linear, Freundlich, Sips, Langmuir, and Brunauer, Emmett, and
Teller (BET) models, are utilized to investigate adsorption
mechanisms across different systems, each providing unique
perspectives on adsorption behavior and contributing to a
comprehensive understanding of adsorption processes [80].
Table 6 below offers a concise summary of the isotherm models
utilized in studies investigating the adsorption of per- and pol-
yfluoroalkyl compounds (PFAS) onto biochar surfaces. Each
entry in the table details the specific mathematical equation
representing the isotherm model employed, along with its
classification (e.g., Langmuir, Freundlich). Additionally, a brief
description of the significance of each isotherm model is pro-
vided, outlining its applicability and limitations in elucidating
the adsorption behavior of PFAS onto biochar.

8.3 | Adsorption Thermodynamic Studies
Thermodynamic of adsorption—The Van't Hoff plot is utilized

to examine thermodynamic properties like free enthalpy (AH®),
free entropy (AS®), and Gibbs free energy change (AG®), offering

Sr
no. Kinetic model Equation Significance References
1. Pseudo 1st order In(q —qo) =1n Postulated that the rate of adsorption site occupation is [78]
qe — kit directly proportional to the number of unoccupied sites
t 1 t
2. Pseudo 2" order T Toa + — The adsorption process depends on the availability of [78]
e 2% % adsorption sites
Elovich model q = %(ocﬁ) + %lnt Chemisorption process on highly heterogeneous surface [79]
4. Intra-particle diffusion ¢q, = k; t¥2 + C’ Consider inter-particle diffusion mechanisms [79]
model
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TABLE 6 | Adsorption isotherm models and their equations. Reprinted with permission from [81]. Copyright 2023, American Institute of Physics.

Sr. Type of
no Isotherm model Equation isotherm Significance
1. Langmuir model C _ Ce " 1 Two- Langmuir's theory describes adsorption
Q@ Qu Qub parameter  equilibrium with a single, uniform-energy
model monolayer formed by non-interacting
molecules.
2. Freundlich adsorption logq. = logks + llog Ce Two- Freundlich isotherm describes multilayered
isotherm n parameter  adsorption on heterogeneous surfaces with
model an exponential distribution of site energies.
3. Langmuir- Freundlich qe = M Two- This adsorption isotherm model elucidates
adsorption isotherm 1+ (kerc, M parameter  the dissemination of sorption energy across
model the heterogeneous sites of the absorbent. At
diminished adsorbate concentrations, the
isotherm adheres to the freundlich model,
whereas at augmented adsorbate
concentrations, it transitions to the
Langmuir model.
4. Temkin model Qe = ?hAT + %mce Two- This isotherm analyses chemisorption on
T parameter heterogeneous surfaces, considering
model adsorbate-adsorbent interactions and a
linear decrease in heat with coverage.
5. Brunauer-Emmett-Teller g, = 9sCrerCe Two- BET isotherm describes gas-solid adsorption
(BET) model (Cs — Ce)[1+ (Cpgr — 1)(8—2) parameter with multilayers for pressures between 0.05
mode and 0.3 P/Po, used for surface area
determination via nitrogen sorption.
6 Dubinin-Radushkevich q. = qmaxe(’ﬁysz) Two- The D-R isotherm focuses on micropore
(D- R) isotherm mode parameter filling in heterogeneous materials,
mode explaining adsorption by a Gaussian energy
distribution, not layer-by-layer filling.
7 Redlich peterson model qe = % Three- The Langmuir-freundlich isotherm
Rie parameter combines Langmuir and freundlich models
model for heterogeneous or homogeneous systems,
mimicking the Henry's law region at low
concentrations.
o Qm (ksCe)™ . . .
8. Sips isotherm model qe = 0+ (kC™] Three- This model integrates the freundlich and
s parameter Langmuir adsorption isotherms, addressing
model the limitations associated with high

adsorbate concentrations in the freundlich
model while accounting for the
heterogeneity of sorption sites. It formulates
mathematical expressions with finite
bounds at elevated concentrations. This
isotherm effectively limits adsorption
without interactions among adsorbates. It
deviates from Henry's law due to its
reduction to the freundlich model at low
adsorbate concentrations. However, at
higher adsorbate concentrations, it predicts
the monolayer adsorption characteristics
indicative of the Langmuir model.

an understanding into the spontaneity of the adsorption process
[82]. Equations (2) and (3) are utilized for conducting an anal-
ysis related to the adsorption process, specifically focusing on
the distribution coefficient (K4) and its relationship with
temperature.

AS° AH°
InKg=2> AT 2
nKy=—--—2r 2
9e
Kg=Je 3
1=, 3
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R = Universal gas constant
T = absolute temperature (K)

The In K4 versus 1/T plot serves to determine the AH® and AS°
values Subsequently, the Gibbs free energy change (AG®) is
computed using

AG®°= AH® — TAS® 4)
AG°®is Gibbs free energy change, AH® is enthalpy change, AS°is
entropy change, and T is temperature [83].

Table 7 provides a description of various processes indicating
their spontaneity, the range of parameters involved, the
magnitude of selected parameters, and the adsorption thermo-
dynamics. Table 8 summarizes various Al and ML techniques,
including their applications, advantages, and limitations, in the
context of wastewater treatment and monitoring.

9 | Theoretical Study for Predicting the Removal
of PFAS Using Biochar-Based Adsorbent

Machine learning (ML) is a subfield of artificial intelligence (AI)
concerned with emerging algorithms that can learn without
explicit programming from data. Unlike traditional program-
ming where rules are predefined, ML algorithms identify pat-
terns and relationships within historical datasets. This ability to
learn and adapt makes ML particularly valuable in complex
water applications where traditional methods struggle with
intricate data and changing conditions. The core strength of
machine learning in water treatment lies in its exceptional ability
to identify correlations within complex datasets, even when the
underlying mathematical relationships are not fully understood.
This allows ML models to predict water treatment behavior, such
as optimal chlorination dosage or membrane filtration efficiency,
based on historical data and identified patterns. Additionally,
ML's adaptability allows it to learn from new data as it becomes
available, continuously improving its models and performance
over time. This is crucial for water systems that need to adapt to
dynamic water quality or environmental conditions. Finally, ML
models can be generalized to new situations beyond the specific
data they were trained on, offering cost savings and process
optimization across different water treatment plants or natural
water systems. The following table no. 8, succinctly encapsulates

various artificial intelligence (AI) and machine learning (ML)
models and practices [84]. The artificial intelligence methodol-
ogies, encompassing ANN (Artificial Neural Networks), Support
Vector Machines (SVM), and Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), have exhibited accomplished predictive
competence in the realm of adsorption process estimation,
adsorption capacity, and efficiency of biochar [85].

Neural networks, Support vector machines, and tree-based ap-
proaches are examples of algorithms in machine learning that
have become potent tools for constructing predictive models for
adsorption. These algorithms excel in unveiling intricate
nonlinear relationships within data, resulting in more precise
predictions compared to conventional regression methods like
multilinear regression (MLR). Multilinear Regression (MLR)
Model, a prevalent technique in poly parameter linear free energy
relationships (pp-LFERs), is utilized to correlate the adsorption
coefficient (log K4) with adsorbate properties and it is represented
by the Equation (5).

logK4(ce)=e.E+s.S+a A+b.B+v.V+c )

where,

log K4 = adsorption coefficient (1/cm)

(Ce) = Adsorption coefficient

(E, S, A, B, V) = Abraham descriptors for the adsorbate
(e, s, a, b, v, ¢) = fitting parameters

This equation facilitates the correlation of (log K4) with various
adsorbate properties. However, it necessitates a distinct MLR
model for each equilibrium concentration level, thereby limiting
its predictive capacity.

Neural networks comprise input, multiple hidden, and output
layers, with optimization techniques like backpropagation
employed during training to adjust the nodes' weights. Regula-
rization strategies such as early halting are utilized to prevent
overfitting, and grid search is conducted to optimize hyper-
parameters for the best model configuration. Shapley values
analysis is employed to interpret the models by quantifying the
contribution of each input variable. This analysis underscores

TABLE 7 | Significance of various adsorption thermodynamics parameters.

Adsorption thermodynamic

The range of parameters

The magnitude of a selected

parameter selected parameter Inference
Standard gibbs free energy AGO AGO <0 Spontaneous process
AGO >0 Non-Spontaneous
process
Standard change in enthalpy AH® AH®° <0 < 60 KJ/Mol = physisorption Exothermic process
AH® > 0 > 200 KJ/Mol = chemisorption Endothermic process
Standard change in entropy AS° AS° <0 Lower degree of
randomness
AS° > 0 Higher degree of

randomness
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General
applications

Modeling and
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TABLE 8

References

Negative outcomes

Positive outcomes

technique

[86,
103-106]

o The model and its architectural

e (Classification, e Results are characteristically

CNN (convolutional neural

e DBP formation modeling

framework are inherently intri-

observed as extremely precise

regression,
Segmentation

network)

cate and expansive.

e When the model operates concur-

e Involves high computational

rently, outcomes are swiftly

e Supervised ma-

power

ascertained.

chine learning

e Excel at solving with image-based

inputs

[107-109]

It frequently encounters issues of

e Suitable for pattern classifications

e Supervised ma-

ELM (extreme learning machine)

e Dissolved-oxygen-

overfitting or underfitting when
there are excessive or insufficient

e Relatively short training times

chine learning

concentration modeling

e Regression,

data.

classification

the significance of incorporating equilibrium concentration and
adsorbent properties, challenging the oversimplified assump-
tions of earlier models. The developed machine learning models
take into account both adsorbent and adsorbate characteristics,
resulting in enhanced prediction capability. They are made
accessible through user-friendly graphical interfaces, thereby
enhancing their usability in adsorption research. In assumption,
the amalgamation of machine learning techniques, particularly
neural networks, with equations like the MLR model and pp-
LFERs (Polyparameter Linear Free Energy Relationships) en-
ables more accurate predictions of adsorption coefficients. These
models consider a broad range of factors, including adsorbent
properties, equilibrium concentration, and adsorbate charac-
teristics, leading to notable advancements in adsorption
research, The ANN model predicts the amount of chemical
adsorption for a specific adsorbent-chemical combination based
on the input data (chemical descriptors and adsorbent proper-
ties) [110]. Karbassiyazdi et al. examined the effectiveness of the
XGBoost model as a proficient machine learning technique for
the removal of PFAS. There is a need for advanced methods and
materials, especially for short-chain PFAS not removed well by
conventional methods. The objective of the study was applying
machine learning with literature data to envisage PFAS removal
factors for diverse adsorbents, improving material selection and
process optimization. The methodology followed was that the
Collected data on 234 PFAS removals from 64 published papers
on adsorbents like activated carbon, resins, membranes.
XGBoost model was used which handles missing data well and
avoids overfitting. The Model predicts adsorption capacity (qe),
equilibrium time (t.), and removal % (R) based on adsorbent
type, particle size, concentrations, pH, etc. The equations for
adsorption capacity and removal percentage is given by Equa-
tions (6) and (7).

Key equations:

q. = (C, — C¢) v/m (adsorption capacity) (6)

removal% = (C, — C.)/C, X 100 (removal percentage)  (7)

ge: Adsorption capacity at equilibrium
C,: Adsorbate Initial concentration
C.: Adsorbate concentration

V: Solution or gas phase Volume

m: Adsorbent mass

- Compared feature importance and used SHAP values to
interpret the model.

The findings of the work were particle size and pH are the most
influential factors for PFAS exclusion predictions. Adsorbent
type is important for q., while initial concentrations impact R%.
Ion exchange resins and activated carbons showed the highest
de- The Model has good performance based on RMSE and AUC
scores. Machine learning can reliably estimate PFAS removal by
adsorbents using process conditions as input. Model in-
terpretations have revealed the dominant factors thus the
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approach can be extended to other micropollutants and provides
a framework for adsorbent design [111].

One of the studies includes peanut husk-derived biochar used
for the adsorptive removal of PFAs and integrates the AI models
to interpret the data obtained. Specifically, ANNs, SVM, and
ANFIS were adapted to predict the optimal conditions for
adsorption by analyzing datasets. ANN was used to stimulate
the efficacy of PFOA removal was evaluated using an experi-
mental dataset. The root mean square error values were
computed for three distinct transfer functions, with the tansig
transfer function yielding minimal RMSE values. The SVM
model estimated the removal efficiency, leveraging RMSE and
R? values, with experiments conducted on MATLAB, resulting
in an execution time of 63.5 s. The root mean square error value
of 11.40 and the coefficient of determination (R*) value of 0.920.
Simultaneously, the Adaptive Neuro-Fuzzy Inference System
model was used for determining the correlation between the
experimental and predicted data, revealing a higher R* value of
0.99 and an RMSE value of 0.50. This is empirical evidence of
the robustness of the fuzzy inference system network in pre-
dicting PFOA elimination. Ultimately, the ANFIS and ANN
models exhibited superior accuracy in removal efficiency pre-
diction having an R? value of 0.99 whereas, the SVM model
displayed relatively weaker predictive capabilities with an R*
value of 0.920. Therefore, Machine learning significantly en-
hances the detection and adsorption capacities of modified
biochar for PFAS. By employing advanced algorithms re-
searchers could predict the PFOA or PFAS elimination. These
models analyze the influence of surface properties and envi-
ronmental factors, enabling the optimization of biochar modi-
fications to maximize PFAS sequestration. Machine learning
facilitates the rapid identification of key variables affecting the
adsorption, thereby streamlining the development of more
effective biochar [112].

10 | Conclusion and Future Prospects

This comprehensive review highlights biochar's potential as an
effective solution for addressing PFAS water contamination.
Biochar adsorption represents a highly promising and environ-
mentally friendly approach to mitigating PFAS contamination,
which poses significant toxicity risks to various organisms. A
comprehensive examination of the toxicological ramifications of
PFAS on both environmental and human health, alongside their
environmental persistence, has been elucidated. Additionally,
an evaluative review of the hazard index has been incorporated
that provides a comprehensive assessment of the cumulative
health risks posed by mixtures of PFAS. The modifications of
biochar, particularly through treatments such as HCl, HNO;, or
FeCl; greatly enhance its adsorption capacity. These modifica-
tions of biochar are bifurcated into two principal categories:
Physical and Chemical modifications. A thorough analysis of a
few case studies encompassing various modified biochar whose
adsorption capacities varied in the range of 79%-99.7% thus
providing a wide spectrum of biochar and their analysis.
A comprehensive study underlying adsorption isotherms, ki-
netics, and thermodynamics offers crucial insights into how
PFAS interact with biochar while providing insight into the

governing adsorption mechanisms, equilibrium time, and
spontaneity, feasibility of the adsorption process, respectively.
Utilizing machine learning models shows promise in predicting
PFAS removal rates based on various process factors like
adsorbent and adsorbate characteristics. Machine learning
Models provide a panoptic view for predicting and analyzing the
PFAS adsorption process and mechanism for further studies.
This review serves as a comprehensive resource for developing
optimized biochar-based solutions for sustainable and scalable
treatment of PFAS-contaminated water.
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