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Abstract

The role of compost and biochar in the recovery of As and Sb-polluted soils is poorly investigated, as well as the influence of
their application rates on soil health and quality. In this study, we therefore investigated the effectiveness over time (2, 4, and
6 months, M) of a municipal solid waste compost (MSWC) and a biochar (BC), applied at 10 and 30% rates, and of selected
mixtures (MIX; applied at 10 and 30% total rates, 1:1 ratio of MSWC and BC), on labile As and Sb in a polluted soil from an
abandoned Sb mine (Djebel Hamimat, Algeria). At the same timepoints, the amendment impact on soil chemistry was also
monitored, while the activity and diversity of the resident microbial communities were investigated at 6 M. After 6 months,
MSWC, BC, and MIX applied at the higher rate significantly increased soil pH (from 7.5 up to 8.2), while MSWC and MIX
increased soil EC to worrying values. The soil dissolved organic carbon content was also greatly increased by MSWC and
MIX at the higher rates (up to 50-fold), while BC showed a negligible impact. All the amendments reduced the concentration
of labile Sb in soil, with BC 10% being the most effective treatment (i.e., reducing labile Sb from~60 to 20 mg kg™ soil).
On the contrary, only BC and MIX applied at 10% significantly reduced labile As (e.g., from ~ 12 to 4 mg kg™' soil in the
case of BC). MSWC and MIX at both rates increased up to 2000-fold soil dehydrogenase activity, while BC showed a null
impact. The Biolog community level physiological profile and sequencing of the partial 16S rRNA gene showed a reduction
of catabolic activity and a-diversity and a change of the community composition of bacterial populations in treated soils.
Overall, MIX treatment, especially at 10%, was the most promising option for the chemical and biological recovery of As
and Sb-polluted soils.
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Introduction

Human activities such as mining and smelting of mineral
ores are the main causes of environmental pollution due to
the spread of potentially toxic elements (PTE). In Algeria,
mining dates back to the fifteenth century (Wadjiny 1998)
and for a long time has been one of the main activities
supporting the national economy. An example is the old
antimony mine in the Djebel Hammimat region (Northeast
Algeria; Oum El Bouaghi province), lying in a semi-arid
region approximately 90 km from Constantine, where
senarmontite (Sb,0;) was the main Sb ore extracted.
Although mining was stopped in 1952 (Rached-Mosbah
and Gardou 1988), very large quantities of spoil still pre-
sent at the mine site contain high levels of antimony (Sb)
and arsenic (As), up to 81,000 and 3,080 mg kg_l, respec-
tively (Benhamdi et al. 2014). Such levels represent a sub-
stantial environmental risk (USEPA 1998).

Antimony and arsenic were identified as priority pol-
lutants by the United States Environmental Protection
Agency, the European Union, and the World Health Organ-
ization (USEPA 2014; Toth et al. 2016). Accordingly, the
need for the recovery of Sb and As-polluted soils is urgent
and shared globally. In this context, the interest for in situ
remediation strategies, characterized by sustainable costs,
limited environmental impact, and high public acceptabil-
ity, has been constantly growing in the last decades (Garau
etal. 2021). Among these strategies, the use of organic or
inorganic amendments (e.g., compost, biochar, zeolite, red
mud, and ashes) seems particularly promising to reduce
the PTE mobility and/or bioavailability in soil (Garau et al.
2021).

In particular, municipal solid waste compost (MSWC)
can act as an effective PTE-immobilizing agent alleviat-
ing the stress for plants and (micro)organisms living in
polluted soils (El Rasafi et al. 2023). However, several
instances of increased solubility and extractability of PTE
in polluted soils treated with compost have been reported
(e.g., Alvarenga et al. 2008; Pardo et al. 2011). This is
particularly true in the case of soils contaminated by ani-
onic pollutants, such as Sb(V) and As(V), for which the
effectiveness of compost as PTE-immobilizing agent is
debated (e.g., Manzano et al. 2016; Guo et al. 2023). The
reason is the presence of a relevant negative charge in
compost, due to carboxylic and phenolic functional groups
of humic substances, which restricts the interaction with
Sb(OH),~ and H,AsO,/HAsO,>~ anions, i.e., the most
abundant As and Sb species in aerated soils (Diquattro
et al. 2018; Wenzel et al. 2001). Moreover, soluble organic
and inorganic anions within compost (e.g., fulvic acids,
sulfate, and phosphate ions) may be actively involved in
anion exchange reactions leading to mobilization into the
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soil solution of Sb(V) and As(V) adsorbed onto soil col-
loids (Wang and Mulligan 2009). Nevertheless, a positive
role of compost at reducing As and Sb soluble fractions
in soil, the most critical in terms of biological impact,
has been highlighted in several studies (e.g., Garau et al.
2019a, b; Diquattro et al. 2021; Caporale et al. 2023). It
also emerged from these studies a correlation between the
amounts of compost added and the reduction of labile As
and Sb in soil (i.e., the easily soluble and exchangeable
fractions), while the opposite was shown in other studies
(e.g., Hassan et al. 2023).

Biochar (BC) is another organic-based amendment that
can be employed for the recovery of PTE-polluted soils
(Abou Jaoude et al. 2019, 2022; Bolan et al. 2024). Biochar
capacity to immobilize PTE is mostly due to its microporous
structure, large surface area, and the presence of functional
groups that may retain positively and negatively charged pol-
lutants (Pinna et al. 2022). Specifically, oxygenated func-
tional groups (e.g., carboxyl, hydroxyl, and phenolic groups)
can be involved in outer and inner-sphere complexation of
metal cations, while the increase of soil pH (most biochars
are highly alkaline) may promote their precipitation (Fang
et al. 2016). The BC effectiveness at immobilizing anionic
contaminants, such as As(V) and Sb(V), was previously
reported, even if few studies addressed this issue (Fang et al.
2016; Pinna et al. 2022). Inner-sphere complexation of the
metalloids by ligand exchange reactions with surficial -OH
and/or -OH, groups, particularly of Fe/Al oxides within bio-
char, can be responsible for As(V) and Sb(V) immobilization,
along with their intraparticle diffusion and/or precipitation
with cations released by biochar (e.g., Ca’*) (Fang et al.
2016; Pinna et al. 2022). However, as mentioned for com-
post, a mobilizing activity of biochar towards Sb and As was
also reported (e.g., Beesley et al. 2014; Hua et al. 2019; Has-
san et al. 2023), while the combination of both amendments
seems important in terms of reduced metalloid mobility, soil
fertility, and functionality (Abou Jaoude et al. 2019; Qian
et al. 2023; Garau et al. 2024). The latter aspect, i.e., the com-
bined use of biochar and compost for the recovery of PTE
and specifically As and Sb-contaminated soils, is at present
poorly investigated, as well as the influence of the respective
application rates on soil health (Hassan et al. 2023; Song
and Zhang 2023; Garau et al. 2024). For instance, adding
25% biochar to green waste compost increased the photo-
synthetic pigment content and biomass of Centaurea cyanus
(Song and Zhang 2023), while mixing 20% compost with 6%
biochar revealed ideal for improving plant growth and land
reclamation in an As and Pb co-polluted soil (Hassan et al.
2023). Adding up to 80% compost mixed with biochar (in a
19:1 ratio, respectively) decreased the phytoavailable con-
centration of Al, Co, Cu, Fe, and Ni and increased Brassica
juncea growth in a mine soil (Rodriguez-Vila et al. 2016).
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Finally, adding a 10% mixture of compost and biochar (in a
1:1 ratio) to a PTE-polluted soil decreased Cd and Zn avail-
ability by ~86% but increased that of As by ~370% (Tang
et al. 2020).

Overall, the effectiveness of compost, biochar, or their
mixture to reduce labile As and Sb and improve the func-
tionality of polluted soils is not fully understood and needs
to be assessed on a case-by-case basis. At the same time, the
impact of these amendments on the activity and diversity of
the microbial community inhabiting the As and Sb-polluted
soils is poorly investigated. This is a key point when select-
ing options for soil remediation, as microbial activity is cru-
cial for soil organic matter turnover, biogeochemical nutrient
cycling, and plant growth (e.g., Wu et al. 2023; Daunoras
et al. 2024).

In this context, our study focused on the Sb and As-pol-
luted Djebel Hammimat mining area (Algeria) with the aim
to evaluate the impact of MSWC, BC, and their combina-
tion on different aspects (i.e., chemical and biological) of
soil health. In particular, the As and Sb mobility, as well
as different soil chemical, biochemical, and microbiological
characteristics, were investigated in mesocosm study for a
more complete evaluation of the amendment effectiveness
in view of its potential use for in situ remediation. To the
best of our knowledge, this is the first study investigating
the role of gentle remediation using compost and biochar
for the recovery of an As and Sb-polluted soil from Algeria.

Materials and method
Origin of soil and amendments and mesocosm setup

The soil studied was taken from the area of the abandoned
Djebel Hammimat antimony mine located in the North-
Eastern Algeria (35° 58’ 37" N — 7° 11’ 22" E). The area
is characterized by a semi-arid Mediterranean climate,
with an average annual temperature of around 15 °C and
44 mm annual precipitation (Zekri et al. 2019). The soil had
a sandy clay loam texture with 23% clay, 16% silt, and 61%
sand (Meghnous et al. 2019; USDA classification, 1975).
Soil samples (n=120;~2.5 kg each) were taken at random
(between 5 and 20 cm depth) from the largest mine spoil
(~1 ha) in the most Sb-contaminated area of Djebel Hammi-
mat (Benhamdi et al. 2014). The samples were then pooled
and blended in the laboratory to obtain a composite soil.
The MSWC used in the study was made at the Ecole
Nationale Supérieure de Biotechnologie (ENSB) in Con-
stantine (Algeria) by mixing municipal waste, green waste,
and sheep manure. The BC was produced from tree and
shrub waste with a pyrolysis temperature of 500 °C. Both
MSWC and BC were ground and sieved to <2 mm and then

Table 1 Chemical characteristics of the amendments used

Biochar Compost
pHH,O 8.32+0.02 8.50+0.10
EC (dS-m™) 0.28+0.01 9.13+1.70
C org (%) 97.1+0.22 37.9+0.06
DOC (g-kg™") 0.06+0.00 4.7+0.00
Total N (%) 0.50+0.00 2.77+0.05
P-Olsen (mg-Kg™") 87.5+£0.00 354+0.00
CEC (cmol(+)-Kg™) 20.3+£0.00 78.6+0.00
As (mg-Kg™") n.d n.d
Sb (mg-Kg™) n.d n.d

added to mesocosms. The main chemical characteristics of
the MSWYV and BC are shown in Table 1.

The composite soil was used to set up 21 mesocosms
(5 kg each) including the following seven treatments, each
replicated three times: untreated mining soil (Control);
10% (w/w) and 30% (w/w) municipal solid waste compost
(MSWC 10% and MSWC 30%); 10% (w/w) and 30% (w/w)
biochar (BC 10% and BC 30%); 5% (w/w) compost+ 5%
(w/w) biochar (MIX 10%); and 15% (w/w) compost+ 15%
(w/w) biochar (MIX 30%). Mesocosms were incubated for
a total 6 months during which they were kept at room tem-
perature (25 °C) and constant humidity (15%). The choice of
the amendment rates (i.e., higher than those usually reported
in literature) was made to deepen our understanding on the
role of MSWC and BC in the recovery of metalloid-polluted
soils (as mentioned this point is currently debated). It was
also made to assess in particular whether such rates could
have beneficial or negative effects on soil quality in terms of
chemical, biochemical, and microbiological characteristics.

Soil chemical analyses

After 2, 4, and 6 months (M2, M4, and M6), duplicate soil
aliquots were collected from each mesocosm and subject
to chemical characterization. Briefly, soil pH (ISO 2021)
and electric conductivity (EC) (ISO 1996) were deter-
mined in 1:5 soil to water suspensions. Potential cation
exchange capacity (CEC) was determined using the
BaCl,-triethanolamine method (ISO 2018), while organic
C and total N were quantified by a CHN analyzer (Leco
CHN 628) with LCRM no. 502-697 and CRM no. 502-814
as calibration samples for soils and amendments, respec-
tively. Dissolved organic carbon (DOC) was estimated in
1:10 w/v soil to water suspensions as previously described
(Manzano et al. 2020). The pseudo-total concentration of
As (As ) and Sb (Sb ) was quantified after microwave
soil digestion (Milestone ultraWAVE 2 SRC Technology)
with reverse aqua regia (HNO; and HCI1 3:1 ratio), using
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a PerkinElmer ICP-OES (Avio220 Max). The NIST-SRM
2711A standard reference material was included for quality
control. The concentration of labile (i.e., water-soluble and
readily exchangeable) As and Sb was determined by treating
1 g of soil with 25 mL of an (NH,),SO, solution for 4 h at
20 °C (Wenzel et al. 2001) and quantifying As and Sb in the
extracted solutions as previously reported.

Analysis of soil biochemical characteristics
and community-level physiological profile

Selected soil enzyme activities, such as dehydrogenase
(DHG), B-glucosidase (GLU), and urease (URE), were
determined according to Alef and Nannipieri (1995) in
duplicate soil samples collected from each mesocosm at M6.
Briefly, DHG activity was quantified (as triphenyl formazan
released; TPF) after incubation of soil aliquots with a triph-
enyltetrazolium chloride solution for 24 h at 30 °C. GLU
activity was measured (as p-nitrophenol released; PNP) after
incubation of soil aliquots with p-nitrophenyl glucoside for
1 hat 37 °C, while URE activity was quantified (as ammonia
released) after incubation of soil aliquots with urea for 2 h
at 37 °C.

The community-level physiological profile (CLPP) of
soil microbial communities inhabiting the different soils was
determined at M6 by means of Biolog EcoPlates™ (Biolog
Inc., Hayward, CA, USA). Briefly, soil aliquots (10 g) from
each mesocosm were mixed with a sterile sodium pyroph-
osphate solution (2 g L™!), and the soil suspensions were
shaken for 30 min at 120 rpm and 25 °C. Tenfold dilutions
were then obtained using a sterile saline solution (0.89%
NaCl) which was centrifuged (250 g, 2 min), filtered (What-
man grade 40), and used to inoculate the Biolog Ecoplate
wells (120 pL each). The Biolog EcoPlate is a 96-well micr-
otiter plate containing 31 different carbon sources (Insam
1997) and a control well without any C sources (all repli-
cated 3 times). A redox dye (i.e., tetrazolium violet) was
incorporated in each well to reveal C source consumption.
To quantify this latter, the inoculated plates were incubated
in the dark at 25 °C for 96 h, and during this time, the opti-
cal density at 590 nm (OD 5q) of each well was determined
every 24 h by means of a Biolog MicroStation microplate
reader (Biolog, Hayward, CA, USA) (Diquattro et al. 2021).

The raw OD 54, values were used to determine the fol-
lowing indexes as described by Garau et al. (2023): the aver-
age well color development (AWCD), i.e., a measure of the
potential metabolic activity of the microbial community
(Eq. 1);

AWCD = 37 (Ri-0)/31 )
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where Ri is the absorbance value (OD sq) in each well, C
is the OD s, of the control well, and 31 is the number of C
substrates in the plate; the Shannon—Weaver index (H), i.e.,
a measure of the catabolic diversity of the microbial com-
munity (it takes into account the diversity and evenness of
C source consumption) (Eq. 2);

Hr ==Y (pi(Log pi)) ®)

where pi is the OD sq, ratio of each of the 31 C substrates
to the total absorbance value of the plate; the richness (S),
i.e., the number of C substrates used (OD 5¢,>0.15) by the
microbial community.

Standardized OD s, values (i.e., OD 5o/ AWCD) were
used for principal component analysis (PCA), for which
the variance/covariance matrix was employed (Garau et al.
2023), to further explore possible differences between soil
microbial communities. The CLPP data presented refer to
the 72-h incubation time since this timepoint provided the
best discrimination between treatments.

Molecular analysis of soil bacterial communities,
bioinformatics, and biostatistics

Soil DNA extracts of each mesocosm collected at M6
using the DNeasy PowerSoil Pro Kit (Qiagen, Milan) were
provided to the Novogene sequencing center (Cambridge,
UK) for the performance of amplicon sequencing accord-
ing to their Illumina MiSeq 2 X 300 bp in-house protocol
for amplicons obtained with the V4 515F(5’-GTGCCA
GCMGCCGCGGTAA-3")/806R(5'-GGACTACHVGGG
TWTCTAAT-3") primer pair (Caporaso et al. 2012).

Quality assessment and control (QC) was performed on
the resulting sequence reads with the dada2 v1.28.0 (Callahan
et al. 2016) package of the R software v4.1.3 (R Core Team,
2023) prior generating the amplicon sequence variant (ASV)
composition matrices of the samples as described here. Qual-
ity control included the sequence trimming at the first instance
of very low bases (Phred Q values of 2) starting from the
sequence 3’ end. Other read filtering-out cutoffs were those of
the minimum allowed estimated error per read of 2 and mini-
mum post-trimming length of 150 bp. Moreover, we removed
read-pairs where the reconstruction of the amplicon of ori-
gin via merging without mismatches was impossible. A final
quality control step before obtaining the matrix with the high
quality ASVs was that of the removal of off target taxon ASVs
(non-prokaryotic, unclassified, mitochondrial, or chloroplast).
ASV taxonomic classification was performed with the dada2
module of the Bayesian Classifier (Wang et al. 2007) using
the Silva v138 reference database for a bootstrap cutoff value
of 80% (Yilmaz et al. 2014).
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We performed a series of a-diversity indices using the
Vegan v2.6-4 (Dixon 2003) and the entropart v1.6—13
(Marcon and Hérault 2015) R packages. We counted the
observed richness (representative of all community), we
calculated Shannon’s index (representative of low in domi-
nance ASVs) and the Reciprocal Simpson index (represent-
ative of intermediate in dominance ASVs), and we calcu-
lated Fisher’s a index (representative of highly dominant
ASVs) and the sample coverage with the Good’s cover-
age estimate (Good 1953). We further used the agricolae
v1.3.7 (de Mendiburu 2021) R package for performing
analysis of variance (ANOVA) using the Tukey’s post hoc
test to compare the a-diversity indices. The non-parametric
Kruskal-Wallis and the Wilcoxon rank sum analysis were
used respectively in the cases where the ANOVA condi-
tions were not met. Differential abundance tests for iden-
tifying treatment associated taxa were performed with the
Kruskal-Wallis (k test-factor levels, with k> 2) and the
Wilcoxon rank sum (pairwise) analysis.

B-diversity analysis was based on non-metric multidi-
mensional scatterplots (descriptive analysis), while permu-
tational multivariate analysis of variance (PERMANOVA)
and canonical analysis were performed as hypothesis testing
approaches. These tests were done with the vegan v2.6.4
package (Oksanen et al. 2020) of R. Finally, modeling and
classification-based hypothesis testing was further per-
formed with random forests as implemented by the random-
Forest v4.7-1.1 (Liaw and Wiener 2002) package in R. The
raw sequence reads were submitted at the Sequence Read
Archive of the National Center for Biotechnology Informa-
tion and are publicly available under the BioProject number
PRINA1133654.

Data analysis

Soil chemical, biochemical, and microbiological data (pre-
sented as mean values + standard errors) were analyzed by
one-way ANOVA (P <0.05) followed by post-hoc Fisher’s

least significant difference (LSD) test to investigate possi-
ble significant differences between treatments (P <0.05).
Canonical correlation analysis was used to check for signifi-
cant relationships (P <0.05) between chemical parameters
or between these latter and biochemical ones. Data analysis
was carried out using the NCSS 2007 software (v 7.1.21).

Results and discussion

Influence of MSWC and BC on soil chemical
parameters

Two selected amendments, i.e., a MSWC and a BC, were
used alone or mixed for the recovery of a mining soil
(pH~7.5) contaminated by Sb and As. The amendment
influence on the main soil chemical characteristics was
monitored at different timepoints, i.e., M2, M4, and M6,
showing a substantial evolution of the soil chemistry during
time (Figs. S1-S4).

While at M2, all the treatments significantly increased
soil pH, at M6 only MSWC and BC added at 30%, and both
MIX treatments showed higher pH values than control soil
(Table 2, Fig. S1A). This was mainly due to the high pH of
both MSWC and BC (8.5 and 8.3 respectively; Table 1), to
the amounts of MSWC and BC added (e.g., a steady reduc-
tion of the pH occurred during time in soils treated with 10%
MSWC and 10% BC; Fig. S1B) and/or to their interaction
when mixed (Ho et al. 2022; Bolan et al. 2023).

At M6, soil EC was significantly increased in all treated
soils, particularly in those treated with compost (alone or
mixed with biochar; Table 2). This was somehow expected
given the high soluble ion content of the compost used
(Table 1). The EC variation during the 6 months equilibra-
tion time was limited except for BC (alone), whose EC val-
ues slowly decreased during equilibration (Figs. S2A and B).
Values recorded at M6 in 30% MSWC and 30% MIX were
approx. 7.3 and 5.0 dS m™!, respectively, posing potential

Table 2 Chemical characteristics of the different soils at time M6. Different letters in a column denote statistically significant differences accord-

ing to Fisher’s LSD test (P <0.05)

Soil pH EC (dS'm™!) Organic C (%) DOC (gkg™!) Total N (%) CEC (cmol(+)  Astot (mgkg™') Sb tot (mgkg™")
kg™
Control 7.47+0.04° 2.41+0.01"  3.97+0.05" 0.02+0.00¢ 0.08+0.00° 13.1+1.27" 175420 21,552 +2540
MSWC 10% 7.31+0.10¢ 3.92+0.02° 6.93+0.17° 0.38+£0.00° 0.43+0.00° 22.5+0.69 167 + 14 21,324 +2700
BC 10% 7.22+0.05¢ 2.50+0.04° 13.8+0.51°  0.02+0.00° 0.15+0.00° 14.8+0.21° 114+6 19,967 +3100
MIX 10%  7.64+0.07° 2.99+0.019 11.6+024® 0.16+0.00¢ 026+0.01¢ 15.4+0.29% 122+18 19,926 + 660
MSWC 30% 8.01+0.04* 7.30+0.01* 15.6+0.37° 1.11+0.03* 1.09+0.02® 36.9+1.36° 96+9 14,211+ 840
BC 30% 8.16+0.02* 2.55+0.02° 33.1+1.94*  0.04+0.00° 0.23+0.04% 17.1+0.34¢ 96+6 15,225 +4290
MIX 30 8.11+0.00° 4.71+0.02° 23.7+1.05> 0.56+0.01° 0.62+0.01° 29.3+0.55" 128+1 14,145 +290
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constraints to the growth of salt sensitive plants (e.g., gly-
cophites reduce their yield by ~50-80% in the 4-8 dS m™!
range; Navarro-Torre et al. 2023). This could be a problem
if 30% MSWC or 30% MIX are considered for assisted phy-
toremediation programs, since only salt tolerant halophytes
could be grown in the soil considered.

Organic C and total N showed a similar trend at all
timepoints (not shown), mainly reflecting the C and N
content of the MSWC and BC used (Table 1). Accordingly,
BC 30% and MSWC 30% showed the highest content of
organic C and total N, respectively at 6 M (Table 2). Such
organic carbon increase can have a relevant impact, e.g.,
in several instances, this was positively correlated with
soil biodiversity and plant resilience to pathogens (Chen
et al. 2020).

The DOC content in soil increased proportionally to the
amount of compost added, reaching values up to~1 g kg™!
soil in the 30% MSWC treatment at 6 M (Table 2). As
opposed, BC had a negligible impact on such parameter.
This was due to the high DOC content of MSWC which
was ~ 70-fold higher than BC (Table 1). Such DOC increase
occurring in a polluted or degraded soil can be regarded
as beneficial, as this parameter is positively correlated with
microbial growth and activity, which play an important role
in the recovery of soil health and functionality (Garau et al.
2021; McBride et al. 2023). The substantial DOC reduction
during the equilibration time in MSWC-treated soils likely
indicated an active consumption of C sources (within DOC)
by the relative microbial communities, and this could sug-
gest an increase of the microbial population in such soils
(Fig. S3A and B).

A significant increase of CEC was recorded in treated
soils vs control at all timepoints (Fig. S4A), with MSWC
(~79 cmol,, kg CEC; Table 1) showing an expected
greater impact than BC (~20 cmol ) kg CEC; Table 1),
probably due to the higher presence of negatively charged
carboxylic and phenolic groups in the compost. At M6,
30% MSWC and 30% BC increased the soil CEC by
approx. 3- and 1.3-fold, respectively (Table 2). A certain
reduction of CEC was also recorded in BC-treated soils
during the equilibration time (Fig. S4A and B). This could
be due to some BC micro and/or mesopores clogging by
colloidal soil particles during time which prevented the
access to a few cation exchange sites (Tang et al. 2021).
Given the low CEC of the polluted soil (i.e., 13 cmol,,
kg), BC and MSWC appeared as useful treatments to
enhance its fertility and promote its functional recovery.
However, while such increased CEC in the amended soils
can be relevant to immobilize PTE in cationic forms (Li
et al. 2017; Silvetti et al. 2017), its impact on anionic
PTE such as As and Sb is essentially unclear (Garau et al.
2019a, b; Silvetti et al. 2017) .
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Influence of MSWC and BC on labile As and Sb in soil

The pseudo-total concentrations of As and Sb in the
mining soil investigated were very high, i.e.,~175 and
21,550 mg kg™, respectively (Table 2), and largely exceeded
the threshold and the higher guideline values for metal(loid)
s in soil established by the Finnish legislation (Ministry of
the Environment—MEF, 2007). The Finnish threshold (5
and 2 mg kg~! for As and Sb, respectively) and guideline
values (100 and 50 mg kg~! respectively) were chosen as
a reference since they are very close to the mean values of
different national systems in Europe and India (Toth et al.
2016). According to this reference system, the As and Sb
pollution in the studied soil presents relevant ecological and
health risks (Toth et al. 2016).

To evaluate the MSWC and BC effectiveness in the recov-
ery of such polluted soil, the labile fractions of As and Sb
were investigated at different timepoints, i.e., M2, M4, and
M6. Such labile fractions, including both water-soluble and
easily exchangeable As and Sb, are those most mobile and
relevant from an ecotoxicology viewpoint since they can
easily come in contact with soil (micro)organisms as well as
reach surface and groundwater (Garau et al. 2021).

Labile As

At M2, all the amendments significantly reduced labile
As, with 10% BC showing the higher effectiveness (Fig. 1
and S5). However, substantial changes occurred during the
contact time, which mainly regarded the soils treated with
the higher amounts of compost, i.e., labile As strikingly
increased in MSWC 30% and MIX 30% (Fig. 1). At M6, only
BC 10% and MIX 10% significantly reduced labile As by 70
and 27%, respectively (vs control), while all 30% treatments
increased its concentration (albeit not significantly), e.g.,
up to~20% for MSWC 30% (Fig. 1). This equals to~19 kg
reduction of labile As per hectare in the case of BC 10% and
to~ 6 kg increase in the case of MSWC 30% (for a 0.2 m soil
depth and 1200 kg ha™! density). Such overall increase of
labile As in the presence of compost was previously reported
(e.g., Beesley et al. 2014; Manzano et al. 2016; Silvetti et al.
2017; Hassan et al. 2023) and was likely due to competition
phenomena for the same adsorption sites on soil surfaces
of negatively charged molecules (organic and inorganic)
released by MSWC, e.g., DOC species and/or sulfate and
phosphate ions. This seems supported by the very high DOC
content of the MSWC investigated (Table 1), whose role in
As mobilization was previously highlighted (e.g., Bauer and
Blodau 2006; Beesley et al. 2014). The reduction of DOC
in compost-treated soils during time (from M2 to M6; Fig.
S3), which was accompanied by a progressive increase of
labile As, seems to support this view, i.e., the involvement
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of some DOC species in anion exchange reactions at the
expenses of the non-specifically adsorbed arsenate anions
(note that some other DOC compounds could have been used
by soil microorganisms for growth and multiplication). This
was particularly evident for MSWC 30% and MIX 30% for
which the correlation values between DOC and labile As
were highly significant (r= —0.79, P <0.0001 for MSWC
30%; r=—0. 90, P<0.000001 for MIX 30%). Moreover,
also the formation of soluble ternary As-(Me)-DOC com-
plexes (Wang and Mulligan 2009), as well as the pH increase
recorded in soils treated with the higher amendment rates
(Martina-Prieto et al. 2018), could be partly responsible for
the observed results.

The results also highlighted a substantial As-immobi-
lizing capacity of BC, which supported previous findings
(Pinna et al. 2022). However, BC effect was greatly depend-
ent on the amount added, i.e., 10% was effective but not
30% (Fig. 1). Given that BC As-immobilization mechanisms
(outer and inner-sphere complexation, intraparticle diffusion,
and/or precipitation; Li et al. 2017) are expected to be the
same in the two cases, what observed could be due to the
higher alkalinization of BC 30% vs BC 10% (Table 2). This
also applies for the MIX treatments, where MIX 10% sig-
nificantly reduced labile As but MIX 30% did not (Fig. 1).
Overall, the higher As-immobilizing capacity of BC 10%
compared to MSWC was likely due to the BC microporous
structure within which H,AsO, /HAsO,*~ anions can dif-
fuse, be involved in complexation reactions, and/or precipi-
tate with divalent metal cations (e.g., Ca>", Pb**; Pinna et al.
2022).

Labile Sb

Differently from As, both amendments and their mixtures
significantly reduced labile Sb at all the timepoints
considered, and limited changes of its concentration
occurred in the amended soils during time (Fig. S6). At
M6, BC 10% was the most effective at reducing labile Sb
(~65% vs control), followed by MIX 10%, BC 30% and MIX
30% (~45%), and both MSWC (~27%) (Fig. 2). This equals
to~96 and 41 kg reduction of labile Sb per hectare in the
case of BC 10% and for both MSWC, respectively (for a
0.2 m soil depth and 1200 kg ha™! density). Considering
that labile As and Sb are co-adsorbed by BC 10% and
MIX 10%, these treatments proved to be the most effective
at reducing the potential bioavailability of anionic PTE.
These results support earlier reports showing the capacity
of BC to retain arsenate and antimonate anions (e.g., Abou
Jaoude et al. 2019, 2022; Pinna et al. 2022; Khan et al.
2023; Garau et al. 2024). However, mobilization of soil
Sb after BC addition was reported in some instance (e.g.,
Hua et al. 2019) suggesting that biochar feedstock (and
pyrolysis conditions) could have a great influence on its
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Fig.2 Concentrations of labile Sb determined at M2, M4, and M6 in
the different soils. For each timepoint, different letters on top of each
bar denote statistically significant differences according to Fisher’s
LSD test (P<0.05)

anion fixing capacity. Other than this, such inconsistent
BC influence on Sb mobility can be due to the relatively
short incubation times used in the majority of studies
(i.e.,~1-3 months; Hua et al. 2019; Hu et al. 2024). For
instance, Hu et al. (2024) recently showed that two different
BCs gradually transitioned from initial mobilization, or poor
immobilization, to eventual successful immobilization of As
and Sb after a 2-year addition to different polluted soils. This
was explained with a pH decline over time in BC-treated
soils (which was also observed in our study, especially
for BC 10%; Fig. S1A and S1B), with the oxidation of the
s0il/BC carbon fractions enhancing surface complexation
of both oxyanions and cations, and with a direct metalloid
adsorption by BC. Interestingly, while MSWC showed a null
capacity to adsorb As (Fig. 1), it was effective at fixing Sb
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(Fig. 2). This was previously observed in batch experiment
(carried out at acidic pH) where it was shown the role of
compost humic acids and Ca?* ions in the fixation (or
co-precipitation) of the Sb(OHg)™ antimonate ion (Diquattro
et al. 2018). Moreover, the same study showed that the
majority of Sb was bound to MSWC through stable inner-
sphere complexes and/or immobilized as sparingly soluble
precipitates. The abovementioned mechanisms could be
also relevant to explain our results, as well as the compost
Sb-immobilization capacity reported so far in a few papers
(Abou Jaoude et al. 2019; Diquattro et al. 2021).

Influence of MSWC and BC on soil enzyme activities

Soil enzyme activities can be greatly affected by PTE as
these latter may interact with the enzyme active sites or the
enzyme—substrate complexes and/or denature the protein
conformation, leading to reduced activity in contaminated
soils (Aponte et al. 2020). Moreover, depressing RNA in
microbial cells is another mechanism by which PTE may
affect enzyme production (Kapoor et al. 2015). Given their
fundamental role in the cycling of major soil nutrients (e.g.,
C, N, and P), enzyme activities can be considered as good
indicators of soil health and/or the effectiveness of a recov-
ery intervention (Garau et al. 2021).

Dehydrogenase (DHG) activity, which indicates the
ability of selected intracellular enzymes to oxidize organic
molecules, was determined in all soils after 6 months of
incubation to quantify the overall oxidative activity of the
respective resident microbial populations (Nannipieri et al.
2018). At M6, DHG dramatically increased up to ~3800-
fold in soils treated with MSWC vs control soil, while no
effect was recorded in BC soils (Fig. 3). Similarly, DHG
increased by ~35- and 1400-fold in soils treated with 10%
and 30% MIX, respectively (Fig. 3). These results clearly
demonstrated that the MSWC investigated was able to
enhance the oxidative metabolism of soil microbial com-
munities. This was likely due to the relevant presence of
easily usable C (DOC in particular; Fig. S3) and N com-
pounds within compost (Table 1) that stimulated microbial
growth and activity in the polluted soils. The relevance of
DOC in feeding microbial growth and DHG activity was
supported by the significant correlation between these soil
parameters (r=0.99; P <0.0000001). Such DHG trend in the
presence of compost was somehow expected as it was often
recorded in polluted soils amended with MSWC (e.g., Garau
et al. 2019a, b; Tang et al. 2020; Garau et al. 2024). At the
same time, the significant reduction of labile Sb observed
in both MSWC and MIX soils (vs control) further contrib-
uted to DHG increase, since more metabolic energy was
likely devoted to microbial growth and multiplication rather
than Sb detoxification processes (Aponte et al. 2020; Garau
et al. 2021). It is noteworthy that BC had no effect on DHG
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Fig.3 Dehydrogenase (DHG), urease (URE), and f-glucosidase
(GLU) activities determined at M6 in the different soils. For each
enzyme activity, different letters on top of each bar denote statistically
significant differences according to Fisher’s LSD test (P <0.05)

despite it showed the higher effectiveness (when added at
10% rate) at immobilizing both As and Sb (Figs. 1 and 2).
This was previously observed (e.g., Diquattro et al. 2024;
Tang et al. 2020) and could be due to the high presence of
recalcitrant C in BC, to its low N and DOC content, and to
its adsorption capacities towards important nutrients in soil,
e.g., N, K (Manzano et al. 2020).

URE and GLU activities, catalyzing the hydrolysis of
urea to release NH4+ ions, and the cleavage of cellobi-
ose to release glucose molecules, respectively, followed
essentially the same trend observed for DHG (Fig. 3).
Similarly to DHG, both enzyme activities were detected
at very low level in the control soil confirming their sen-
sitivity to metalloids (Aponte et al. 2020). This can have
relevant environmental implications since URE and GLU
are involved in selected steps of the N and C cycles in
soil such as urea and cellulose degradation, respectively
(Turner et al. 2002; Kumar et al. 2022). Striking increases
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of URE and GLU were observed in soils where compost
was added (i.e., MSWC and MIX), with MSWC 30% being
the most effective treatment, i.e., URE activity increased
up to ~ 800-fold and GLU up to 67-fold (vs control) in this
soil (Fig. 3). Such enhanced activities could be due to a
structural change of soil microbial community induced by
MSWC which could lead to a specific enrichment of URE
and GLU producing microorganisms (Garau et al. 2019a,
b; Heisey et al. 2022). Moreover, what observed could be
explained (at least in part) with a more abundant microbial
community in MSWC-treated soils (as supported by our
DHG data) which implies more GLU and URE released.
This seems supported by the correlation between DOC
(which feeds microbial growth) and URE and GLU, i.e.,
r=0.96 and 0.98, respectively (P <0.0000001). In both
cases, the reduction of labile Sb in the soils treated with
MSWC (alone or mixed with BC) is deemed important
as URE and GLU, as well as DHG, have been previously
found highly negatively correlated with the concentration
of labile metalloids in soil (Garau et al. 2019a, b).

Like DHG, biochar addition to the polluted soil had a
negligible impact on URE activity and no impact on GLU
(Fig. 3). This was previously observed and explained in
different ways such as the following: a toxic effect of
biochar towards soil microorganisms and biochar adsorp-
tion of enzyme co-factors, enzymes, and/or substrates
(Chen et al. 2013; Tang et al. 2020; Garau et al. 2023).
While biochar revealed very useful at reducing the labile
concentration of As and Sb (especially when added at
the lowest rate), it showed a negligible influence on the
biochemical activities investigated raising important
questions on its suitability for the functional recovery of
metalloid-polluted soils.

Influence of MSWC and BC on the microbial
community level physiological profile

The Biolog EcoPlate CLPP was employed to investigate the
possible impact of MSWC and BC (alone and mixed) on
the structure of soil microbial community within the con-
taminated soil. This latter impact was evaluated in terms
of potential catabolic activity and diversity (Urbaniak et al.
2024). Such approach, which primarily assesses changes
in carbon source utilization by microbial communities,
revealed useful to ascertain the impact of organic amend-
ment on soil microbial consortia (e.g., Li et al. 2017; Garau
et al. 2019a, b).

The CLPP analysis carried out at M6 showed a reduc-
tion of the potential catabolic activity and diversity of the
microbial communities of amended soils (Fig. 4). Spe-
cifically, lower carbon source utilization values (AWCD)
were recorded in all treated soil vs control (though not
always statistically significant), with reductions ranging
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from the different soils at M6. For each parameter, different letters on
top of each bar denote statistically significant differences according to
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from ~ 8% for MSWC 10% to 85% for MSWC 30%. Alto-
gether, the BC impact on the AWCD was more limited,
i.e.,~55% less vs control, irrespective of the amend-
ment rate (Fig. 4). Such decrease in the overall micro-
bial activity (AWCD) was accompanied by a parallel
decline of the catabolic diversity as highlighted by the
Shannon—Weaver index and the richness values. The for-
mer indicated a negative influence of the higher amend-
ment rates (30% MSWC, BC, and MIX) on the catabolic
diversity of soil microbial communities, while the lat-
ter showed a clear reduction of the number of C sources
utilized by the microbial communities of the amended
soils (Fig. 4). These results suggest a negative influence
of the tested amendments on the soil metabolic activ-
ity, although this is not necessarily the case. It has been
shown previously that Biolog CLPP mainly reflects the
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activity of a fraction of the soil microbial community,
i.e., fast-growing culturable Proteobacteria well adapted
to the high substrate concentrations within the EcoPlate
wells (Llad6 and Baldrian 2017; Garau et al. 2007). In
this sense, the results obtained in this study could be
explained by the enrichment of selected microbial taxa,
in MSWC and BC-treated soils, not responsive to the Eco-
Plate environment. This view seems supported, at least for
compost-treated soils, by the high DHG, URE, and GLU
data which showed (as opposed to Biolog CLPP) a signif-
icant increase of microbial activity in the amended soils.
Considering all the above, the most likely interpretation
of the obtained Biolog-derived indexes is a significant
influence of MSWC and BC on the structure of the soil
microbial community whose implications for soil func-
tioning need to be further explored. The PCA analysis
of standardized C source utilization data somehow sup-
ported this view showing a clear separation (along PC1
and PC2) of microbial communities from soils amended
with 30% MSWC and 30% BC vs control, while those
from the other treatments showed a certain degree of
overlapping (Fig. S7). C substrates more correlated with
PC1 (which explained 28% of the variance) were tween 40
(r=0.56), tween 80 (r=0.87), D-mannitol (r= —0.53),
and y-hydroxybutyric acid (r= — 0.42), while those more
correlated with PC2 (which explained 22% of the vari-
ance) were pyruvic acid methyl ester (r=0.80), tween 40
(r=0.53), D-cellobiose (r= —0.77), N-acetyl-D-glucosa-
mine (r= —0.50), y-hydroxybutyric acid (r= —0.63), ita-
conic acid (r=0.72), and L-serine (r= —0.41).

Influence of MSWC and BC on the molecular
diversity of soil bacterial communities

A total of 1,821,755 read pairs were obtained, while
832,912 high quality sequences passed the QC pipeline
and were used in the subsequent analysis (Table S1).
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The devoted sequencing effort was sufficient for uncov-
ering 97.6% of the existing microbial diversity according
to Good’s coverage estimate (Table S2). Overall, MSWC
(either alone or in mixtures) had a negative impact on
all a-diversity indices tested, with the indices of Shan-
non and Inverse Simpson showing significant differences
(Fig. 5). This can be due to the very high DOC and OM
content of MSWC which likely promoted the growth of
selected bacterial taxa which became dominant reducing
a-diversity. Moreover, compost is not a sterile medium and
its native bacterial load could have had an important role
in reshaping soil microbial community (especially when
it was added at the higher rate) and reducing a-diversity.
Interestingly, the molecular diversity data are supported
by the Biolog CLPP which highlighted a parallel reduc-
tion of the potential catabolic activity of soil microbial
communities in compost-treated soils, which is compatible
with a decline of the bacterial a-diversity. The microbial
community compositions showed distinct patterns among
treatments, particularly in the cases where MSWC was
present (Fig. S8). When analyzed at as high resolution
as that of the family level, multivariate hypothesis test-
ing, performed via PERMANOVA and canonical analy-
sis (RDA), showed significant effects of all treatments
(P=0.001) with the combined effects being the strongest
(PERMANOVA R?>=78.05%; Fig. 6A) and the MSWC
effect being approximately equally strong (PERMANOVA
R*=73.91%:; Fig. 6B), while a significant, yet, quite lower
effect was observed for BC (PERMANOVA R*=47.66%:;
Fig. 6C).

Important families were selected using the Boruta algo-
rithm (a random forest-based algorithm that allows the
discrimination of “stochastic” vs “deterministic” features/
ASVs). These were used for generating the NMDS scatter
plots and performing the PERMANOVA hypothesis testing
and generating random forest models (Fig. S9). Accord-
ing to the generated reduced dataset analysis, taxa mostly
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associated with MSWC (when the combination of MSWC
and BC were tested) were those including Micrococcales,
Bacillales, Fodinicurvataceae, Sphingomonadaceae, Rho-
dobacteraceae, and Thermomonosporaceae (Fig. S9). The
complete lists of taxa of the reduced datasets are provided
in Tables S3-5 of the accompanying Excel file.

Taken together, these results showed that high rates of
MSWC can have a detrimental effect on the a-diversity
of soil bacterial community and a strong impact on
B-diversity. Especially the former point is noteworthy since
a positive effect of compost on the bacterial a-diversity
is generally recognized, at least for unpolluted soils
(e.g., Chen et al. 2024). In this sense, our results could
be explained by both the high rates of MSWC used and/
or by the significant metalloid pollution. The implications
of such reduced a-diversity and change of community
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composition on plant growth and soil health resilience
warrant further investigation.

Conclusions

After 6 months of soil-amendment contact, 10% BC or 5%
BC mixed with an equal amount of MSWC (i.e., MIX 10%)
revealed successful at lowering the labile concentration of
both Sb and As present in a dismissed Sb mining site. The
other tested treatments, i.e., MSWC and BC (alone and mixed)
at higher rates, were useful to decrease labile Sb but not As.
This was attributed to the high DOC content of MSWC, the
alkalinity of both amendments, and the ability of compost
humic acids to immobilize the antimonate [Sb(OH)™] ion
but not the arsenate [H,AsO, /HAsO,>"] ones.
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Significant changes in the dynamics of labile pollut-
ants and soil chemical properties were recorded dur-
ing the soil-amendment contact time, highlighting that
short contact periods could be unsuitable to evaluate the
amendment impact on metalloid-polluted (or unpolluted)
soils. This could explain the positive role of compost in
reducing labile As, as observed in some previous studies.
Six months after the amendment addition, MSWC greatly
stimulated soil biochemical activity and increased EC,
while BC had a negligible influence on both. On the con-
trary, both amendments reduced the potential catabolic
activity and diversity of soil microbial communities, sug-
gesting an impact of MSWC and BC on their structure.
This was supported by the ASV data of the 16S rRNA
gene V4 region, which showed a reduction of the bacte-
rial a-diversity in soils treated with MSWC and BC, and a
significant impact of both amendments on the community
composition.

While BC 10% and MIX 10% revealed the best treat-
ments for the chemical recovery of As and Sb-polluted
soils, only the latter had a concurrent positive impact on
soil biochemistry and could be suggested as a first choice
for the recovery of metalloid-polluted soils. However, the
implications for plant growth and soil health resilience of
the reduced bacterial a-diversity and community structure
in MSWC-amended soils need further studies. Moreover,
the practical adoption of MIX 10% for the recovery of As
and Sb-polluted soils could be currently limited by the high
BC costs. In this regard, the effectiveness of MIX con-
taining economically sustainable BC amounts should be
explored. Overall, the study supports the emerging view
that combining MSWC and BC has greater potential to
improve the soil chemical and biochemical status rather
than their separate use.
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