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ABSTRACT

Projected climate change impacts, such as delayed rainfall and increased drought frequency,
threaten rice cultivation and global food security. This study evaluated the effects of water
scarcity at critical growth stages and biochar application on greenhouse gas (GHG) emissions,

yield, and soil health in Central Thailand using the drought-tolerant cultivar Pathum Thani 1.
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Treatments included continuous flooding and water scarcity during tillering, reproductive, or
both stages, with and without biochar, across wet and dry seasons. Water scarcity significantly
reduced methane (CH4) emissions by inhibiting hydrogenotrophic methanogenesis
(Methanocella) and acetoclastic methanogenesis (GOM Arc I of Methanosarcinales) but
increased nitrous oxide (N20) emissions via enhanced nitrification. Despite higher N2.O
emissions, total GHG emissions, expressed as the global warming potential (GWP), were
lower under water-scarce conditions than under continuous flooding, with reductions of
27.1%, 43.0%, and 58.1% during tillering, reproductive, and both stages, respectively. Water
scarcity during tillering stage maintained yield, whereas water scarcity during reproductive
stage caused a significant reduction in yield. Biochar amendment further mitigated GHG
emissions, improved yield (by 12.2%), and enhanced soil health by increasing soil pH,
nutrient availability, and soil organic carbon sequestration. Its high porosity and surface area
also suppressed methanogenesis and reduced N20 formation while improving nutrient use
efficiency. The strategic use of water restrictions during tillering, combined with biochar,
provides a sustainable approach to mitigate GHG emissions, optimize water use, and sustain
soil health and productivity. In resource-limited scenarios, prioritizing tillering-stage water
scarcity over biochar application is recommended because of its greater GHG mitigation

potential.

Keywords: Biochar amendment, Grain yield, Greenhouse gas emissions, Rice, Soil health,

Water scarcity

1. Introduction
Anthropogenic greenhouse gas (GHG) emissions have been unequivocally identified

as the predominant drivers of global warming and climate change, exerting profound and far-
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reaching impacts across environmental, economic, and social systems (IPCC, 2021). Among
the diverse sources of GHG emissions, agricultural activities, particularly within agrarian
nations, represent a substantial and critical source (IPCC, 2022a). In 2019, Thailand’s GHG
emissions from agricultural sector were approximately at 28,715 gigagrams of carbon dioxide
equivalent (Gg COzeq), contributing 7.70% of the nation’s total GHG emissions. Within the
agricultural sector, rice cultivation alone is responsible for 51.0% of total emissions (ONEP,
2022). The predominant GHG released from rice fields are methane (CH4) and nitrous oxide
(N20), which exhibit global warming potentials (GWP) approximately 27 and 273 times that
of COg, respectively. CHa is produced predominantly through the anaerobic decomposition of
organic matter facilitated by methanogenic archaea (Conrad, 2002), whereas N2O is generated
through nitrification and denitrification processes under aerobic and anaerobic conditions,
respectively (Hayashi et al., 2015). Therefore, mitigating GHG emissions from rice cultivation
poses a critical challenge in reducing the future impacts of climate change.

Despite ongoing and future mitigation efforts, the impacts of climate change are
inevitable, as indicated by various climate change scenarios (IPCC, 2021). Altered
precipitation patterns, such as the absence of rainfall during the wet season or delayed onset
of rains, coupled with extreme climatic events, are of particular concern because of their
detrimental effects on crop production (IPCC, 2022b; Kumar et al., 2019). Studies from
Southeast Asia have demonstrated significant increases in the annual average surface
temperature and reductions in precipitation during the wet season, contributing to severe
drought conditions across the region (Amnuaylojaroen and Chanvichit, 2019, 2024). These
climatic shifts raise concerns regarding food security, heightened water demands, and
intensified competition for water resources, particularly in rainfed agricultural areas

(Boonwichai et al., 2018; Bouman et al., 2007; Datta et al., 2017).
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Thailand also experiences droughts frequently, with future projections indicating
increased severity, particularly in agricultural regions (Amnuaylojaroen and Chanvichit, 2024;
Boonwichai et al., 2018; Kaewmai et al., 2021). The 2019 drought in Thailand, which resulted
in estimated agricultural production losses of approximately 26 billion baht (USD 840
million), was attributed primarily to rice production during the dry season. This reduction was
due to government-imposed restrictions on irrigation to prioritize water availability for
domestic consumption and ecological management, a decision driven by significantly below-
average precipitation (USDA, 2020). These adverse weather conditions have had considerable
impacts on crop yields, farmer incomes, and the national economy (Bouman et al., 2007).
Field studies evaluating the interplay between crop yield and GHG emissions from rice
cultivation under water scarcity, particularly under low rainfall conditions in Thailand, remain
limited.

Research conducted in Bangladesh by Moonmoon and Islam (2017) and Hossain et al.
(2020) revealed that water deficit conditions and drought stress significantly reduced rice
grain yield by affecting key morphological traits, such as plant height, number of effective
tillers, spikelets, filled grains, and 1000-grain weight. Drought stress during the panicle
initiation stage was identified as a critical factor in yield reduction. Similarly, Zhang et al.
(2023) reported that water stress during the heading and flowering stages in China led to
average yield reductions of 27.6—46.3% compared to conventional flooding practices. In
India, Kumar et al. (2020) demonstrated that cumulative drought stress impaired sugar
mobilization, leading to reduced pollen viability and grain yield, with an average yield
reduction of 85.7% compared to non-stress conditions. In Southern Thailand, the
investigations by Hussain et al. (2022) identified rice genotypes, including Hom Pathum,
Sang Yod, Dum Ja, and Pathum Thani 1, as exhibiting high tolerance to drought stress, with

reductions in grain yield ranging from 21-52%. However, these studies were conducted under
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controlled greenhouse conditions and did not encompass the measurement of GHG emissions.
Thus, examining the impact of water scarcity on rice cultivation under field conditions in
Thailand, with a focus on GHG emissions, crop yield, and soil health, is of significant
scientific interest.

Given the negative impacts of water scarcity on rice cultivation, the application of soil
amendments may offer a viable strategy to mitigate these adverse effects. Biochar, in
particular, has shown promise as a soil amendment, improving soil quality, increasing grain
yield, and reducing GHG emissions (Chew et al., 2020; Jeffery et al., 2011; Sriphirom et al.,
2022; Wang et al., 2019; Zhang et al., 2010). The unique properties of biochar, including high
porosity and large surface area, enhance water retention, nutrient absorption, and nutrient use
efficiency by plants, leading to increased yield production (Chew et al., 2020; Oladele et al.,
2019; Oliveira et al., 2017). Biochar’s alkalinity can also balance soil pH and improve soil
organic C (SOC) sequestration (Koyama and Hayashi, 2019; Sriphirom et al., 2020; Zhang et
al., 2020). Additionally, biochar is expected to enhance drought resilience (IPCC, 2022a).
Studies by Wang et al. (2019) and Wu et al. (2019) demonstrated that biochar amendments
reduced CH4 emissions by decreasing methanogen populations and increasing methanotrophic
activity, thereby minimizing CH4 production and promoting CH4 oxidation. Moreover,
Cayuela et al. (2013) found that biochar immobilizes NOs™ in the soil, reducing its availability
for N2O formation. However, the mitigation potential of biochar varies depending on the soil
type and application rates (Feng et al., 2012; Wang et al., 2019). Thus, biochar application
may provide a strategy to mitigate the adverse effects of water scarcity in rice cultivation.

This study aims to elucidate the effects of water scarcity, imposed during distinct
critical phenological stages (tillering, reproductive, or both) with and without biochar
application, on GHG emissions, yield performance, and soil conditions. The experiment was

conducted over two consecutive growing seasons (one year) using a drought-tolerant rice
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variety in a key province of Central Thailand, a nation of global significance in rice production
and export. The findings are expected to provide valuable insights into optimizing rice
cultivation practices in the context of water scarcity exacerbated by climate change-induced
rainfall deficits. This research contributes to the advancement of sustainable agricultural
systems by identifying strategies that mitigate GHG emissions while maintaining or

enhancing crop productivity and soil health.

2. Materials and methods
2.1. Study site

The study site is situated in Bang Pla Sub-district, Bang Len District, Nakhon Pathom
Province, Central Thailand (13°57'33"N, 100°09'25"E, at an elevation of 3 m above mean sea
level). The soil at the site is classified as Endoaquepts within the Vertisols order, according to
the United States Department of Agriculture (USDA) soil taxonomy. The soil texture is
characterized as clay, comprising 40.7% sand, 13.3% silt, and 46.0% clay. Baseline physical
and chemical properties of the soil, collected from the 0-20 cm depth in April 2023, are
detailed in Table 1.

During the study period, from May 2023 to April 2024, the site experienced an annual
rainfall of 625 mm, with maximum and minimum air temperatures of 34.5°C and 24.8°C,
respectively (Fig. 1A and 2A). Notably, the cumulative annual rainfall was substantially lower
than the long-term average of 1,006 mm, reflecting drier-than-average climatic conditions

during the study period.

Table 1 here

2.2. Experimental design
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This study simulated field conditions of water restriction due to the absence of rainfall
for 15 or more consecutive days, representing a precipitation deficit or shortage during rice
cultivation (DDPM, 2022). The experiment was conducted during the 2023-2024 growing
season, which is characterized by below-average precipitation. Four distinct water regimes
were designed: continuous flooding (CO), water scarcity during the tillering stage (DT), water
scarcity during the reproductive stage (DR), and water scarcity during both the tillering and
reproductive stages (DTR).

All treatments were maintained under continuous flooding with 5 cm of water above
the soil surface from 0 to 15 d after transplanting (DAT). The water depth was increased to 10
cm during 16-24 DAT, 55-59 DAT, and at 90 DAT. To induce water scarcity, irrigation was
withheld to allow natural drying of the field during the tillering stage (25-54 DAT) and the
reproductive stage (60—89 DAT). After 90 DAT, all treatments were naturally dried to prepare
for harvest. Water levels above or below the soil surface were monitored using a measuring
stick placed within a PVC tube installed in the soil prior to transplanting. The field was irrigated
to the target flood level using a pump at fixed intervals (6:00, 13:00, and 18:00). However,
rainfall during the wet season partially interfered with the induction of water scarcity during
the tillering stage and the drying period before harvest (Fig. 1A and 2A)

The biochar used in this study was derived from bamboo through pyrolysis at 600°C
(Sahoo et al., 2021). The bamboo biochar exhibited high porosity and surface area (Odega et
al., 2023), with a specific surface area of 192 m? g-! and a specific pore volume of 0.19 cm?
g 1. Its basic characteristics are presented in Table 1. Biochar was applied at a rate of 20 Mg
ha! (dry weight) per season (Zhang et al., 2010) across all the water regimes. Consequently,
the study comprised eight treatments: CO, DT, DR, DTR, CO with biochar application
(CO+BI), DT with biochar application (DT+BI), DR with biochar application (DR+BI), and

DTR with biochar application (DTR+BI), as illustrated in Fig. S1.
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The rice (Oryza sativa L.) cultivar Pathum Thani 1 (PTT 1), known for its high drought
tolerance and yield potential (Hussain et al., 2022), was cultivated across two growing seasons
(wet and dry seasons). The experiment was arranged in a randomized complete block design

with three replications, and each plot measured 10 m % 10 m.

2.3. Crop management

Rice cultivation for the wet season was conducted from June 3 to September 29, 2023,
and for the dry season, it was conducted from November 18, 2023 to March 17, 2024. During
each cultivation period, the soil underwent two plowing operations: moldboard tillage was
performed 25 d before transplanting (DBT), followed by harrow tillage 2 DBT. The final tillage
operation included levelling the field as thoroughly as possible and removing aboveground
residues from the previous season. Only the stubble below the soil surface was incorporated
during the initial tillage to prepare the field for the subsequent season. Biochar was
incorporated into the soil in the CO+BI, DT+BI, DR+BI, and DTR+BI treatments during the
first tillage.

Rice seedlings were germinated in trays for 20 d prior to transplanting. Vigorous
seedlings were transplanted at a spacing of 25 cm x 25 cm with five seedlings per hill on June
3, 2023 and November 18, 2023 for the wet and dry seasons, respectively. Mineral fertilizers
were applied twice per season: a basal application of a mixed fertilizer (N-P-K: 15-15-15) at
rates of 35 kg N ha!, 35 kg Pha!, and 35 kg K ha! at 21 DAT, and a top-dressing of urea at
a rate of 55 kg N ha ! at 60 DAT. All treatments received uniform weed control and pesticide
applications as required. Harvesting was carried out simultaneously on September 29, 2023 for
the wet season (118 DAT), and on March 17, 2024 for the dry season (120 DAT). The detailed

calendar of crop management operations is provided in Table S1.
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2.4. CH4 and N:0 emissions analysis

CHa4 and N20 emissions were quantified using a closed chamber technique throughout
the cultivation period and during the fallow phase (Minamikawa et al., 2015; Sriphirom et al.,
2024a). Gas sampling was conducted using acrylic chambers of varying volumes: 0.13, 0.25,
or 0.45 m? during the growing season, depending on the rice height, and 0.06 m* during the
fallow period. Chambers were installed in triplicate per plot before transplanting and remained
in situ throughout the cultivation season to minimize soil disturbance. During gas sampling,
the chamber body was sealed onto the base.

Air samples from the chamber headspace were collected using a 30 mL plastic syringe
at intervals of 0, 5, 10, 15, and 20 min after chamber closure. These samples were then
transferred into 25 mL evacuated glass vials. Routine analysis was conducted weekly, with
additional sampling during fertilizer application and periods of extreme drought. Gas
sampling was conducted between 09:00 and 11:00 during the cultivation period and between
12:00 and 14:00 during the fallow period (Minamikawa et al., 2015). Air temperature inside
the chamber during sampling was recorded for emission rate calculations.

Gas concentrations were analyzed using a gas chromatography (GC) (7890B, Agilent
Technologies, Inc., USA) equipped with a flame ionization detector (FID) and an electron
capture detector (ECD) operating at 300°C with a HaySep Q packed column. Nitrogen (N)
and helium served as carrier gases for the GC-FID and GC-ECD, respectively (Chidthaisong
et al., 2018). CH4 and N20 fluxes were calculated from the increase in gas concentration
(ppmv) over the 20-min sampling period using linear regression methods as described by
Sriphirom et al. (2024b). Seasonal cumulative emissions were estimated through successive
linear interpolation and numerical integration of data collected on sampling days (Sriphirom
et al., 2024b). CH4 and N20 emissions were converted to CO2 equivalents (CO2eq) using

GWP factors over a 100-year horizon: 27 for CH4 and 273 for N2O (IPCC, 2021).
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2.5. Soil property analysis

Soil samples were collected at a depth of 20 cm at three intervals: pre-cultivation
(April 2023; Table 1), post-wet season (October 2023), and post-dry season (April 2024).
Triplicate samples per plot were obtained using a 100 cm?® stainless-steel core sampler, air-
dried, sieved (2 mm), and analyzed for pH (1:1 soil/water), electrical conductivity (EC; 1:5
soil/water extraction), organic C (OC; Walkley & Black method), and organic matter (OM;
calculated as 1.724 x OC). Available P (Bray II method), exchangeable K (ammonium acetate
extraction), cation exchange capacity (CEC; ammonium saturation), moisture content and
bulk density were measured gravimetrically (105°C drying for 48 h) using a forced-air
convection oven (Redline RF 53, Germany). Analyses followed protocols described by Pansu
and Gautheyrou (2006).

Total C and N were quantified using a CHN analyzer (LECO Corporation, USA) at
combustion temperatures of 950-1050°C (Joseph, 2016). Ammonium (NH4") was measured
using ion chromatography (IC) with a Dionex Integrion HPIC system (Thermo Scientific,
USA) equipped with Dionex IonPac CG16 guard and CS16 analytical columns (Thomas et
al., 2002). Nitrate (NO3") was analyzed using IC with Dionex IonPac AG11 guard and AS11
analytical columns (Morales et al., 1998). SOC sequestration was estimated as the product of
SOC concentration, sampling depth, and bulk density following Lee et al. (2009).

During cultivation, soil redox potential (Eh), pH, temperature, NO3~, and dissolved
organic C (DOC) were monitored at 7-10 d intervals at a depth of 0-10 cm. Eh, pH, and
temperature were recorded using a pH/ORP sensor (Y SI Professional Plus, USA). DOC was
extracted with K2SO4 (Dong et al., 2013) and quantified using a total organic C (TOC)
analyzer (Multi N/C 2100, Germany) equipped with a non-dispersive infrared (NDIR)

detector.

10
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2.6. Soil microbial abundance and community analysis

Soil samples (0—10 cm) were collected (Lee et al., 2015) at 25 DAT and 65 DAT for
microbial abundance and community structure analysis. DNA was extracted from 1 g of soil
using the DNeasy PowerSoil Pro kit (Qiagen, Germany), with quality confirmed by agarose
gel electrophoresis and concentration measured using a NanoPhotometer N60 Touch (Implen,
Germany).

Microbial abundances were quantified using quantitative real-time polymerase chain
reaction (QRT-PCR) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA).
Each 20-pL reaction contained 10 uL of Luna® Universal gPCR Master Mix (NEB, USA),
0.4 uL each of forward and reverse primers, 1.0 uL of DNA template (10-20 ng), and 8.2 pL
of sterile water. Primers sets targeted the methyl coenzyme M reductase (mcrA) gene for
methanogens (mcrA-F/mcrA-R; Luton et al., 2002), the particulate methane monooxygenase
(pmoA) gene for methanotrophs (A189F/Mb661R; Kolb et al., 2003), the ammonia
monooxygenase (amoA) gene for nitrifying bacteria (amoA-1F/amoA-2R; Rotthauwe et al.,
1997), and the nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes for
denitrifying bacteria (nirKF1aCu/nirKR3Cu; Hallin and Lindgren, 1999; nosZ2F/nosZ2R;
Henry et al., 2006). Thermal cycling conditions are detailed in Table S2, with standard curves
achieving R? > 0.99.

Bacterial diversity during the reproductive stage was assessed via 16S ribosomal RNA
(rRNA) gene amplification using primers specific to methanogenic archaea (1106F/1378R;
Watanabe et al., 2007) and type I (197F/533R; Tsien et al., 1990) and type II methanotrophic
bacteria (142F/533R; Tsien et al., 1990). Thermal cycling conditions were: for methanogenic
archaea, 98°C for 1 min, followed by 30 cycles of 95°C for 10 s, 50°C for 30 s, and 72°C for

35 s, with a final extension at 72°C for 5 min; for methanotrophic bacteria, 94°C for 2 min,

11
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followed by 35 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 45 s, with a final
extension at 72°C for 5 min. Sequencing libraries were prepared using the Nextera XT Index
kit (Illumina, USA) and sequenced on a MiSeq platform (300-bp paired-end) with the MiSeq
Reagent Kit v3 (600 cycles).

Amplicon sequence analysis was conducted using Quantitative Insights Into Microbial
Ecology (QIIME2) version 2022.2 (Bolyen et al., 2019). Adapters were trimmed with q2-
cutadapt (Martin, 2011), and DADA?2 (Callahan et al., 2016) was used for error correction and
sequence variant calling. Taxonomic classification was performed using the SILVA database
version 138 (Bokulich et al., 2018; Quast et al., 2013). Rarefaction ensured uniform
sequencing depth, and diversity metrics were computed. Heatmaps were visualized using the

Multiple Experiment Viewer version 4.9.0 (Howe et al., 2010).

2.7. Crop growth, yield, and water use measurements

In this study, various parameters of crop growth and yield were assessed, including
plant height, tiller count, panicle count, numbers of filled and unfilled grains, 1000-grain
weight, aboveground biomass, and grain yield. Plant growth, height, and tiller count were
measured and recorded manually throughout the cultivation period. Yield components were
determined from a 3 m? area in each plot on the designated harvest day, and the dry weights
were subsequently determined.

Water use in rice cultivation was quantified by summing the volumes of irrigation and
rainfall. Irrigation water was supplied using a water pump (WCM-3705FS, SHP, Mitsubishi,
Thailand), and its application was monitored with a multi-jet water meter (GMK 15 R80,
Asahi, Thailand) throughout both the land preparation and cultivation periods. Daily rainfall
was recorded using a tipping bucket rain gauge positioned within the study area. Total water

use was defined as the cumulative volume of irrigation and rainwater applied to the field,
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ensuring that it did not surpass the predetermined flood levels (5 cm or 10 cm, as depicted in
Fig. S1). Additionally, irrigation water productivity was estimated by calculating the ratio of
marketable grain yield to the total amount of irrigation water used (IWU) according to Eq.

(1), which reflects the efficiency of irrigation practices (Fernandez et al., 2020).

Grain yield (kg ha™)
IWU (m® ha™')

(1)

Irrigation water productivity (kg yield m=) =

The impact of water scarcity on downstream human users and ecosystems was
quantified as the water scarcity footprint (Kaewmai et al., 2021). This footprint, expressed in
m® H2Oeq ha™!, was calculated by multiplying the monthly volume of irrigation water used in
rice cultivation (from land preparation to harvest) by the monthly water stress index (WSI)
according to Eq. (2) (Silalertruksa et al., 2017). For the Tha Chin watershed, where Nakhon
Pathom Province is located, the WSI values for each month were as follows: January, 1.00;
February, 1.00; March, 0.94; April, 0.04; May, 0.03; June, 0.42; July, 0.76; August, 0.82;

September, 0.28; October, 0.04; November, 0.06; and December, 0.69 (Gheewala et al., 2018).

Water scarcity footprint (m* H2Oeq ha~') = Monthly volume of IWU (m?® ha™') x

Monthly WSI (2)

2.8. Statistical analysis

Principal coordinate analysis (PCoA) of microbial community composition was
conducted and visualized using the vegan R package (Dixon, 2003). Functional predictions of
microbial communities were performed using phylogenetic investigation of communities by
reconstruction of unobserved states (PICRUSt) on the Majorbio I-Sanger cloud platform

(http://www.i-sanger.com/). KEGG Orthology data were utilized to estimate the abundance of
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key functional enzymes associated with methanogens and methanotrophs, and the relative
abundance of these genera was illustrated according to their functional roles.

All results are presented as means + standard errors. Differences among treatments
were assessed using one-way analysis of variance (ANOVA), followed by Tukey’s honestly
significant difference (HSD) test for post hoc comparisons at a 95% confidence level (P <
0.05). Statistically significant differences are indicated by distinct letter annotations.
Combined means of key parameters, including CH4 emissions, N2O emissions, GWP, grain
yield, SOC stock, and irrigation water productivity, were analyzed to evaluate the effects of
water management, biochar amendment, and growing season. Statistical analyses were
conducted using SPSS version 29.0 (IBM SPSS Statistics, New York, USA).

Pearson’s correlation analysis and redundancy analysis (RDA) were employed to
investigate the relationships between GHG emission rates (CH4, N20, and GWP) and
environmental and biological factors, including soil properties (pH, Eh, temperature, and
NOs3™ and DOC contents), plant characteristics (rice height and tiller number), water levels,
and microbial abundance (methanogens, methanotrophs, nitrifiers, and denitrifiers).
Additionally, the association between CH4 emission rates and the community composition of
methanogenic archaea and methanotrophic bacteria was analyzed. Data for these analyses
were collected concurrently throughout the study period. RDA was performed using the vegan
R package version 4.3.1 (Kindt, 2020), while Pearson’s correlation analysis was conducted

using SPSS as described above.

3. Results
3.1. CH4 and N:0 emissions
Water scarcity during the cultivation season significantly reduced anaerobic soil

conditions, substantially mitigating CH4 emissions. Extended water scarcity further increased

14
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CHa4 emission mitigation (Fig. 1B-M), as evidenced by a strong positive correlation (P < 0.01)
between CH4 emissions and field water level (Fig. 3A and Table S3). Specifically, compared
to continuous flooding (CO and CO+BI), water scarcity during the tillering stage (DT and
DT+BI), reproductive stage (DR and DR+BI), and both stages combined (DTR and DTR+BI)
reduced seasonal cumulative CH4 emissions by 20.3%, 41.8%, and 57.6%, respectively, in the
wet season, and by 36.6%, 47.9%, and 64.9%, respectively, in the dry season (Table 2).

Conversely, water scarcity increased N2O emissions (Fig. 2B—M), as indicated by a
significant negative correlation (P < 0.01) between N20O emissions and field water levels (Fig.
3A and Table S3). Seasonal cumulative N2O emissions under water scarcity during the
tillering stage, reproductive stage, and both stages combined increased by 25.1%, 33.2%, and
54.3%, respectively, in the wet season and by 31.1%, 50.4%, and 71.7%, respectively, in the
dry season relative to continuous flooding. Compared with the wet season, the extended
aerobic periods associated with water scarcity during the dry season contributed to lower CH4
emissions but higher N2O emissions (Table 2).

When GHG emissions were assessed in terms of CO2 equivalents, referred to as GWP,
water scarcity consistently demonstrated net environmental benefits, largely due to substantial
reductions in CH4 emissions (Table 2). These findings suggest that rice cultivation under
water-scarce conditions, as anticipated under climate change scenarios, represents a more
sustainable and environmentally friendly practice.

Biochar amendment also exhibited mitigation potential for both CH4 and N20
emissions during some periods of the cultivation season (Fig. 1 B-M and 2B-M). Compared
with no biochar application, biochar application reduced seasonal cumulative CHs, N20O, and
GWP by 12.0%, 15.3%, and 12.2%, respectively, in the wet season and by 11.9%, 18.7%, and

12.2%, respectively, in the dry season (Table 2). Although biochar presents itself as a viable
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GHG mitigation strategy, its effectiveness is often surpassed by that of water management

Interventions.

Fig. 1. here

Fig. 2. here

Table 2 here

Fig. 3. here

3.2. Microbial abundances and diversity

Soil samples analyzed under various management practices revealed that microbial
abundance and diversity underwent more pronounced changes during the reproductive stage
(65 DAT) than during the tillering stage (25 DAT) (Fig. 4). During the reproductive stage,
water scarcity likely reduced the abundance of methanogens and denitrifying bacteria while
promoting the proliferation of methanotrophic and nitrifying bacterial populations. Microbial
community patterns under water scarcity during the reproductive stage (DR and DR+BI)
closely resembled those observed under continuous flooding (CO and CO+BI), likely
reflecting similar soil conditions during the sampling period. However, microbial patterns
under water scarcity at both stages (DTR and DTR+BI) were consistent with those observed
under water scarcity during the tillering stage (DT and DT+BI). Biochar application generally
increased the abundance of all the microbial groups, although most of these increases were

not statistically significant (Fig. 4).
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Fig. 4. here

Soil drying induced by water scarcity reduced the abundances of methanogenic
archaea, including Methanocella (5.28%), Methanocellaceae; Rice Cluster I (4.43%),
Methanosarcinales; GOM Arc 1 (8.62%) and Methanosaeta (1.03%). In biochar-amended
soils, the abundances of Methanocella (6.45%), Methanocellaceae,; Rice Cluster 1 (4.07%),
Methanosarcinales; GOM Arc 1 (3.35%), and Methanosaeta (3.00%) were also reduced (Fig.
5A-B). Conversely, water scarcity stimulated the abundances of methanotrophic bacteria,
resulting in increases of 2.65%, 6.20%, 24.3%, 12.4%, 45.6%, 33.4%, and 26.4% for
Methylocystis, Methylosinus, Methylocella, Methylocapsa, Methylomonas, Methylocaldum,
and Methylosarcina, respectively. In biochar-amended soil, these increases were 16.6%,

38.6%, 37.2%, 42.4%, 80.1%, 55.5%, and 40.7%, respectively (Fig. 5C-D).

Fig. 5. here

Pearson’s correlation analysis confirmed a significant positive association between the
mcrA gene of methanogenic archaea and both CH4 emissions and GWP (P <0.01) (Fig. 3B
and Table S4). Among methanogens, GOM Arc [ of Methanosarcinales was a primary
contributor to CH4 emissions, while Methylocystis, Methylosinus, and Methylomonas were
key contributors to CH4 oxidation, driving treatment-dependent variations in CH4 emissions
(Fig. 3C and Table S5). Furthermore, the amoA gene of ammonia oxidizing bacteria (AOB)
significantly contributed to variations in N2O emissions via nitrification during dry soil

conditions (P < 0.05; Fig. 3B and Table S4).

3.3. Soil properties
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Crop management practices altered soil concentrations of soluble NO3™ and DOC
during cultivation. Under flooding-induced anaerobic conditions, NO3™ concentrations
decreased, peaking post-fertilization. In contrast, water scarcity enhanced nitrification,
increasing NO3~ levels during soil desiccation (Fig. 6A—B), which elevated N2O emissions
during fertilization and dry periods (Fig. 2). DOC concentrations were initially high during
early cultivation but declined due to microbial assimilation, resurging after the reproductive
stage and continuing through the harvest preparation period. However, DOC levels decreased
during soil desiccation (Fig. 6C-D), coinciding with an increase in soil Eh under water
scarcity (Fig. S2). Biochar amendment under all water scarcity conditions resulted in greater
accumulation of NOs~ and DOC (Fig. 6), along with a marginal increase in soil pH and Eh

(Fig. S2-3), compared with those in soils without biochar.

Fig. 6. here

Post-harvest analysis revealed that water scarcity, whether during a single or both
growth stages, had no significant effect on key soil characteristics. In contrast, biochar
application increased soil pH, EC, OM, OC, total C, nutrient levels, and SOC sequestration
due to its alkalinity, high C content, porosity, and surface area, although the impact on nutrient
levels was not statistically significant. These effects were more pronounced during the dry
season, reflecting the cumulative impact of biochar over both wet and dry seasons (Table 3).
Compared with the soil without biochar, its application significantly increased SOC stock by
an average of 12.7% in the wet season and 19.9% in the dry season. No significant differences
in biochar impacts were observed across water regimes (Table 3). These findings suggest that
while water scarcity did not adversely affect soil quality post-harvest, biochar incorporation

substantially improved soil health.
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Table 3 here

3.4. Crop growth and yield

Water scarcity during rice cultivation significantly influenced growth and yield,
particularly when deficits coincided with critical phenological stages. Growth phenology
varied across water scarcity treatments, with a 2—4 d difference (Table S1). Water deficits
during the tillering phase preserved tiller production, whereas deficits during the reproductive
phase reduced tiller numbers, consistently across both wet and dry seasons (Fig. S4A-B).
Water scarcity decreased plant height in all treatments, regardless of season (Fig. S4C-D), but
biochar ameliorated the adverse effects on plant height without influencing tiller production
(Fig. S4).

Water scarcity during the tillering stage, irrespective of seasonality, preserved yield
components—including panicle number, grain weight, grain number, and grain yield—similar
to continuous flooding, regardless of biochar application. However, water scarcity during the
reproductive stage significantly reduced grain yield and its components across both seasons.
While biochar application tended to increase crop yields, these increases were not statistically

significant, averaging 5.22% in the wet season and 7.78% in the dry season (Table 4).

Table 4 here

Despite reduced grain yield under water scarcity during the reproductive stage (DR,
DTR, DR+BI, and DTR+BI), these treatments mitigated GHG emissions, resulting in lower
GHG emissions per kilogram of grain produced compared to continuous flooding. Water

scarcity during the tillering stage (DT and DT+BI) and both tillering and reproductive stages
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(DTR and DTR+BI) further decreased GHG emissions per unit of grain yield. Biochar
enhanced this reduction in GHG emissions and potential yield (Table 4), making water
scarcity during the tillering stage, in conjunction with biochar application, a recommended

strategy for optimizing food production while minimizing environmental impacts.

3.5. Water use, water productivity, and water scarcity footprint

Water scarcity imposed during the tillering stage, reproductive stage, and combined
stages significantly reduced irrigation water in the wet season, enhancing irrigation water
productivity. Conversely, in the dry season, higher irrigation water usage under water scarcity
treatments decreased irrigation water productivity. Notably, water scarcity during the tillering
stage achieved the highest irrigation water productivity in the dry season, attributed to reduced
water use and higher yields compared with other treatments.

Water scarcity also reduced the water scarcity footprint, benefiting downstream users
and ecosystems. Specifically, water scarcity during the tillering stage, reproductive stage, and
combined stages reduced the water scarcity footprint by an average of 1,310, 1,725, and 2,980
m? H20eq ha™! in the wet season and by 1,125, 1,730, and 2,935 m>® H2Oeq ha! in the dry
season, respectively (Table 5). Biochar application did not significantly affect irrigation water

use, irrigation water productivity, or water scarcity footprint (Table 5).

Table 5 here

4. Discussion
4.1. Water scarcity mitigated GHG emissions more significantly than biochar application
Water scarcity, exacerbated by climate change-induced rainfall delays, is projected to

intensify across regions like Thailand, posing challenges for agriculture while simultaneously
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offering opportunities to mitigate GHG emissions in rice cultivation (Amnuaylojaroen and
Chanvichit, 2024; USDA, 2020). This study revealed a positive correlation between CHa4
emissions and field flooding (r = 0.645, P < 0.01; Table S3), with water scarcity significantly
reducing CH4 emissions (Table S6). Imposing water scarcity during the tillering or
reproductive stages reduced CH4 emissions by 28.4-45.0%, while applying it during both
stages achieved a 61.1% reduction in CH4 emissions compared with continuous flooding.
These findings align with those of Zhang et al. (2024), who reported 70-90% reductions in
CH4 emissions under water-saving practices.

The mitigation of CH4 emissionswas attributed to suppressed methanogenesis,
including reduced activity of hydrogenotrophic (Methanocella) and acetoclastic (GOM Arc 1
of Methanosarcinales) methanogenesis (Fig. SA-B) (Mohamad Shahimin et al., 2021). This
suppression is consistent with diminished mcrA gene abundance under prolonged desiccation
and alternate wetting and drying (AWD) practices (Hester et al., 2022; Reim et al., 2017).
While methanogen abundance during the tillering stage did not decrease significantly,
microbial connectivity and the abundance of methanogenic drivers within the microbial
network were reduced (Zhang et al., 2024), leading to a significant reduction in CH4 emissions
during the tillering stage. Enhanced CH4 oxidation by methanotrophs further contributed to
CHa reductions (P < 0.01) (Fig. 3C, and Table S5), particularly by type I methanotrophs (Fig.
5C-D). Type I methanotrophs (Methylocaldum, Methylomonas, and Methylosarcina) oxidize
CHa4 via methane monooxygenases (MMOs) through the ribulose monophosphate (RuMP)
pathway under oxygen-rich conditions and require N for growth. Type II methanotrophs
(Methylocella), which employ the serine pathway in CHs-rich and oxygen-limited
environments (Chidambarampadmavathy et al., 2015), also supported CH4 oxidation.

Conversely, water scarcity increased N2O emissions due to intensified nitrification and

denitrification processes (Hayashi et al., 2015), driven by NH4" depletion and NO3~
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accumulation and associated with increased activity of nitrifying bacteria (Oo et al., 2018;
Qiu et al., 2022; Wu et al., 2023). The positive correlation between N2O emissions and amoA-
AOB gene abundance (Table S4) indicates the role of nitrifying bacteria. N fertilization,
which increased soil NOs3~ availability, further exacerbated N2O emissions under drained
conditions. The most pronounced increases in N2O emissions occurred during the reproductive
stage compared to the tillering stage, attributed to higher activity and abundance of nitrifying
bacteria (Fig. 4C), as well as greater rice height and tiller number (Table S3).

Despite the rise in N20O emissions, the reduction in CH4 emissions dominated the GHG
profile, resulting in an overall reduction in GWP, as shown by the linear correlation between
CHa4 emissions and GWP (P < 0.01) (Fig. 5 and Tables S3—S4). The greatest GWP reductions
were observed during the dry season, when prolonged drying periods were uninterrupted by
rainfall (Table S6). Allowing paddy fields to dry during the cultivation season thus represents
an effective strategy for mitigating GHG emissions from rice cultivation.

Biochar application further enhanced GHG mitigation (Table S6), reducing emissions
by an average of 12.2%. Bamboo biochar applied at 20 Mg ha™! decreased CHs emissions by
suppressing hydrogenotrophic and acetoclastic methanogenesis, targeting Methanocella, Rice
Cluster I of Methanocellaceae, and GOM Arc I of Methanosarcinales (Fig. 5A-B). Biochar
increased electron acceptor availability and enhanced soil Eh under anaerobic conditions (Fig.
S2), thereby slowing CHa production (Sriphirom et al., 2022). This effect was facilitated by
the high surface area and porosity of biochar, which increased the availability of oxygen and
other oxidants, especially within the rhizosphere (Chew et al., 2020; Joseph et al., 2013;
Oliveira et al., 2017). The improved soil oxygenation, combined with the habitat provided for
microbes, stimulated CH4 oxidation by methanotrophs (Chen et al., 2017; Han et al., 2016),
including Methylosinus, Methylocapsa, Methylomonas, Methylocaldum, and Methylosarcina

(Fig. 5C-D).
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Biochar also mitigated N2O emissions (Table S6) by decreasing NO3~ availability
through immobilization on its surface, thereby limiting N availability for N2O formation
(Cayuela et al., 2013) and facilitating N20O reduction to N2 in anaerobic soils (Aamer et al.,
2020; Cayuela et al., 2014). Aamer et al. (2020) demonstrated that biochar mitigated N2O
emissions by increasing the abundance of nosZ and nirK genes and elevating soil pH, which
aligns with findings of this study (Fig. 4D—-E). Increased nosZ-related bacterial abundances
led to greater N2O consumption, whereas nirK-related bacteria promoted N2 production over
N20 production. However, the extent of biochar’s mitigation effects varies depending on soil
type, feedstock origin, biochar production conditions, and application rate (Feng et al., 2012;

Zhang et al., 2010).

4.2. Effects of water scarcity and biochar on rice growth and yield

This study demonstrates that water scarcity during the tillering stage and biochar
application, individually and combined, can sustain crop growth and yield comparable to
conventional practices by preserving key yield components, including tiller numbers, filled
grain count, and 1,000-grain weight (Table 4 and Fig. S4). Norton et al. (2017) demonstrated
that AWD—a water management approach allowing the soil to dry naturally to a depth of
approximately 15-20 cm during the tillering stage—maintains tiller numbers and yields
equivalent to continuous flooding by promoting root system development (Thakur et al.,
2011) and increasing leaf abscisic acid concentrations, which are critical for tiller retention
(Howell et al., 2015; Norton et al., 2017). AWD also optimizes shoot-root activity, regulates
vegetative growth, and modulates hormone signaling pathways, thereby stabilizing yield
(Davies et al., 2011). These findings are corroborated by studies conducted across diverse

regions, including the USA (LaHue et al., 2016) and India (Oo et al., 2018).
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However, water scarcity during the reproductive stage significantly reduces yield
(Tables 4 and S6). Drought stress during flowering impairs rice physiology, with reductions in
spikelet number and grain filling driving yield losses. Lower leaf water potential under
drought hinders panicle development, whereas elevated soil temperatures under drought
conditions suppress root and microbial activity, accelerate leaf senescence, and diminish
photosynthetic, stomatal conductance, and transpiration (Yang et al., 2019). Strategic
inclusion of drying phases during the tillering stage, as part of the AWD methodology, can
mitigate these adverse impacts (Siopongco et al., 2013).

Biochar enhances soil-water-nutrient dynamics through its high porosity and large
surface area (Oladele et al., 2019; Uchida et al., 2019). In this study, biochar applied at 20 Mg
ha™! increased grain yield by 5.22% and 7.78% in the wet and dry seasons, respectively (Table
4), consistent with Zhang et al. (2012), who observed similar yield increases in China. Yield
improvement is attributed to the ability of biochar to increase nutrient storage (Table 3),
enhance nutrient uptake (Joseph et al., 2010), and reduce plant energy demands for nutrient
acquisition. Root exudates diffusing into biochar pores stimulate microbial activity, thereby
increasing nutrient availability for uptake (Bhattacharjya et al., 2015; Chew et al., 2020).
Biochar’s interaction with the rhizosphere further facilitates nutrient uptake via root hairs and
water-filled macropores (Joseph et al., 2013). However, biochar efficacy depends on its
physicochemical properties, which are influenced by feedstock type and production conditions
(Chen et al., 2021). Its benefits are more pronounced in low-fertility soils, such as acidic,
nutrient-deficient, and coarse-textured soils (Bekchanova et al., 2024; Jeffery et al., 2011).
Long-term studies are essential to fully evaluate biochar’s potential to sustainably enhance

rice productivity (Zhang et al., 2020).

4.3. Biochar application improved soil quality
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Biochar is a soil amendment distinguished by its unique properties, including a
combination of organic, carbonate, and inorganic alkalinities. These characteristics enable
biochar to effectively modify soil pH, particularly in acidic soils (Fidel et al., 2017). For
example, Zhang et al. (2012) reported that biochar with a pH (H20) of 10.4, applied at rates
of 10, 20, and 40 Mg ha!, increased soil pH by 0.21, 0.24, and 0.30 units, respectively. The
high porosity and surface area of biochar, facilitated by mechanisms such as hydrogen
bonding, cation bridging, covalent bonding, hydrophobic interactions, and oxygenated
functional groups (e.g., carboxylic, phenolic, and hydroxyl groups), contribute to increased
soil CEC (Adhikari et al., 2024) and improved nutrient availability (Chew et al., 2020; Joseph
et al., 2010). Adhikari et al. (2024) further demonstrated that biochar derived from hardwood
or cellulosic biomass significantly enhanced the CEC of clayey soils, functioning as a
reservoir of soil nutrients and serving as a potential slow-release fertilizer. Similarly,
Bekchanova et al. (2024) observed that biochar application increased soil nutrient
availability—namely, N, P, and K—by 36%, 34%, and 15%, respectively, and also enhanced
soil CEC by 18%.

The high C content of biochar, particularly in its stabilized form, is instrumental in
long-term SOC sequestration. Stabilized C in biochar is resistant to biological and chemical
degradation, allowing for gradual decomposition and sustained enhancement of soil C levels
(Tables 3 and S6) (Lehmann, 2007). Ding et al. (2023) reported that biochar amendment
significantly increased native and recalcitrant SOC contents, with 39%—51% of the biochar
remaining in the topsoil (0-30 cm) even after 11 years. Additionally, the potential for SOC
sequestration was notably greater during the dry season, likely due to the residual

accumulation of biochar applied during the preceding wet season.
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4.4. Water scarcity affected irrigation water productivity and decreased water scarcity
footprint

Water scarcity, driven by restricted irrigation and inadequate rainfall, serves as a proxy
for the anticipated impacts of climate change, substantially reducing water use in rice
cultivation. While water scarcity reduced grain yield, it increased irrigation water productivity,
particularly during the wet season (Tables 5 and S6). During this period, water scarcity
achieved grain yields statistically comparable to those under continuous flooding but with
reduced irrigation water input. In contrast, during the dry season, higher evaporation rates
necessitated increased irrigation across all treatments, resulting in irrigation water productivity
levels similar to those of continuous flooding. Notably, the highest yield per cubic meter of
irrigation water during the dry season was observed under the water scarcity imposed at the
tillering stage (DT and DT+BI). These results corroborate the findings of Hussain et al.
(2022), who reported reduced water use efficiency under drought stress in Southern Thailand.

Water scarcity during the tillering stage emerges as a viable strategy for balancing
water savings and yield, highlighting the importance of managing water scarcity during
critical growth stages. Optimizing soil drying levels and durations can reduce irrigation water
use, enhance water use efficiency, and maintain food security while mitigating GHG
emissions. Mallareddy et al. (2023) emphasized that integrated approaches—such as
maximizing rainfall utilization, optimizing limited irrigation, and improving crop water use
efficiency —can further enhance water productivity. These strategies include upgrading
irrigation systems, land levelling, conjunctive use of surface and groundwater, rotational
water distribution, and ensuring access to drought-tolerant seeds and other critical inputs.
Such measures are essential for sustaining agricultural productivity under climate change.

Strategic water restrictions during the tillering stage, without significant yield loss,

also reduce the water scarcity footprint, increasing water availability for downstream human
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and ecosystem needs. This finding aligns with Sriphirom et al. (2019), who demonstrated that
AWD practices reduce the water scarcity footprint, increasing water availability for non-

agricultural purposes.

5. Conclusions

Rice cultivation under water scarcity driven by climate change poses substantial
challenges, necessitating the adoption of environmentally sustainable practices that mitigate
GHG emissions while maintaining or enhancing crop yield and soil quality to ensure food
security. The use of biochar as a soil amendment has been identified as a promising strategy
for mitigating these challenges and supporting farmer adoption under water-limited
conditions. This study demonstrated that imposing water scarcity during the tillering stage
effectively sustains crop growth and yield comparable to those achieved under continuous
flooding. Grain yield, a critical determinant for farmer acceptance, was maintained under this
water management practice, which also reduced GHG emissions and improved irrigation
water productivity by an average of 20.7% and 51.1% during the wet season and 34.4% and
23.4% during the dry season, respectively, relative to continuous flooding. Furthermore, the
combined application of biochar and water scarcity during the tillering stage further enhanced
GHG mitigation and increased grain yield by an average of 12.7% and 2.4%, respectively,
compared with those in soils not amended with biochar. Soil health metrics were also
significantly improved with biochar application, as evidenced by increases in soil pH, CEC,
nutrient availability, and SOC sequestration. These benefits highlight the dual role of biochar
in improving soil quality and contributing to long-term climate resilience in rice cultivation
systems. Consequently, the implementation of water restrictions during the tillering stage is
recommended as a practical strategy for supporting net-zero GHG emissions with minimal

adverse effects on water availability, even in scenarios where biochar production capacity is
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limited. However, in regions where biochar resources are accessible, its application should be
prioritized to maximize mitigation potential and improve soil quality, thereby supporting

sustainable agricultural production in the context of climate change.
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amoA  ammonia monooxygenase
AOB  ammonia-oxidizing bacteria
AWD  alternate wetting and drying
CHa4 methane

DAT days after transplanting

DOC  dissolved organic carbon

Eh soil redox potential

GHG  greenhouse gas

GWP  global warming potential
IWU  irrigation water use

mcrA  methyl coenzyme M reductase
NHs"  ammonium

nirkK nitrite reductase

NOs~  nitrate

N20 nitrous oxide

nosZ  nitrous oxide reductase

pmoA  particulate methane monooxygenase

SOC soil organic carbon
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Table 1

Basic physical and chemical properties of the soil collected prior to the study and biochar.

Parameter (unit) Soil Biochar
Sand (%) 40.7£0.5 —
Silt (%) 13.3£0.1 —
Clay (%) 46.0£0.5 -
pH [H20] 6.21 £0.06 8.64 +3.70
Electrical conductivity (dS m™) 0.80 £0.06 —
Organic matter (%) 1.13+0.66 —
Organic carbon (%) 0.66 +0.03 -
Total carbon (%) 1.65+0.03 68.8+2.0
Total nitrogen (%) 0.11 £ 0.01 0.65 +0.04
Ammonium (mg kg!) 8.67 +0.49 —~
Nitrate (mg kg™") 86.5+4.9 -
Available phosphorus (mg kg™!) 39.1+1.9 8,467 + 404
Exchangeable potassium (mg kg™') 96.9+£5.2 9,367 + 493
Cation exchange capacity (cmol kg™) 10.8 £0.4 41.2+£2.5
Bulk density (g cm™) 1.43+£0.03 —~
Moisture content (%) 19.5+0.7 5.38£0.06
Soil organic carbon sequestration (Mg ha ™) 18.8+£0.8 -
Ash content (%) - 4.27+0.37
Specific surface area (m? g™!) — 192+9
Specific pore volume (cm? g ) - 0.19 +£0.02




Table 2

Seasonal cumulative CH4 and N20 emissions and global warming potential (GWP) for the wet and dry seasons.

Wet season Dry season
Treatment CH,4 emissions N>O emissions GWP CH,4 emissions N,O emissions GWP
(kg CHy ha™) (g N,O ha™) (Mg COz eq. ha™) (kg CHy ha™) (g N2O ha™) (Mg COz eq. ha™)

CO 984+95a 257+ 12¢ 2.73+025a 922+40a 254+84d 2.56+0.11a
DT 772+47b 296 + 17 be 2.16+£0.13b 589+40b 326+ 17 be 1.68 £0.11b
DR 56.0+2.7cd 313+£11b 1.60 £ 0.07 cd 48.0+ 1.4 bc 342+9Db 1.39 £ 0.04 be
DTR 40.6 £1.5de 366 +24 a 1.20 £ 0.04 de 323+25de 394+t8a 0.98 £0.04 de
CO+BI 83.7+8.7 ab 193 +8d 2.31+£0.23 ab 81.6+8.6a 184 t1e 225+023a
DT+BI 49.8 £9.9 be 259+29¢ 1.90+0.27 be 51.3+2.4bc 246 +£20d 1.45 +£0.06 be
DR+BI 49.8 £ 5.3 cde 278 £ 12 be 1.42 £ 0.15 cde 41.9+3.7cd 305+ 10¢ 1.21+0.10 cd
DTR+BI 364+30¢ 320+ 11 ab 1.07+0.08 ¢ 290+12e 346+ 11b 0.88+0.03¢

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and
DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are

presented as mean =+ standard error. Different letters indicate significant differences between treatments within each season.



Table 3

Physical and chemical properties of soil after the wet and dry cultivation seasons.

Treatment pH EC OoM ocC Total C Total N NH4* NO;~ Avail. P Exch. K CEC Bulk density Moisture SOC stock
(dSm™) (%) (%) (%) (%) (mgkg™") (mg kg™ (mg kg™ (mgkg") (cmol kg'") (gem™) content (%) (Mgha™)
After wet season harvest
co 6.17+0.03 0.78 £ 0.04 1.15+0.03 0.67 £0.02 1.56 £ 0.05 0.11 £0.01 720+1.77 369+6.5 263+5.6 49.7+9.2 10.7+0.4 1.49 +£0.05 199+1.5 200+1.2
a b b b b a b ab a a a a a be
DT 6.21+0.04 0.80 + 0.02 1.14 £ 0.06 0.66 +0.03 1.59 £ 0.05 0.11 £0.01 7.65+1.72 324+3.1 27.8+6.5 528+11.3 10.5+0.3 1.50 +0.04 19.4+0.9 19.8+0.7
a b b b b a b b a a a a a be
DR 6.19 +0.06 0.79 +£0.03 1.14 +£0.03 0.66 +0.01 1.57 +0.04 0.10+0.01 6.48 +0.95 29.6 £4.0 29.8+538 514+94 108+ 0.4 1.49 +0.05 198+ 1.3 19.8 £ 0.6
a b b b b a b b a a a a a be
DIR 6.20 + 0.04 0.79 +£0.03 1.13 +£0.02 0.66 +0.01 1.58 +£0.03 0.10+0.01 7.47+0.79 29.7+7.7 28.8+8.2 51.9+9.0 10.5+0.4 1.49 +£0.05 19.5+09 19.6+0.8
a b b b b a b b a a a a a c
CO+BI 6.24+0.03 0.86 + 0.04 1.28 £0.06 0.74 £ 0.03 1.78 £ 0.03 0.12+0.01 126 +2.1 553+11.5 374+69 629+9.3 11.6+0.5 1.48 £ 0.04 203+1.0 22.0+0.5
a ab a a a a a a a a a a a ab
DTABI 6.26 +0.02 0.85+0.02 1.33+£0.05 0.77 £ 0.03 1.76 £ 0.06 0.12+0.01 125+1.0 452475 37.8+7.5 59.7+10.5 11.7+0.6 1.48 +£0.04 20.1+1.1 228+04
a ab a a a a a ab a a a a a a
DR4BI 6.24 +0.04 0.86 +0.02 1.31 +0.06 0.76 +0.04 1.73 £0.05 0.12+0.01 11.7+£1.0 402+6.9 34.8+8.1 59.0+£12.7 114+0.8 1.48 £ 0.03 20.2+0.6 225+1.0
a ab a a a a a ab a a a a a a
DTRABI 6.24 +0.03 0.88 +0.03 1.28 £0.05 0.74 +£0.03 1.72£0.02 0.12+0.01 9.66 +0.96 35.7+6.1 363+73 573+11.0 11.3+0.5 1.47 £ 0.03 202+ 1.4 21.8+£0.9
a a a a a a ab ab a a a a a abc
After dry season harvest
6.16 + 0.04 0.76 £ 0.03 1.16 £ 0.04 0.67 £0.02 1.52 +0.05 0.11 +£0.01 8.53+0.95 39.1+5.1 259+5.1 51.5+34 10.8+0.6 1.48 £ 0.04 148+ 1.3 19.9+0.6
CO
b b b b b a b b b a be a a b
6.20 +0.02 0.75+0.01 1.15+0.04 0.67 £0.02 1.54 +£0.04 0.11 £0.01 9.50 +0.97 399+5.6 26.3+0.8 52.8+8.4 10.5+0.4 1.49 +0.03 152+1.0 199409
DT
b b b b b a ab b b a c a a b
6.18 +0.03 0.75+0.03 1.16 £ 0.05 0.67 £0.03 1.53 +£0.05 0.11 +£0.01 9.30+2.43 40.0 +6.7 26.7+6.5 50.5+49 109+0.4 1.49 +0.03 159+1.3 20.0+1.0
DR
b b b b b a ab b b a be a a b
6.16 +0.02 0.75+0.01 1.13 +£0.05 0.66 +0.03 1.52 +0.06 0.11+£0.01 9.16 +1.45 384+33 26.0+3.5 51.9+3.3 10.4+0.4 1.49 +0.03 153+0.8 19.6+1.2
DTR
b b b b b a b b b a c a a b
CO+BI 6.28 +0.02 0.87 +0.03 1.39 +£0.06 0.81 +0.03 1.81 +£0.05 0.12+0.01 13.2+3.0 60.5+11.2 36.0+2.7 62.8+5.5 11.9+0.5 1.48 £0.02 16.1+0.8 239+1.2
a a a a a a ab a ab a ab a a a
DT4BI 6.30 +0.02 0.91+0.03 1.40 £ 0.07 0.81 +0.04 1.81 +£0.06 0.12+0.01 142+1.7 62.0+7.1 41.7+1.1 602+5.3 12.1+0.3 1.49 +0.03 16.3+0.5 242+1.6
a a a a a a a a a a a a a a
DR+BI 6.27 +£0.02 0.86 +0.02 1.37 £0.05 0.79 £ 0.03 1.80 +0.07 0.12+0.01 132+1.3 56.4+5.1 36.8+6.1 63.4+1.8 11.9+0.5 1.49 +0.03 15.8+0.6 237+12
ab a a a a a ab ab ab a ab a a a
DTR+BI 6.26 +0.03 0.87 +£0.04 1.36 £ 0.02 0.79 £ 0.01 1.82 +£0.09 0.12+0.01 11.7+£0.8 552448 349+57 55.0+9.5 12.0+0.6 1.47 £0.04 16.0+0.7 233+0.5
ab a a a a a ab ab ab a ab a a a

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and
reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean + standard e rror. Different letters indicate significant differences between
treatments within each season. EC is electrical conductivity, OM is organic matter, OC is organic carbon, NH4" is ammonium, NO;~ in nitrate, CEC is cation exchange capacity, and SOC is soil

organic carbon.



Table 4
Components of crop yields and grain yield-scaled greenhouse gas (GHG) emissions in rice

cultivation during wet and dry seasons.

. Grain number Aboveground GHG
Panicle . . . . L . .
1000-grain (grain panicle™) biomass Grain yield intensity
Treatment number . - . o
(panicle m ™) weight (g) Filled Unfilled weight (Mg ha) (Mg COz2 eq
P grain grain (Mg ha™) Mg yield ™)
Wet season
586+5 27.1£0.5 116 + 8 7.00 £ 1.00 13.3+0.5 4.37+0.14 0.62 +0.05
CO
bed a a c ab a a
587+7 27.1+£0.3 113+6 9.67 +£1.53 12.2+£0.2 442 +£0.10 0.49 + 0.04
DT
bed a a c c a be
573+ 6 259+04 80.0+ 5.6 20.7+4.2 12.4+03 3.04 +0.08 0.53 +0.02
DR
cd b b a be be ab
569 +7 25.7+0.5 733 +3.2 223+3.8 12.0+0.3 2.44+0.12 0.49 + 0.03
DTR
d b b a c d be
604 + 8 27.1+0.5 119+5 12.7+ 8.1 13.6+0.3 4.49 £0.15 0.51+£0.04
CO+BI
ab a a be a a b
610+8 272403 116 +3 8.67+1.15 12.4+£0.2 4.45+0.16 0.43 +£0.05
DT+BI
a a a ¢ bc a bc
DRABI 588+ 6 26.0+£0.3 81.3£5.0 19.0+44 125+03 3.22+0.06 0.44 + 0.04
be b b ab bc b bc
DTR+BI 578+ 6 25.7+0.3 74.7+4.5 19.7+3.2 122+ 0.6 2.72+0.10 0.39 +0.02
cd b b ab c cd c
Dry season
594 + 8 27.1+£03 112+ 6 7.33 £1.53 13.1£0.3 438 +0.09 0.58 £ 0.03
CO
bc a a d ab a a
588+ 7 27.1+£0.2 109+ 6 7.00 = 1.00 12.0+0.3 430+ 0.08 0.39 +0.02
DT
bed a a d c a cde
DR 577+5 255+0.1 80.0+ 5.6 17.0+£2.0 122+0.3 3.06 +0.08 0.46 +0.02
cd b b be c b be
570+ 6 253+0.2 753 +3.1 23.0+2.7 11.6+ 0.4 2.34+0.09 0.42 +0.02
DTR
d b b a c d cd
616+7 27.1+0.3 113+4 6.00 + 1.00 13.4+0.3 4.48 +0.05 0.50 £ 0.05
CO+BI
a a a d a a b
605+7 27.1+£04 110+3 8.67+1.15 12.2+0.3 4.47+0.13 0.32 +0.02
DT+BI
ab a a d c a e
DR4BI 577+9 25.7+0.3 83.3+3.1 153+3.2 124+03 3.24 +0.09 0.37+0.02
cd b b c be b de
580+ 10 254+0.2 77.7+4.9 213+2.1 11.7+0.3 2.78 £ 0.05 0.32 +0.02
DTR+BI
cd b b ab c c e

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water
scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and
reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are
presented as mean + standard error. Different letters indicate significant differences between treatments

within each season.



Table S
Water use, irrigation water productivity, and water scarcity footprint of rice cultivation in wet

and dry seasons.

Water use in rice cultivation Irrigation water Water scarcity

Treatment Irrigation Rain productivity footprint
(m* ha™) (m* ha™) (kg yield m™) (m® HyOeq ha™)
Wet season
CO 6,080+ 51 a 3,280 0.72+0.02d 4,270+ 37 a
DT 4,070+ 14 b 3,480 1.09+0.05b 2,930+5b
DR 3,900 + 59 cd 3,280 0.78 £0.02 cd 2,520+39 ¢
DTR 1,990+ 22 e 3,480 1.23 +£0.05 ab 1,260+ 16 d
CO+BI 5,980+ 108 a 3,280 0.75+0.02 cd 4,190+ 74 a
DT+BI 4,040 + 55 be 3,480 1.10£0.05b 2,910+ 40b
DR+BI 3,850+ 59d 3,280 0.84£0.02¢ 2,490 £39 ¢
DTR+BI 1,960 +31 e 3,480 1.39+0.04 a 1,240 +£23d
Dry season

CO 7,230+ 24 a 1,080 0.61£0.02c¢ 5,320+ 21 a
DT 5,740 £37b 1,080 0.75+0.02a 4,170 +27b
DR 5,490 £ 23 ¢ 1,080 0.56£0.05¢ 3,590+ 18 ¢
DTR 3,920+ 73d 1,080 0.60+0.02 ¢ 2,360+ 63d
CO+BI 7,170+ 30 a 1,080 0.62+0.02 ¢ 5,270+ 27 a
DT+BI 5,750£22D 1,080 0.78+0.02 a 4,170 £22b
DR+BI 5,430+ 17 ¢ 1,080 0.60+0.02 ¢ 3,540+ 6¢
DTR+BI 3,920+ 17d 1,080 0.71+£0.02b 2,360 +9d

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water
scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and
reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are
presented as mean + standard error. Different letters indicate significant differences between treatments

within each season.
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Fig. 1. (A) Air temperature and rainfall during the study period. Water level in the field using
(B) continuous flooding according to conventional practice (CO), (C) biochar application
(CO+BI), (E) water scarcity during tillering stage (DT), (F) DT combined with BI (DT+BI),
(H) water scarcity during reproductive stage (DR), (I) DR combined with BI (DR+BI), (K)
water scarcity during tillering and reproductive stages (DTR), and (L) DTR combined with BI
(DTR+BI). Variation of CH4 emissions throughout the study period of (D) CO and CO+BI,
(G) DT and DT+BI, (J) DR and DR+BI, and (M) DTR and DTR+BI. LP signifies land
preparation, basal is application of basal fertilizer, and top dressing is application of top-

dressing fertilizer.
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Fig. 2. (A) Air temperature and rainfall during the study period. Water level in the field using
(B) continuous flooding according to conventional practice (CO), (C) biochar application
(CO+BI), (E) water scarcity during tillering stage (DT), (F) DT combined with BI (DT+BI),
(H) water scarcity during reproductive stage (DR), (I) DR combined with BI (DR+BI), (K)
water scarcity during tillering and reproductive stages (DTR), and (L) DTR combined with BI
(DTR+BI). Variation of N20 emissions throughout the study period of (D) CO and CO+BI,
(G) DT and DT+BI, (J) DR and DR+BI, and (M) DTR and DTR+BI. LP signifies land
preparation, basal is application of basal fertilizer, and top dressing is application of top-

dressing fertilizer.
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Fig. 3. Redundancy analysis (RDA) illustrating the relationships between (A) greenhouse gas
(GHG) emissions (CH4, N20, and global warming potential (GWP)) and soil and plant
conditions observed throughout the cultivation period; (B) GHG emissions (CHa4, N20, and
GWP) and the abundances of soil microbial communities at 25 and 65 d after transplanting
(DAT); and (C) CH4 emissions and the abundances of methanogenic archaea and
methanotrophic bacteria at 65 DAT. CO refers to continuous flooding, DT to water scarcity
during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to
water scarcity during both the tillering and reproductive stages. +BI indicates the addition of
biochar to the same water regimes. DOC is dissolved organic carbon, Eh is soil redox

potential, and NOs™ in nitrate. All associations are significant at P < 0.05.
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Fig. 4. Abundances of (A) methanogens (mcrA gene), (B) methanotrophs (pmoA gene), (C)
(nosZ) genes of denitrifying bacteria during the tillering (25 d after transplanting (DAT)) and

reproductive (65 DAT) stages in both wet and dry seasons. CO refers to continuous flooding,
DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive

nitrifying bacteria (amoA gene), (D) nitrite reductase (nirK),



stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI
indicates the addition of biochar to the same water regimes. Data are presented as mean +
standard error. Different letters indicate significant differences between treatments within

each season.
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Fig. 5. Taxonomic profiles (genus level) of methanogenic archaea at 65 d after transplanting
(DAT) in (A) the wet and (B) dry seasons, and methanotrophs at 65 DAT in (C) the wet and
(D) dry seasons. CO refers to continuous flooding, DT to water scarcity during the tillering
stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during
both the tillering and reproductive stages. +BI indicates the addition of biochar to the same

water regimes.
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Fig. 6. Soluble (A, B) nitrate (NO3") and (C, D) dissolved organic carbon (DOC) in soil
during the (A, C) wet and (B, D) dry cultivation seasons. CO refers to continuous flooding,
DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive
stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI
indicates the addition of biochar to the same water regimes. Data are presented as mean +

standard error.



