

Journal Pre-proof

The response of greenhouse gas emissions, crop yield, and soil health to water scarcity and biochar application in rice cultivation

Patikorn Sriphrom, Rattapon Onchang, Benjamas Rossopa, Amnat Chidthaisong

PII: S2773-126X(24)00045-5

DOI: <https://doi.org/10.1016/j.crope.2024.12.005>

Reference: CROPE 87

To appear in: *Crop and Environment*

Received Date: 4 October 2024

Revised Date: 12 December 2024

Accepted Date: 14 December 2024

Please cite this article as: P. Sriphrom, R. Onchang, B. Rossopa, A. Chidthaisong, The response of greenhouse gas emissions, crop yield, and soil health to water scarcity and biochar application in rice cultivation, *Crop and Environment*, <https://doi.org/10.1016/j.crope.2024.12.005>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Author(s). Published by Elsevier Ltd on behalf of Huazhong Agricultural University.

1 **The response of greenhouse gas emissions, crop yield, and soil health to water scarcity**
2 **and biochar application in rice cultivation**

3

4 Patikorn Sriphirom^{a, b, *}, Rattapon Onchang^a, Benjamas Rossopa^c, Amnat Chidthaisong^{d, e, f}

5

6 ^a Department of Environmental Science, Faculty of Science, Silpakorn University, Nakhon
7 Pathom, Thailand

8 ^b Greenhouse Gas Unit for Sustainability (GGUS), Department of Environmental Science,
9 Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand

10 ^c Prachin Buri Rice Research Center, Rice Department, Ministry of Agriculture and
11 Cooperatives, Prachin Buri, Thailand

12 ^d The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's
13 University of Technology Thonburi, Bangkok, Thailand

14 ^e Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of
15 Higher Education, Science, Research and Innovation, Bangkok, Thailand

16 ^f Earth System Science Research Cluster, King Mongkut's University of Technology
17 Thonburi, Bangkok, Thailand

18

19 *Corresponding author

20 E-mail address: sriphirom_p@su.ac.th (P. Sriphirom)

21

22 **ABSTRACT**

23 Projected climate change impacts, such as delayed rainfall and increased drought frequency,
24 threaten rice cultivation and global food security. This study evaluated the effects of water
25 scarcity at critical growth stages and biochar application on greenhouse gas (GHG) emissions,
26 yield, and soil health in Central Thailand using the drought-tolerant cultivar *Pathum Thani* 1.

27 Treatments included continuous flooding and water scarcity during tillering, reproductive, or
28 both stages, with and without biochar, across wet and dry seasons. Water scarcity significantly
29 reduced methane (CH_4) emissions by inhibiting hydrogenotrophic methanogenesis
30 (*Methanocella*) and acetoclastic methanogenesis (GOM Arc I of *Methanosarcinales*) but
31 increased nitrous oxide (N_2O) emissions via enhanced nitrification. Despite higher N_2O
32 emissions, total GHG emissions, expressed as the global warming potential (GWP), were
33 lower under water-scarce conditions than under continuous flooding, with reductions of
34 27.1%, 43.0%, and 58.1% during tillering, reproductive, and both stages, respectively. Water
35 scarcity during tillering stage maintained yield, whereas water scarcity during reproductive
36 stage caused a significant reduction in yield. Biochar amendment further mitigated GHG
37 emissions, improved yield (by 12.2%), and enhanced soil health by increasing soil pH,
38 nutrient availability, and soil organic carbon sequestration. Its high porosity and surface area
39 also suppressed methanogenesis and reduced N_2O formation while improving nutrient use
40 efficiency. The strategic use of water restrictions during tillering, combined with biochar,
41 provides a sustainable approach to mitigate GHG emissions, optimize water use, and sustain
42 soil health and productivity. In resource-limited scenarios, prioritizing tillering-stage water
43 scarcity over biochar application is recommended because of its greater GHG mitigation
44 potential.

45

46 **Keywords:** Biochar amendment, Grain yield, Greenhouse gas emissions, Rice, Soil health,
47 Water scarcity

48

49 **1. Introduction**

50 Anthropogenic greenhouse gas (GHG) emissions have been unequivocally identified
51 as the predominant drivers of global warming and climate change, exerting profound and far-

52 reaching impacts across environmental, economic, and social systems (IPCC, 2021). Among
53 the diverse sources of GHG emissions, agricultural activities, particularly within agrarian
54 nations, represent a substantial and critical source (IPCC, 2022a). In 2019, Thailand's GHG
55 emissions from agricultural sector were approximately at 28,715 gigagrams of carbon dioxide
56 equivalent (Gg CO₂eq), contributing 7.70% of the nation's total GHG emissions. Within the
57 agricultural sector, rice cultivation alone is responsible for 51.0% of total emissions (ONEP,
58 2022). The predominant GHG released from rice fields are methane (CH₄) and nitrous oxide
59 (N₂O), which exhibit global warming potentials (GWP) approximately 27 and 273 times that
60 of CO₂, respectively. CH₄ is produced predominantly through the anaerobic decomposition of
61 organic matter facilitated by methanogenic archaea (Conrad, 2002), whereas N₂O is generated
62 through nitrification and denitrification processes under aerobic and anaerobic conditions,
63 respectively (Hayashi et al., 2015). Therefore, mitigating GHG emissions from rice cultivation
64 poses a critical challenge in reducing the future impacts of climate change.

65 Despite ongoing and future mitigation efforts, the impacts of climate change are
66 inevitable, as indicated by various climate change scenarios (IPCC, 2021). Altered
67 precipitation patterns, such as the absence of rainfall during the wet season or delayed onset
68 of rains, coupled with extreme climatic events, are of particular concern because of their
69 detrimental effects on crop production (IPCC, 2022b; Kumar et al., 2019). Studies from
70 Southeast Asia have demonstrated significant increases in the annual average surface
71 temperature and reductions in precipitation during the wet season, contributing to severe
72 drought conditions across the region (Amnuaylojaroen and Chanvichit, 2019, 2024). These
73 climatic shifts raise concerns regarding food security, heightened water demands, and
74 intensified competition for water resources, particularly in rainfed agricultural areas
75 (Boonwichai et al., 2018; Bouman et al., 2007; Datta et al., 2017).

76 Thailand also experiences droughts frequently, with future projections indicating
77 increased severity, particularly in agricultural regions (Amnuaylojaroen and Chanvichit, 2024;
78 Boonwichai et al., 2018; Kaewmai et al., 2021). The 2019 drought in Thailand, which resulted
79 in estimated agricultural production losses of approximately 26 billion baht (USD 840
80 million), was attributed primarily to rice production during the dry season. This reduction was
81 due to government-imposed restrictions on irrigation to prioritize water availability for
82 domestic consumption and ecological management, a decision driven by significantly below-
83 average precipitation (USDA, 2020). These adverse weather conditions have had considerable
84 impacts on crop yields, farmer incomes, and the national economy (Bouman et al., 2007).
85 Field studies evaluating the interplay between crop yield and GHG emissions from rice
86 cultivation under water scarcity, particularly under low rainfall conditions in Thailand, remain
87 limited.

88 Research conducted in Bangladesh by Moonmoon and Islam (2017) and Hossain et al.
89 (2020) revealed that water deficit conditions and drought stress significantly reduced rice
90 grain yield by affecting key morphological traits, such as plant height, number of effective
91 tillers, spikelets, filled grains, and 1000-grain weight. Drought stress during the panicle
92 initiation stage was identified as a critical factor in yield reduction. Similarly, Zhang et al.
93 (2023) reported that water stress during the heading and flowering stages in China led to
94 average yield reductions of 27.6–46.3% compared to conventional flooding practices. In
95 India, Kumar et al. (2020) demonstrated that cumulative drought stress impaired sugar
96 mobilization, leading to reduced pollen viability and grain yield, with an average yield
97 reduction of 85.7% compared to non-stress conditions. In Southern Thailand, the
98 investigations by Hussain et al. (2022) identified rice genotypes, including Hom Pathum,
99 Sang Yod, Dum Ja, and Pathum Thani 1, as exhibiting high tolerance to drought stress, with
100 reductions in grain yield ranging from 21–52%. However, these studies were conducted under

101 controlled greenhouse conditions and did not encompass the measurement of GHG emissions.
102 Thus, examining the impact of water scarcity on rice cultivation under field conditions in
103 Thailand, with a focus on GHG emissions, crop yield, and soil health, is of significant
104 scientific interest.

105 Given the negative impacts of water scarcity on rice cultivation, the application of soil
106 amendments may offer a viable strategy to mitigate these adverse effects. Biochar, in
107 particular, has shown promise as a soil amendment, improving soil quality, increasing grain
108 yield, and reducing GHG emissions (Chew et al., 2020; Jeffery et al., 2011; Sriphrom et al.,
109 2022; Wang et al., 2019; Zhang et al., 2010). The unique properties of biochar, including high
110 porosity and large surface area, enhance water retention, nutrient absorption, and nutrient use
111 efficiency by plants, leading to increased yield production (Chew et al., 2020; Oladele et al.,
112 2019; Oliveira et al., 2017). Biochar's alkalinity can also balance soil pH and improve soil
113 organic C (SOC) sequestration (Koyama and Hayashi, 2019; Sriphrom et al., 2020; Zhang et
114 al., 2020). Additionally, biochar is expected to enhance drought resilience (IPCC, 2022a).
115 Studies by Wang et al. (2019) and Wu et al. (2019) demonstrated that biochar amendments
116 reduced CH₄ emissions by decreasing methanogen populations and increasing methanotrophic
117 activity, thereby minimizing CH₄ production and promoting CH₄ oxidation. Moreover,
118 Cayuela et al. (2013) found that biochar immobilizes NO₃⁻ in the soil, reducing its availability
119 for N₂O formation. However, the mitigation potential of biochar varies depending on the soil
120 type and application rates (Feng et al., 2012; Wang et al., 2019). Thus, biochar application
121 may provide a strategy to mitigate the adverse effects of water scarcity in rice cultivation.

122 This study aims to elucidate the effects of water scarcity, imposed during distinct
123 critical phenological stages (tillering, reproductive, or both) with and without biochar
124 application, on GHG emissions, yield performance, and soil conditions. The experiment was
125 conducted over two consecutive growing seasons (one year) using a drought-tolerant rice

126 variety in a key province of Central Thailand, a nation of global significance in rice production
 127 and export. The findings are expected to provide valuable insights into optimizing rice
 128 cultivation practices in the context of water scarcity exacerbated by climate change-induced
 129 rainfall deficits. This research contributes to the advancement of sustainable agricultural
 130 systems by identifying strategies that mitigate GHG emissions while maintaining or
 131 enhancing crop productivity and soil health.

132

133 **2. Materials and methods**

134 *2.1. Study site*

135 The study site is situated in Bang Pla Sub-district, Bang Len District, Nakhon Pathom
 136 Province, Central Thailand (13°57'33"N, 100°09'25"E, at an elevation of 3 m above mean sea
 137 level). The soil at the site is classified as Endoaquepts within the Vertisols order, according to
 138 the United States Department of Agriculture (USDA) soil taxonomy. The soil texture is
 139 characterized as clay, comprising 40.7% sand, 13.3% silt, and 46.0% clay. Baseline physical
 140 and chemical properties of the soil, collected from the 0–20 cm depth in April 2023, are
 141 detailed in Table 1.

142 During the study period, from May 2023 to April 2024, the site experienced an annual
 143 rainfall of 625 mm, with maximum and minimum air temperatures of 34.5°C and 24.8°C,
 144 respectively (Fig. 1A and 2A). Notably, the cumulative annual rainfall was substantially lower
 145 than the long-term average of 1,006 mm, reflecting drier-than-average climatic conditions
 146 during the study period.

147

148 **Table 1 here**

149

150 *2.2. Experimental design*

151 This study simulated field conditions of water restriction due to the absence of rainfall
 152 for 15 or more consecutive days, representing a precipitation deficit or shortage during rice
 153 cultivation (DDPM, 2022). The experiment was conducted during the 2023–2024 growing
 154 season, which is characterized by below-average precipitation. Four distinct water regimes
 155 were designed: continuous flooding (CO), water scarcity during the tillering stage (DT), water
 156 scarcity during the reproductive stage (DR), and water scarcity during both the tillering and
 157 reproductive stages (DTR).

158 All treatments were maintained under continuous flooding with 5 cm of water above
 159 the soil surface from 0 to 15 d after transplanting (DAT). The water depth was increased to 10
 160 cm during 16–24 DAT, 55–59 DAT, and at 90 DAT. To induce water scarcity, irrigation was
 161 withheld to allow natural drying of the field during the tillering stage (25–54 DAT) and the
 162 reproductive stage (60–89 DAT). After 90 DAT, all treatments were naturally dried to prepare
 163 for harvest. Water levels above or below the soil surface were monitored using a measuring
 164 stick placed within a PVC tube installed in the soil prior to transplanting. The field was irrigated
 165 to the target flood level using a pump at fixed intervals (6:00, 13:00, and 18:00). However,
 166 rainfall during the wet season partially interfered with the induction of water scarcity during
 167 the tillering stage and the drying period before harvest (Fig. 1A and 2A)

168 The biochar used in this study was derived from bamboo through pyrolysis at 600°C
 169 (Sahoo et al., 2021). The bamboo biochar exhibited high porosity and surface area (Odega et
 170 al., 2023), with a specific surface area of $192 \text{ m}^2 \text{ g}^{-1}$ and a specific pore volume of 0.19 cm^3
 171 g^{-1} . Its basic characteristics are presented in Table 1. Biochar was applied at a rate of 20 Mg
 172 ha^{-1} (dry weight) per season (Zhang et al., 2010) across all the water regimes. Consequently,
 173 the study comprised eight treatments: CO, DT, DR, DTR, CO with biochar application
 174 (CO+BI), DT with biochar application (DT+BI), DR with biochar application (DR+BI), and
 175 DTR with biochar application (DTR+BI), as illustrated in Fig. S1.

176 The rice (*Oryza sativa* L.) cultivar Pathum Thani 1 (PTT 1), known for its high drought
177 tolerance and yield potential (Hussain et al., 2022), was cultivated across two growing seasons
178 (wet and dry seasons). The experiment was arranged in a randomized complete block design
179 with three replications, and each plot measured 10 m × 10 m.

180

181 *2.3. Crop management*

182 Rice cultivation for the wet season was conducted from June 3 to September 29, 2023,
183 and for the dry season, it was conducted from November 18, 2023 to March 17, 2024. During
184 each cultivation period, the soil underwent two plowing operations: moldboard tillage was
185 performed 25 d before transplanting (DBT), followed by harrow tillage 2 DBT. The final tillage
186 operation included levelling the field as thoroughly as possible and removing aboveground
187 residues from the previous season. Only the stubble below the soil surface was incorporated
188 during the initial tillage to prepare the field for the subsequent season. Biochar was
189 incorporated into the soil in the CO+BI, DT+BI, DR+BI, and DTR+BI treatments during the
190 first tillage.

191 Rice seedlings were germinated in trays for 20 d prior to transplanting. Vigorous
192 seedlings were transplanted at a spacing of 25 cm × 25 cm with five seedlings per hill on June
193 3, 2023 and November 18, 2023 for the wet and dry seasons, respectively. Mineral fertilizers
194 were applied twice per season: a basal application of a mixed fertilizer (N–P–K: 15–15–15) at
195 rates of 35 kg N ha⁻¹, 35 kg P ha⁻¹, and 35 kg K ha⁻¹ at 21 DAT, and a top-dressing of urea at
196 a rate of 55 kg N ha⁻¹ at 60 DAT. All treatments received uniform weed control and pesticide
197 applications as required. Harvesting was carried out simultaneously on September 29, 2023 for
198 the wet season (118 DAT), and on March 17, 2024 for the dry season (120 DAT). The detailed
199 calendar of crop management operations is provided in Table S1.

200

201 2.4. *CH₄ and N₂O emissions analysis*

202 CH₄ and N₂O emissions were quantified using a closed chamber technique throughout
203 the cultivation period and during the fallow phase (Minamikawa et al., 2015; Sriphrom et al.,
204 2024a). Gas sampling was conducted using acrylic chambers of varying volumes: 0.13, 0.25,
205 or 0.45 m³ during the growing season, depending on the rice height, and 0.06 m³ during the
206 fallow period. Chambers were installed in triplicate per plot before transplanting and remained
207 in situ throughout the cultivation season to minimize soil disturbance. During gas sampling,
208 the chamber body was sealed onto the base.

209 Air samples from the chamber headspace were collected using a 30 mL plastic syringe
210 at intervals of 0, 5, 10, 15, and 20 min after chamber closure. These samples were then
211 transferred into 25 mL evacuated glass vials. Routine analysis was conducted weekly, with
212 additional sampling during fertilizer application and periods of extreme drought. Gas
213 sampling was conducted between 09:00 and 11:00 during the cultivation period and between
214 12:00 and 14:00 during the fallow period (Minamikawa et al., 2015). Air temperature inside
215 the chamber during sampling was recorded for emission rate calculations.

216 Gas concentrations were analyzed using a gas chromatography (GC) (7890B, Agilent
217 Technologies, Inc., USA) equipped with a flame ionization detector (FID) and an electron
218 capture detector (ECD) operating at 300°C with a HaySep Q packed column. Nitrogen (N)
219 and helium served as carrier gases for the GC-FID and GC-ECD, respectively (Chidthaisong
220 et al., 2018). CH₄ and N₂O fluxes were calculated from the increase in gas concentration
221 (ppmv) over the 20-min sampling period using linear regression methods as described by
222 Sriphrom et al. (2024b). Seasonal cumulative emissions were estimated through successive
223 linear interpolation and numerical integration of data collected on sampling days (Sriphrom
224 et al., 2024b). CH₄ and N₂O emissions were converted to CO₂ equivalents (CO₂eq) using
225 GWP factors over a 100-year horizon: 27 for CH₄ and 273 for N₂O (IPCC, 2021).

226

227 *2.5. Soil property analysis*

228 Soil samples were collected at a depth of 20 cm at three intervals: pre-cultivation
229 (April 2023; Table 1), post-wet season (October 2023), and post-dry season (April 2024).
230 Triplicate samples per plot were obtained using a 100 cm³ stainless-steel core sampler, air-
231 dried, sieved (2 mm), and analyzed for pH (1:1 soil/water), electrical conductivity (EC; 1:5
232 soil/water extraction), organic C (OC; Walkley & Black method), and organic matter (OM;
233 calculated as 1.724 × OC). Available P (Bray II method), exchangeable K (ammonium acetate
234 extraction), cation exchange capacity (CEC; ammonium saturation), moisture content and
235 bulk density were measured gravimetrically (105°C drying for 48 h) using a forced-air
236 convection oven (Redline RF 53, Germany). Analyses followed protocols described by Pansu
237 and Gautheyrou (2006).

238 Total C and N were quantified using a CHN analyzer (LECO Corporation, USA) at
239 combustion temperatures of 950–1050°C (Joseph, 2016). Ammonium (NH₄⁺) was measured
240 using ion chromatography (IC) with a Dionex Integron HPIC system (Thermo Scientific,
241 USA) equipped with Dionex IonPac CG16 guard and CS16 analytical columns (Thomas et
242 al., 2002). Nitrate (NO₃⁻) was analyzed using IC with Dionex IonPac AG11 guard and AS11
243 analytical columns (Morales et al., 1998). SOC sequestration was estimated as the product of
244 SOC concentration, sampling depth, and bulk density following Lee et al. (2009).

245 During cultivation, soil redox potential (Eh), pH, temperature, NO₃⁻, and dissolved
246 organic C (DOC) were monitored at 7–10 d intervals at a depth of 0–10 cm. Eh, pH, and
247 temperature were recorded using a pH/ORP sensor (YSI Professional Plus, USA). DOC was
248 extracted with K₂SO₄ (Dong et al., 2013) and quantified using a total organic C (TOC)
249 analyzer (Multi N/C 2100, Germany) equipped with a non-dispersive infrared (NDIR)
250 detector.

251

252 *2.6. Soil microbial abundance and community analysis*

253 Soil samples (0–10 cm) were collected (Lee et al., 2015) at 25 DAT and 65 DAT for
254 microbial abundance and community structure analysis. DNA was extracted from 1 g of soil
255 using the DNeasy PowerSoil Pro kit (Qiagen, Germany), with quality confirmed by agarose
256 gel electrophoresis and concentration measured using a NanoPhotometer N60 Touch (Implen,
257 Germany).

258 Microbial abundances were quantified using quantitative real-time polymerase chain
259 reaction (qRT-PCR) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA).
260 Each 20- μ L reaction contained 10 μ L of Luna® Universal qPCR Master Mix (NEB, USA),
261 0.4 μ L each of forward and reverse primers, 1.0 μ L of DNA template (10–20 ng), and 8.2 μ L
262 of sterile water. Primers sets targeted the methyl coenzyme M reductase (*mcrA*) gene for
263 methanogens (*mcrA*-F/*mcrA*-R; Luton et al., 2002), the particulate methane monooxygenase
264 (*pmoA*) gene for methanotrophs (A189F/Mb661R; Kolb et al., 2003), the ammonia
265 monooxygenase (*amoA*) gene for nitrifying bacteria (*amoA*-1F/*amoA*-2R; Rotthauwe et al.,
266 1997), and the nitrite reductase (*nirK*) and nitrous oxide reductase (*nosZ*) genes for
267 denitrifying bacteria (*nirKF1aCu/nirKR3Cu*; Hallin and Lindgren, 1999; *nosZ2F/nosZ2R*;
268 Henry et al., 2006). Thermal cycling conditions are detailed in Table S2, with standard curves
269 achieving $R^2 > 0.99$.

270 Bacterial diversity during the reproductive stage was assessed via 16S ribosomal RNA
271 (rRNA) gene amplification using primers specific to methanogenic archaea (1106F/1378R;
272 Watanabe et al., 2007) and type I (197F/533R; Tsien et al., 1990) and type II methanotrophic
273 bacteria (142F/533R; Tsien et al., 1990). Thermal cycling conditions were: for methanogenic
274 archaea, 98°C for 1 min, followed by 30 cycles of 95°C for 10 s, 50°C for 30 s, and 72°C for
275 35 s, with a final extension at 72°C for 5 min; for methanotrophic bacteria, 94°C for 2 min,

276 followed by 35 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 45 s, with a final
277 extension at 72°C for 5 min. Sequencing libraries were prepared using the Nextera XT Index
278 kit (Illumina, USA) and sequenced on a MiSeq platform (300-bp paired-end) with the MiSeq
279 Reagent Kit v3 (600 cycles).

280 Amplicon sequence analysis was conducted using Quantitative Insights Into Microbial
281 Ecology (QIIME2) version 2022.2 (Bolyen et al., 2019). Adapters were trimmed with q2-
282 cutadapt (Martin, 2011), and DADA2 (Callahan et al., 2016) was used for error correction and
283 sequence variant calling. Taxonomic classification was performed using the SILVA database
284 version 138 (Bokulich et al., 2018; Quast et al., 2013). Rarefaction ensured uniform
285 sequencing depth, and diversity metrics were computed. Heatmaps were visualized using the
286 Multiple Experiment Viewer version 4.9.0 (Howe et al., 2010).

287

288 *2.7. Crop growth, yield, and water use measurements*

289 In this study, various parameters of crop growth and yield were assessed, including
290 plant height, tiller count, panicle count, numbers of filled and unfilled grains, 1000-grain
291 weight, aboveground biomass, and grain yield. Plant growth, height, and tiller count were
292 measured and recorded manually throughout the cultivation period. Yield components were
293 determined from a 3 m² area in each plot on the designated harvest day, and the dry weights
294 were subsequently determined.

295 Water use in rice cultivation was quantified by summing the volumes of irrigation and
296 rainfall. Irrigation water was supplied using a water pump (WCM-3705FS, 5HP, Mitsubishi,
297 Thailand), and its application was monitored with a multi-jet water meter (GMK 15 R80,
298 Asahi, Thailand) throughout both the land preparation and cultivation periods. Daily rainfall
299 was recorded using a tipping bucket rain gauge positioned within the study area. Total water
300 use was defined as the cumulative volume of irrigation and rainwater applied to the field,

301 ensuring that it did not surpass the predetermined flood levels (5 cm or 10 cm, as depicted in
 302 Fig. S1). Additionally, irrigation water productivity was estimated by calculating the ratio of
 303 marketable grain yield to the total amount of irrigation water used (IWU) according to Eq.
 304 (1), which reflects the efficiency of irrigation practices (Fernández et al., 2020).

305

306
$$\text{Irrigation water productivity (kg yield m}^{-3}\text{)} = \frac{\text{Grain yield (kg ha}^{-1}\text{)}}{\text{IWU (m}^3 \text{ ha}^{-1}\text{)}} \quad (1)$$

307

308 The impact of water scarcity on downstream human users and ecosystems was
 309 quantified as the water scarcity footprint (Kaewmai et al., 2021). This footprint, expressed in
 310 $\text{m}^3 \text{ H}_2\text{Oeq ha}^{-1}$, was calculated by multiplying the monthly volume of irrigation water used in
 311 rice cultivation (from land preparation to harvest) by the monthly water stress index (WSI)
 312 according to Eq. (2) (Silalertruska et al., 2017). For the Tha Chin watershed, where Nakhon
 313 Pathom Province is located, the WSI values for each month were as follows: January, 1.00;
 314 February, 1.00; March, 0.94; April, 0.04; May, 0.03; June, 0.42; July, 0.76; August, 0.82;
 315 September, 0.28; October, 0.04; November, 0.06; and December, 0.69 (Gheewala et al., 2018).

316

317
$$\text{Water scarcity footprint (m}^3 \text{ H}_2\text{Oeq ha}^{-1}\text{)} = \text{Monthly volume of IWU (m}^3 \text{ ha}^{-1}\text{)} \times$$

 318 Monthly WSI $\quad (2)$

319

320 *2.8. Statistical analysis*

321 Principal coordinate analysis (PCoA) of microbial community composition was
 322 conducted and visualized using the vegan R package (Dixon, 2003). Functional predictions of
 323 microbial communities were performed using phylogenetic investigation of communities by
 324 reconstruction of unobserved states (PICRUSt) on the Majorbio I-Sanger cloud platform
 325 (<http://www.i-sanger.com/>). KEGG Orthology data were utilized to estimate the abundance of

326 key functional enzymes associated with methanogens and methanotrophs, and the relative
 327 abundance of these genera was illustrated according to their functional roles.

328 All results are presented as means \pm standard errors. Differences among treatments
 329 were assessed using one-way analysis of variance (ANOVA), followed by Tukey's honestly
 330 significant difference (HSD) test for post hoc comparisons at a 95% confidence level ($P <$
 331 0.05). Statistically significant differences are indicated by distinct letter annotations.
 332 Combined means of key parameters, including CH₄ emissions, N₂O emissions, GWP, grain
 333 yield, SOC stock, and irrigation water productivity, were analyzed to evaluate the effects of
 334 water management, biochar amendment, and growing season. Statistical analyses were
 335 conducted using SPSS version 29.0 (IBM SPSS Statistics, New York, USA).

336 Pearson's correlation analysis and redundancy analysis (RDA) were employed to
 337 investigate the relationships between GHG emission rates (CH₄, N₂O, and GWP) and
 338 environmental and biological factors, including soil properties (pH, Eh, temperature, and
 339 NO₃⁻ and DOC contents), plant characteristics (rice height and tiller number), water levels,
 340 and microbial abundance (methanogens, methanotrophs, nitrifiers, and denitrifiers).
 341 Additionally, the association between CH₄ emission rates and the community composition of
 342 methanogenic archaea and methanotrophic bacteria was analyzed. Data for these analyses
 343 were collected concurrently throughout the study period. RDA was performed using the vegan
 344 R package version 4.3.1 (Kindt, 2020), while Pearson's correlation analysis was conducted
 345 using SPSS as described above.

346

347 **3. Results**

348 *3.1. CH₄ and N₂O emissions*

349 Water scarcity during the cultivation season significantly reduced anaerobic soil
 350 conditions, substantially mitigating CH₄ emissions. Extended water scarcity further increased

351 CH₄ emission mitigation (Fig. 1B–M), as evidenced by a strong positive correlation ($P < 0.01$)
 352 between CH₄ emissions and field water level (Fig. 3A and Table S3). Specifically, compared
 353 to continuous flooding (CO and CO+BI), water scarcity during the tillering stage (DT and
 354 DT+BI), reproductive stage (DR and DR+BI), and both stages combined (DTR and DTR+BI)
 355 reduced seasonal cumulative CH₄ emissions by 20.3%, 41.8%, and 57.6%, respectively, in the
 356 wet season, and by 36.6%, 47.9%, and 64.9%, respectively, in the dry season (Table 2).

357 Conversely, water scarcity increased N₂O emissions (Fig. 2B–M), as indicated by a
 358 significant negative correlation ($P < 0.01$) between N₂O emissions and field water levels (Fig.
 359 3A and Table S3). Seasonal cumulative N₂O emissions under water scarcity during the
 360 tillering stage, reproductive stage, and both stages combined increased by 25.1%, 33.2%, and
 361 54.3%, respectively, in the wet season and by 31.1%, 50.4%, and 71.7%, respectively, in the
 362 dry season relative to continuous flooding. Compared with the wet season, the extended
 363 aerobic periods associated with water scarcity during the dry season contributed to lower CH₄
 364 emissions but higher N₂O emissions (Table 2).

365 When GHG emissions were assessed in terms of CO₂ equivalents, referred to as GWP,
 366 water scarcity consistently demonstrated net environmental benefits, largely due to substantial
 367 reductions in CH₄ emissions (Table 2). These findings suggest that rice cultivation under
 368 water-scarce conditions, as anticipated under climate change scenarios, represents a more
 369 sustainable and environmentally friendly practice.

370 Biochar amendment also exhibited mitigation potential for both CH₄ and N₂O
 371 emissions during some periods of the cultivation season (Fig. 1B–M and 2B–M). Compared
 372 with no biochar application, biochar application reduced seasonal cumulative CH₄, N₂O, and
 373 GWP by 12.0%, 15.3%, and 12.2%, respectively, in the wet season and by 11.9%, 18.7%, and
 374 12.2%, respectively, in the dry season (Table 2). Although biochar presents itself as a viable

375 GHG mitigation strategy, its effectiveness is often surpassed by that of water management
376 interventions.

377

378 **Fig. 1. here**

379

380 **Fig. 2. here**

381

382 **Table 2 here**

383

384 **Fig. 3. here**

385

386 *3.2. Microbial abundances and diversity*

387 Soil samples analyzed under various management practices revealed that microbial
388 abundance and diversity underwent more pronounced changes during the reproductive stage
389 (65 DAT) than during the tillering stage (25 DAT) (Fig. 4). During the reproductive stage,
390 water scarcity likely reduced the abundance of methanogens and denitrifying bacteria while
391 promoting the proliferation of methanotrophic and nitrifying bacterial populations. Microbial
392 community patterns under water scarcity during the reproductive stage (DR and DR+BI)
393 closely resembled those observed under continuous flooding (CO and CO+BI), likely
394 reflecting similar soil conditions during the sampling period. However, microbial patterns
395 under water scarcity at both stages (DTR and DTR+BI) were consistent with those observed
396 under water scarcity during the tillering stage (DT and DT+BI). Biochar application generally
397 increased the abundance of all the microbial groups, although most of these increases were
398 not statistically significant (Fig. 4).

399

400 **Fig. 4. here**

401

402 Soil drying induced by water scarcity reduced the abundances of methanogenic
 403 archaea, including *Methanocella* (5.28%), *Methanocellaceae*; Rice Cluster I (4.43%),
 404 *Methanosarcinales*; GOM Arc I (8.62%) and *Methanosaeta* (1.03%). In biochar-amended
 405 soils, the abundances of *Methanocella* (6.45%), *Methanocellaceae*; Rice Cluster I (4.07%),
 406 *Methanosarcinales*; GOM Arc I (3.35%), and *Methanosaeta* (3.00%) were also reduced (Fig.
 407 5A–B). Conversely, water scarcity stimulated the abundances of methanotrophic bacteria,
 408 resulting in increases of 2.65%, 6.20%, 24.3%, 12.4%, 45.6%, 33.4%, and 26.4% for
 409 *Methylocystis*, *Methylosinus*, *Methylocella*, *Methylocapsa*, *Methylomonas*, *Methylocaldum*,
 410 and *Methylosarcina*, respectively. In biochar-amended soil, these increases were 16.6%,
 411 38.6%, 37.2%, 42.4%, 80.1%, 55.5%, and 40.7%, respectively (Fig. 5C–D).

412

413 **Fig. 5. here**

414

415 Pearson's correlation analysis confirmed a significant positive association between the
 416 *mcrA* gene of methanogenic archaea and both CH₄ emissions and GWP (P < 0.01) (Fig. 3B
 417 and Table S4). Among methanogens, GOM Arc I of *Methanosarcinales* was a primary
 418 contributor to CH₄ emissions, while *Methylocystis*, *Methylosinus*, and *Methylomonas* were
 419 key contributors to CH₄ oxidation, driving treatment-dependent variations in CH₄ emissions
 420 (Fig. 3C and Table S5). Furthermore, the *amoA* gene of ammonia oxidizing bacteria (AOB)
 421 significantly contributed to variations in N₂O emissions via nitrification during dry soil
 422 conditions (P < 0.05; Fig. 3B and Table S4).

423

424 *3.3. Soil properties*

425 Crop management practices altered soil concentrations of soluble NO_3^- and DOC
 426 during cultivation. Under flooding-induced anaerobic conditions, NO_3^- concentrations
 427 decreased, peaking post-fertilization. In contrast, water scarcity enhanced nitrification,
 428 increasing NO_3^- levels during soil desiccation (Fig. 6A–B), which elevated N_2O emissions
 429 during fertilization and dry periods (Fig. 2). DOC concentrations were initially high during
 430 early cultivation but declined due to microbial assimilation, resurging after the reproductive
 431 stage and continuing through the harvest preparation period. However, DOC levels decreased
 432 during soil desiccation (Fig. 6C–D), coinciding with an increase in soil Eh under water
 433 scarcity (Fig. S2). Biochar amendment under all water scarcity conditions resulted in greater
 434 accumulation of NO_3^- and DOC (Fig. 6), along with a marginal increase in soil pH and Eh
 435 (Fig. S2–3), compared with those in soils without biochar.

436

437 **Fig. 6. here**

438

439 Post-harvest analysis revealed that water scarcity, whether during a single or both
 440 growth stages, had no significant effect on key soil characteristics. In contrast, biochar
 441 application increased soil pH, EC, OM, OC, total C, nutrient levels, and SOC sequestration
 442 due to its alkalinity, high C content, porosity, and surface area, although the impact on nutrient
 443 levels was not statistically significant. These effects were more pronounced during the dry
 444 season, reflecting the cumulative impact of biochar over both wet and dry seasons (Table 3).
 445 Compared with the soil without biochar, its application significantly increased SOC stock by
 446 an average of 12.7% in the wet season and 19.9% in the dry season. No significant differences
 447 in biochar impacts were observed across water regimes (Table 3). These findings suggest that
 448 while water scarcity did not adversely affect soil quality post-harvest, biochar incorporation
 449 substantially improved soil health.

450

451 **Table 3 here**

452

453 *3.4. Crop growth and yield*

454 Water scarcity during rice cultivation significantly influenced growth and yield,
 455 particularly when deficits coincided with critical phenological stages. Growth phenology
 456 varied across water scarcity treatments, with a 2–4 d difference (Table S1). Water deficits
 457 during the tillering phase preserved tiller production, whereas deficits during the reproductive
 458 phase reduced tiller numbers, consistently across both wet and dry seasons (Fig. S4A–B).
 459 Water scarcity decreased plant height in all treatments, regardless of season (Fig. S4C–D), but
 460 biochar ameliorated the adverse effects on plant height without influencing tiller production
 461 (Fig. S4).

462 Water scarcity during the tillering stage, irrespective of seasonality, preserved yield
 463 components—including panicle number, grain weight, grain number, and grain yield—similar
 464 to continuous flooding, regardless of biochar application. However, water scarcity during the
 465 reproductive stage significantly reduced grain yield and its components across both seasons.
 466 While biochar application tended to increase crop yields, these increases were not statistically
 467 significant, averaging 5.22% in the wet season and 7.78% in the dry season (Table 4).

468

469 **Table 4 here**

470

471 Despite reduced grain yield under water scarcity during the reproductive stage (DR,
 472 DTR, DR+BI, and DTR+BI), these treatments mitigated GHG emissions, resulting in lower
 473 GHG emissions per kilogram of grain produced compared to continuous flooding. Water
 474 scarcity during the tillering stage (DT and DT+BI) and both tillering and reproductive stages

475 (DTR and DTR+BI) further decreased GHG emissions per unit of grain yield. Biochar
 476 enhanced this reduction in GHG emissions and potential yield (Table 4), making water
 477 scarcity during the tillering stage, in conjunction with biochar application, a recommended
 478 strategy for optimizing food production while minimizing environmental impacts.

479

480 *3.5. Water use, water productivity, and water scarcity footprint*

481 Water scarcity imposed during the tillering stage, reproductive stage, and combined
 482 stages significantly reduced irrigation water in the wet season, enhancing irrigation water
 483 productivity. Conversely, in the dry season, higher irrigation water usage under water scarcity
 484 treatments decreased irrigation water productivity. Notably, water scarcity during the tillering
 485 stage achieved the highest irrigation water productivity in the dry season, attributed to reduced
 486 water use and higher yields compared with other treatments.

487 Water scarcity also reduced the water scarcity footprint, benefiting downstream users
 488 and ecosystems. Specifically, water scarcity during the tillering stage, reproductive stage, and
 489 combined stages reduced the water scarcity footprint by an average of 1,310, 1,725, and 2,980
 490 $m^3 H_2Oeq ha^{-1}$ in the wet season and by 1,125, 1,730, and 2,935 $m^3 H_2Oeq ha^{-1}$ in the dry
 491 season, respectively (Table 5). Biochar application did not significantly affect irrigation water
 492 use, irrigation water productivity, or water scarcity footprint (Table 5).

493

494 **Table 5 here**

495

496 **4. Discussion**

497 *4.1. Water scarcity mitigated GHG emissions more significantly than biochar application*

498 Water scarcity, exacerbated by climate change-induced rainfall delays, is projected to
 499 intensify across regions like Thailand, posing challenges for agriculture while simultaneously

500 offering opportunities to mitigate GHG emissions in rice cultivation (Amnuaylojaroen and
 501 Chanvichit, 2024; USDA, 2020). This study revealed a positive correlation between CH₄
 502 emissions and field flooding ($r = 0.645$, $P < 0.01$; Table S3), with water scarcity significantly
 503 reducing CH₄ emissions (Table S6). Imposing water scarcity during the tillering or
 504 reproductive stages reduced CH₄ emissions by 28.4–45.0%, while applying it during both
 505 stages achieved a 61.1% reduction in CH₄ emissions compared with continuous flooding.
 506 These findings align with those of Zhang et al. (2024), who reported 70–90% reductions in
 507 CH₄ emissions under water-saving practices.

508 The mitigation of CH₄ emissions was attributed to suppressed methanogenesis,
 509 including reduced activity of hydrogenotrophic (*Methanocella*) and acetoclastic (GOM Arc I
 510 of *Methanosaecinales*) methanogenesis (Fig. 5A–B) (Mohamad Shahimin et al., 2021). This
 511 suppression is consistent with diminished *mcrA* gene abundance under prolonged desiccation
 512 and alternate wetting and drying (AWD) practices (Hester et al., 2022; Reim et al., 2017).
 513 While methanogen abundance during the tillering stage did not decrease significantly,
 514 microbial connectivity and the abundance of methanogenic drivers within the microbial
 515 network were reduced (Zhang et al., 2024), leading to a significant reduction in CH₄ emissions
 516 during the tillering stage. Enhanced CH₄ oxidation by methanotrophs further contributed to
 517 CH₄ reductions ($P < 0.01$) (Fig. 3C, and Table S5), particularly by type I methanotrophs (Fig.
 518 5C–D). Type I methanotrophs (*Methylocaldum*, *Methylomonas*, and *Methylosarcina*) oxidize
 519 CH₄ via methane monooxygenases (MMOs) through the ribulose monophosphate (RuMP)
 520 pathway under oxygen-rich conditions and require N for growth. Type II methanotrophs
 521 (*Methylocella*), which employ the serine pathway in CH₄-rich and oxygen-limited
 522 environments (Chidambarampadmavathy et al., 2015), also supported CH₄ oxidation.

523 Conversely, water scarcity increased N₂O emissions due to intensified nitrification and
 524 denitrification processes (Hayashi et al., 2015), driven by NH₄⁺ depletion and NO₃[–]

525 accumulation and associated with increased activity of nitrifying bacteria (Oo et al., 2018;
 526 Qiu et al., 2022; Wu et al., 2023). The positive correlation between N₂O emissions and *amoA*-
 527 AOB gene abundance (Table S4) indicates the role of nitrifying bacteria. N fertilization,
 528 which increased soil NO₃⁻ availability, further exacerbated N₂O emissions under drained
 529 conditions. The most pronounced increases in N₂O emissions occurred during the reproductive
 530 stage compared to the tillering stage, attributed to higher activity and abundance of nitrifying
 531 bacteria (Fig. 4C), as well as greater rice height and tiller number (Table S3).

532 Despite the rise in N₂O emissions, the reduction in CH₄ emissions dominated the GHG
 533 profile, resulting in an overall reduction in GWP, as shown by the linear correlation between
 534 CH₄ emissions and GWP ($P < 0.01$) (Fig. 5 and Tables S3–S4). The greatest GWP reductions
 535 were observed during the dry season, when prolonged drying periods were uninterrupted by
 536 rainfall (Table S6). Allowing paddy fields to dry during the cultivation season thus represents
 537 an effective strategy for mitigating GHG emissions from rice cultivation.

538 Biochar application further enhanced GHG mitigation (Table S6), reducing emissions
 539 by an average of 12.2%. Bamboo biochar applied at 20 Mg ha⁻¹ decreased CH₄ emissions by
 540 suppressing hydrogenotrophic and acetoclastic methanogenesis, targeting *Methanocella*, Rice
 541 Cluster I of *Methanocellaceae*, and GOM Arc I of *Methanosarcinales* (Fig. 5A–B). Biochar
 542 increased electron acceptor availability and enhanced soil Eh under anaerobic conditions (Fig.
 543 S2), thereby slowing CH₄ production (Sriphiroom et al., 2022). This effect was facilitated by
 544 the high surface area and porosity of biochar, which increased the availability of oxygen and
 545 other oxidants, especially within the rhizosphere (Chew et al., 2020; Joseph et al., 2013;
 546 Oliveira et al., 2017). The improved soil oxygenation, combined with the habitat provided for
 547 microbes, stimulated CH₄ oxidation by methanotrophs (Chen et al., 2017; Han et al., 2016),
 548 including *Methylosinus*, *Methylocapsa*, *Methylomonas*, *Methylocaldum*, and *Methylosarcina*
 549 (Fig. 5C–D).

550 Biochar also mitigated N₂O emissions (Table S6) by decreasing NO₃⁻ availability
 551 through immobilization on its surface, thereby limiting N availability for N₂O formation
 552 (Cayuela et al., 2013) and facilitating N₂O reduction to N₂ in anaerobic soils (Aamer et al.,
 553 2020; Cayuela et al., 2014). Aamer et al. (2020) demonstrated that biochar mitigated N₂O
 554 emissions by increasing the abundance of *nosZ* and *nirK* genes and elevating soil pH, which
 555 aligns with findings of this study (Fig. 4D–E). Increased *nosZ*-related bacterial abundances
 556 led to greater N₂O consumption, whereas *nirK*-related bacteria promoted N₂ production over
 557 N₂O production. However, the extent of biochar's mitigation effects varies depending on soil
 558 type, feedstock origin, biochar production conditions, and application rate (Feng et al., 2012;
 559 Zhang et al., 2010).

560

561 *4.2. Effects of water scarcity and biochar on rice growth and yield*

562 This study demonstrates that water scarcity during the tillering stage and biochar
 563 application, individually and combined, can sustain crop growth and yield comparable to
 564 conventional practices by preserving key yield components, including tiller numbers, filled
 565 grain count, and 1,000-grain weight (Table 4 and Fig. S4). Norton et al. (2017) demonstrated
 566 that AWD—a water management approach allowing the soil to dry naturally to a depth of
 567 approximately 15–20 cm during the tillering stage—maintains tiller numbers and yields
 568 equivalent to continuous flooding by promoting root system development (Thakur et al.,
 569 2011) and increasing leaf abscisic acid concentrations, which are critical for tiller retention
 570 (Howell et al., 2015; Norton et al., 2017). AWD also optimizes shoot-root activity, regulates
 571 vegetative growth, and modulates hormone signaling pathways, thereby stabilizing yield
 572 (Davies et al., 2011). These findings are corroborated by studies conducted across diverse
 573 regions, including the USA (LaHue et al., 2016) and India (Oo et al., 2018).

574 However, water scarcity during the reproductive stage significantly reduces yield
 575 (Tables 4 and S6). Drought stress during flowering impairs rice physiology, with reductions in
 576 spikelet number and grain filling driving yield losses. Lower leaf water potential under
 577 drought hinders panicle development, whereas elevated soil temperatures under drought
 578 conditions suppress root and microbial activity, accelerate leaf senescence, and diminish
 579 photosynthetic, stomatal conductance, and transpiration (Yang et al., 2019). Strategic
 580 inclusion of drying phases during the tillering stage, as part of the AWD methodology, can
 581 mitigate these adverse impacts (Siopongco et al., 2013).

582 Biochar enhances soil-water-nutrient dynamics through its high porosity and large
 583 surface area (Oladele et al., 2019; Uchida et al., 2019). In this study, biochar applied at 20 Mg
 584 ha⁻¹ increased grain yield by 5.22% and 7.78% in the wet and dry seasons, respectively (Table
 585 4), consistent with Zhang et al. (2012), who observed similar yield increases in China. Yield
 586 improvement is attributed to the ability of biochar to increase nutrient storage (Table 3),
 587 enhance nutrient uptake (Joseph et al., 2010), and reduce plant energy demands for nutrient
 588 acquisition. Root exudates diffusing into biochar pores stimulate microbial activity, thereby
 589 increasing nutrient availability for uptake (Bhattacharjya et al., 2015; Chew et al., 2020).
 590 Biochar's interaction with the rhizosphere further facilitates nutrient uptake via root hairs and
 591 water-filled macropores (Joseph et al., 2013). However, biochar efficacy depends on its
 592 physicochemical properties, which are influenced by feedstock type and production conditions
 593 (Chen et al., 2021). Its benefits are more pronounced in low-fertility soils, such as acidic,
 594 nutrient-deficient, and coarse-textured soils (Bekchanova et al., 2024; Jeffery et al., 2011).
 595 Long-term studies are essential to fully evaluate biochar's potential to sustainably enhance
 596 rice productivity (Zhang et al., 2020).

597

598 *4.3. Biochar application improved soil quality*

599 Biochar is a soil amendment distinguished by its unique properties, including a
600 combination of organic, carbonate, and inorganic alkalinites. These characteristics enable
601 biochar to effectively modify soil pH, particularly in acidic soils (Fidel et al., 2017). For
602 example, Zhang et al. (2012) reported that biochar with a pH (H₂O) of 10.4, applied at rates
603 of 10, 20, and 40 Mg ha⁻¹, increased soil pH by 0.21, 0.24, and 0.30 units, respectively. The
604 high porosity and surface area of biochar, facilitated by mechanisms such as hydrogen
605 bonding, cation bridging, covalent bonding, hydrophobic interactions, and oxygenated
606 functional groups (e.g., carboxylic, phenolic, and hydroxyl groups), contribute to increased
607 soil CEC (Adhikari et al., 2024) and improved nutrient availability (Chew et al., 2020; Joseph
608 et al., 2010). Adhikari et al. (2024) further demonstrated that biochar derived from hardwood
609 or cellulosic biomass significantly enhanced the CEC of clayey soils, functioning as a
610 reservoir of soil nutrients and serving as a potential slow-release fertilizer. Similarly,
611 Bekchanova et al. (2024) observed that biochar application increased soil nutrient
612 availability—namely, N, P, and K—by 36%, 34%, and 15%, respectively, and also enhanced
613 soil CEC by 18%.

614 The high C content of biochar, particularly in its stabilized form, is instrumental in
615 long-term SOC sequestration. Stabilized C in biochar is resistant to biological and chemical
616 degradation, allowing for gradual decomposition and sustained enhancement of soil C levels
617 (Tables 3 and S6) (Lehmann, 2007). Ding et al. (2023) reported that biochar amendment
618 significantly increased native and recalcitrant SOC contents, with 39%–51% of the biochar
619 remaining in the topsoil (0–30 cm) even after 11 years. Additionally, the potential for SOC
620 sequestration was notably greater during the dry season, likely due to the residual
621 accumulation of biochar applied during the preceding wet season.

622

623 *4.4. Water scarcity affected irrigation water productivity and decreased water scarcity*
 624 *footprint*

625 Water scarcity, driven by restricted irrigation and inadequate rainfall, serves as a proxy
 626 for the anticipated impacts of climate change, substantially reducing water use in rice
 627 cultivation. While water scarcity reduced grain yield, it increased irrigation water productivity,
 628 particularly during the wet season (Tables 5 and S6). During this period, water scarcity
 629 achieved grain yields statistically comparable to those under continuous flooding but with
 630 reduced irrigation water input. In contrast, during the dry season, higher evaporation rates
 631 necessitated increased irrigation across all treatments, resulting in irrigation water productivity
 632 levels similar to those of continuous flooding. Notably, the highest yield per cubic meter of
 633 irrigation water during the dry season was observed under the water scarcity imposed at the
 634 tillering stage (DT and DT+BI). These results corroborate the findings of Hussain et al.
 635 (2022), who reported reduced water use efficiency under drought stress in Southern Thailand.

636 Water scarcity during the tillering stage emerges as a viable strategy for balancing
 637 water savings and yield, highlighting the importance of managing water scarcity during
 638 critical growth stages. Optimizing soil drying levels and durations can reduce irrigation water
 639 use, enhance water use efficiency, and maintain food security while mitigating GHG
 640 emissions. Mallareddy et al. (2023) emphasized that integrated approaches—such as
 641 maximizing rainfall utilization, optimizing limited irrigation, and improving crop water use
 642 efficiency—can further enhance water productivity. These strategies include upgrading
 643 irrigation systems, land levelling, conjunctive use of surface and groundwater, rotational
 644 water distribution, and ensuring access to drought-tolerant seeds and other critical inputs.
 645 Such measures are essential for sustaining agricultural productivity under climate change.

646 Strategic water restrictions during the tillering stage, without significant yield loss,
 647 also reduce the water scarcity footprint, increasing water availability for downstream human

648 and ecosystem needs. This finding aligns with Sriphirom et al. (2019), who demonstrated that
 649 AWD practices reduce the water scarcity footprint, increasing water availability for non-
 650 agricultural purposes.

651

652 **5. Conclusions**

653 Rice cultivation under water scarcity driven by climate change poses substantial
 654 challenges, necessitating the adoption of environmentally sustainable practices that mitigate
 655 GHG emissions while maintaining or enhancing crop yield and soil quality to ensure food
 656 security. The use of biochar as a soil amendment has been identified as a promising strategy
 657 for mitigating these challenges and supporting farmer adoption under water-limited
 658 conditions. This study demonstrated that imposing water scarcity during the tillering stage
 659 effectively sustains crop growth and yield comparable to those achieved under continuous
 660 flooding. Grain yield, a critical determinant for farmer acceptance, was maintained under this
 661 water management practice, which also reduced GHG emissions and improved irrigation
 662 water productivity by an average of 20.7% and 51.1% during the wet season and 34.4% and
 663 23.4% during the dry season, respectively, relative to continuous flooding. Furthermore, the
 664 combined application of biochar and water scarcity during the tillering stage further enhanced
 665 GHG mitigation and increased grain yield by an average of 12.7% and 2.4%, respectively,
 666 compared with those in soils not amended with biochar. Soil health metrics were also
 667 significantly improved with biochar application, as evidenced by increases in soil pH, CEC,
 668 nutrient availability, and SOC sequestration. These benefits highlight the dual role of biochar
 669 in improving soil quality and contributing to long-term climate resilience in rice cultivation
 670 systems. Consequently, the implementation of water restrictions during the tillering stage is
 671 recommended as a practical strategy for supporting net-zero GHG emissions with minimal
 672 adverse effects on water availability, even in scenarios where biochar production capacity is

673 limited. However, in regions where biochar resources are accessible, its application should be
 674 prioritized to maximize mitigation potential and improve soil quality, thereby supporting
 675 sustainable agricultural production in the context of climate change.

676

677 **Abbreviations**

678	<i>amoA</i>	ammonia monooxygenase
679	AOB	ammonia-oxidizing bacteria
680	AWD	alternate wetting and drying
681	CH ₄	methane
682	DAT	days after transplanting
683	DOC	dissolved organic carbon
684	Eh	soil redox potential
685	GHG	greenhouse gas
686	GWP	global warming potential
687	IWU	irrigation water use
688	<i>mcrA</i>	methyl coenzyme M reductase
689	NH ₄ ⁺	ammonium
690	<i>nirK</i>	nitrite reductase
691	NO ₃ ⁻	nitrate
692	N ₂ O	nitrous oxide
693	<i>nosZ</i>	nitrous oxide reductase
694	<i>pmoA</i>	particulate methane monooxygenase
695	SOC	soil organic carbon

696

697 **Availability of data and materials**

698 Not applicable.

699

700 **Authors' contributions**

701 P.S.: conceptualization, methodology, investigation, data curation, writing of original
702 draft, reviewing, and editing, funding acquisition, and project administration; B.R.:
703 methodology and investigation; R.O. and A.C.: conceptualization, reviewing, and editing.

704

705 **Declaration of competing interest**

706 The authors declare that they have no conflicts of interest.

707

708 **Acknowledgements**

709 This study was funded by the Thailand Science Research and Innovation through the
710 Fundamental Fund and conducted in collaboration with the Department of Environmental
711 Science, Faculty of Science, Silpakorn University, Thailand, and the Prachin Buri Rice
712 Research Center, Rice Department, Ministry of Agriculture and Cooperatives, Thailand.

713

714 **References**

715 Aamer, M., Shaaban, M., Hassan, M.U., Guoqin, H., Ying, L., Ying, T.H., Rasul, F., Qiaoying,
716 M., Zhuanling, L., Rasheed, A., Peng, Z., 2020. Biochar mitigates the N₂O emissions
717 from acidic soil by increasing the *nosZ* and *nirK* gene abundance and soil pH. J.
718 Environ. Manage. 255, 109891.

719 Adhikari, S., Moon, E., Timms, W., 2024. Identifying biochar production variables to
720 maximise exchangeable cations and increase nutrient availability in soils. J. Clean. Prod.
721 446, 141454.

722 Amnuaylojaroen, T., Chanvichit, P., 2019. Projection of near-future climate change and
 723 agricultural drought in Mainland Southeast Asia under RCP8.5. *Clim. Change.* 155,
 724 175–193.

725 Amnuaylojaroen, T., Chanvichit, P., 2024. Historical analysis of the effects of drought on rice
 726 and maize yields in Southeast Asia. *Resources.* 13, 44.

727 Bekchanova, M., Campion, L., Bruns, S., Kuppens, T., Lehmann, J., Jozefczak, M., Cuypers,
 728 A., Malina, R., 2024. Biochar improves the nutrient cycle in sandy-textured soils and
 729 increases crop yield: a systematic review. *Environ. Evid.* 13, 3.

730 Bhattacharjya, S., Chandra, R., Pareek, N., Raverkar, K.P., 2016. Biochar and crop residue
 731 application to soil: effect on soil biochemical properties, nutrient availability and yield
 732 of rice (*Oryza sativa* L.) and wheat (*Triticum aestivum* L.). *Arch. Agron. Soil Sci.* 62,
 733 1095–1108.

734 Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley,
 735 G.A., Caporaso, J.G., 2018. Optimizing taxonomic classification of marker-gene
 736 amplicon sequences with QIIME 2's q2-feature-classifier plugin. *Microbiome.* 6, 1–17.

737 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A.,
 738 Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K.,
 739 Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M.,
 740 Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall,
 741 D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M.,
 742 Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes,
 743 S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.,
 744 Kaehler, B.D., Kang, K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester,
 745 I., Koscioletk, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E.,
 746 Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J.,

747 Melnik, A. V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina,
 748 J.A., Nothias, L.F., Orchania, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L.,
 749 Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N.,
 750 Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson,
 751 L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft,
 752 J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan,
 753 Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z.,
 754 Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible,
 755 interactive, scalable and extensible microbiome data science using QIIME 2. *Nat.*
 756 *Biotechnol.* 37, 852–857.

757 Boonwichai, S., Shrestha, S., Babel, M.S., Weesakul, S., Datta, A., 2018. Climate change
 758 impacts on irrigation water requirement, crop water productivity and rice yield in the
 759 Songkhram River Basin, Thailand. *J. Clean. Prod.* 198, 1157–1164.

760 Bouman, B.A., Lampayan, R.M., Tuong, T.P., 2007. Water Management in Irrigated Rice:
 761 Coping with Water Scarcity. The International Rice Research Institute (IRRI), Los
 762 Baños, Philippines.

763 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016.
 764 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods.*
 765 13, 581–583.

766 Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J.,
 767 2013. Biochar and denitrification in soils: when, how much and why does biochar
 768 reduce N₂O emissions?. *Sci. Rep.* 3, 1732.

769 Cayuela, M.L., Van Zwieten, L., Singh, B.P., Jeffery, S., Roig, A., Sánchez-Monedero, M.A.,
 770 2014. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-
 771 analysis. *Agric. Ecosyst. Environ.* 191, 5–16.

772 Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., Fuhrmann, J.J., 2017. Response of microbial
773 community structure and function to short-term biochar amendment in an intensively
774 managed bamboo (*Phyllostachys praecox*) plantation soil: effect of particle size and
775 addition rate. *Sci. Total Environ.* 574, 24–33.

776 Chew, J., Zhu, L., Nielsen, S., Graber, E., Mitchell, D.R., Horvat, J., Mohammed, M., Liu,
777 M., Van Zwieten, L., Donne, S., Munroe, P., Taherymoosavi, S., Pace, B., Rawal, A.,
778 Hook, J., Marjo, C., Thomas, D.S., Pan, G., Li, L., Bian, R., McBeath, A., Bird, M.,
779 Thomas, T., Husson, O., Solaiman, Z., Joseph, S., Fan, X., 2020. Biochar-based
780 fertilizer: Supercharging root membrane potential and biomass yield of rice. *Sci. Total
781 Environ.* 713, 136431.

782 Chidambarampadmavathy, K., Obulisanmy P, K., Heimann, K., 2015. Role of copper and iron
783 in methane oxidation and bacterial biopolymer accumulation. *Eng. Life Sci.* 15, 387–
784 399.

785 Chidthaisong, A., Cha-un, N., Rossopa, B., Buddaboon, C., Kunuthai, C., Sriphrom, P.,
786 Towprayoon, S., Tokida, T., Padre, A.T., Minamikawa, K., 2018. Evaluating the effects
787 of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a
788 paddy field in Thailand. *Soil Sci. Plant Nutr.* 64, 31–38.

789 Conrad, R., 2002. Control of microbial methane production in wetland rice fields. *Nutr. Cycl.
790 Agroecosys.* 64, 59–69.

791 Datta, A., Ullah, H., Ferdous, Z., 2017. Water management in rice. In: Chauhan, B., Jabran,
792 K., Mahajan, G. (Eds.), *Rice Production Worldwide*. Springer, Berlin, Germany, pp.
793 255–277.

794 Davies, W. J., Zhang, J., Yang, J., Dodd, I.C., 2011. Novel crop science to improve yield and
795 resource use efficiency in water-limited agriculture. *J. Agric. Sci.* 149, 123–131.

796 DDPM (Department of Disaster Prevention and Mitigation), 2022. National Disaster
797 Prevention and Mitigation Plan. https://www.disaster.go.th/upload/download/file_attach/584115d64fce.pdf. (Accessed 5 August 2024).

798

799 Ding, X., Li, G., Zhao, X., Lin, Q., Wang, X., 2023. Biochar application significantly
800 increases soil organic carbon under conservation tillage: an 11-year field experiment.
801 Biochar. 5, 1–14.

802 Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14,
803 927–930.

804 Dong, D., Yang, M., Wang, C., Wang, H., Li, Y., Luo, J., Wu, W., 2013. Responses of methane
805 emissions and rice yield to applications of biochar and straw in a paddy field. J. Soil
806 Sediment. 13, 1450–1460.

807 Feng, Y., Xu, Y., Yu, Y., Xie, Z., Lin, X., 2012. Mechanisms of biochar decreasing methane
808 emission from Chinese paddy soils. Soil Biol. Biochem. 46, 80–88.

809 Fernández, J.E., Alcon, F., Diaz-Espejo, A., Hernandez-Santana, V., Cuevas, M.V., 2020.
810 Water use indicators and economic analysis for on-farm irrigation decision: A case study
811 of a super high density olive tree orchard. Agric. Water Manag. 237, 106074.

812 Fidel, R.B., Laird, D.A., Thompson, M.L., Lawrinenko, M., 2017. Characterization and
813 quantification of biochar alkalinity. Chemosphere. 167, 367–373.

814 Gheewala, S.H., Silalertruksa, T., Nilsalab, P., Lecksiwilai, N., Sawaengsak, W., Mungkung,
815 R., Ganasut, J., 2018. Water stress index and its implication for agricultural land-use
816 policy in Thailand. Int. J. Environ. Sci. Technol. 15, 833–846.

817 Hallin, S., Lindgren, P.E., 1999. PCR detection of genes encoding nitrite reductase in
818 denitrifying bacteria. Appl. Environ. Microbiol. 65, 1652–1657.

819 Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., Thies, J.E., Wu, W., 2016.
 820 Mitigating methane emission from paddy soil with rice-straw biochar amendment under
 821 projected climate change. *Sci. Rep.* 6, 1–10.

822 Hayashi, K., Tokida, T., Kajiura, M., Yanai, Y., Yano, M., 2015. Cropland soil–plant systems
 823 control production and consumption of methane and nitrous oxide and their emissions to
 824 the atmosphere. *Soil Sci. Plant Nutr.* 61, 2–33.

825 Henry, S., Bru, D., Stres, B., Hallet, S., Philippot, L., 2006. Quantitative detection of the *nosZ*
 826 gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S
 827 rRNA, *narG*, *nirK*, and *nosZ* genes in soils. *Appl. Environ. Microbiol.* 72, 5181–5189.

828 Hester, E.R., Vaksmaa, A., Valè, G., Monaco, S., Jetten, M.S., Lüke, C., 2022. Effect of water
 829 management on microbial diversity and composition in an Italian rice field system.
 830 *FEMS Microbiol. Ecol.* 98, fiac018.

831 Hossain, M.Z., Sikder, S., Husna, A., Sultana, S., Akhter, S., Alim, A., Joardar, J.C., 2020.
 832 Influence of water stress on morphology, physiology and yield contributing
 833 characteristics of rice. *SAARC J. Agric.* 18, 61–71.

834 Howe, E., Holton, K., Nair, S., Schlauch, D., Sinha, R., Quackenbush, J., 2010. Mev:
 835 MultiExperiment Viewer. In: Ochs, M.F., Casagrande, J.T., Davuluri, R.V. (Eds.),
 836 *Biomedical Informatics for Cancer Research*. Springer, New York, USA, pp. 267–277.

837 Howell, K.R., Shrestha, P., Dodd, I.C., 2015. Alternate wetting and drying irrigation
 838 maintained rice yields despite half the irrigation volume, but is currently unlikely to be
 839 adopted by smallholder lowland rice farmers in Nepal. *Food Energy Secur.* 4, 144–157.

840 Hussain, T., Hussain, N., Tahir, M., Raina, A., Ikram, S., Maqbool, S., Ali, M.F., Duangpan,
 841 S., 2022. Impacts of drought stress on water use efficiency and grain productivity of rice
 842 and utilization of genotypic variability to combat climate change. *Agron.* 12, 2518.

843 IPCC (Intergovernmental Panel on Climate Change), 2021. Climate Change 2021: The
 844 Physical Science Basis. Cambridge University Press, Cambridge, UK and New York,
 845 USA.

846 IPCC (Intergovernmental Panel on Climate Change), 2022a. Climate Change 2022: Mitigation
 847 of Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.

848 IPCC (Intergovernmental Panel on Climate Change), 2022b. Climate Change 2022: Impacts,
 849 Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK and New
 850 York, USA.

851 Jeffery, S., Verheijen, F.G., van der Velde, M., Bastos, A.C., 2011. A quantitative review of the
 852 effects of biochar application to soils on crop productivity using meta-analysis. Agric.
 853 Ecosyst. Environ. 144, 175–187.

854 Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., van Zwieten,
 855 L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J. Amonette,
 856 J.E., 2010. An investigation into the reactions of biochar in soil. Soil Res. 48, 501–515.

857 Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C.,
 858 Rutledge, H., Pan, G.X., Li, L., Taylor, P., Rawal, A., Hook, J., 2013. Shifting paradigms:
 859 development of high-efficiency biochar fertilizers based on nano-structures and soluble
 860 components. Carbon Manag. 4, 323–343.

861 Joseph, S., 2016. Determination of carbon, hydrogen, and nitrogen in biomass.
 862 https://eu.leco.com/images/Analytical-Application-Library/CHN628_BIOMASS_203-821-510.pdf. (Accessed 10 January 2023).

864 Kaewmai, R., Grant, T., Mungkalasiri, J., Musikavong, C., 2021. Assessing the water scarcity
 865 footprint of food crops by growing season available water remaining (AWARE)
 866 characterization factors in Thailand. Sci. Total Environ. 763, 143000.

867 Kindt, R., 2020. Redundancy analysis with vegan and BiodiversityR as an alternative to
868 Discriminant Analysis of Principal Components for the analysis of genetically structured
869 populations. <https://rpubs.com/Roeland-KINDT/706490>. (Accessed 20 November
870 2024).

871 Kolb, S., Knief, C., Stubner, S., Conrad, R., 2003. Quantitative detection of methanotrophs in
872 soil by novel pmoA-targeted real-time PCR assays. *Appl. Environ. Microbiol.* 69, 2423–
873 2429.

874 Koyama, S., Hayashi, H., 2019. Effects of single and successive applications of rice husk
875 charcoal on paddy soil carbon content and rice productivity during two cropping
876 seasons. *Soil Sci. Plant Nutr.* 65, 196–202.

877 Kumar, S., Dwivedi, S. K., Basu, S., Kumar, G., Mishra, J. S., Koley, T. K., Rao, K.K.,
878 Choudhary, A.K., Mondal, S., Kumar, S., Bhakta, N., Bhatt, B.P., Paul, R.K., Kumar, A.,
879 2020. Anatomical, agro-morphological and physiological changes in rice under
880 cumulative and stage specific drought conditions prevailed in eastern region of India.
881 *Field Crops Res.* 245, 107658.

882 Kumar, A., Nayak, A.K., Das, B.S., Panigrahi, N., Dasgupta, P., Mohanty, S., Kumar, U.,
883 Panneerselvam, P., Pathak, H., 2019. Effects of water deficit stress on agronomic and
884 physiological responses of rice and greenhouse gas emission from rice soil under
885 elevated atmospheric CO₂. *Sci. Total Environ.* 650, 2032–2050.

886 LaHue, G.T., Chaney, R.L., Adviento-Borbe, M.A., Linquist, B.A., 2016. Alternate wetting
887 and drying in high yielding direct-seeded rice systems accomplishes multiple
888 environmental and agronomic objectives. *Agric. Ecosyst. Environ.* 229, 30–39.

889 Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon
890 stock changes: simple bulk density corrections fail. *Agric. Ecosyst. Environ.* 134, 251–
891 256.

892 Lee, H.J., Jeong, S.E., Kim, P.J., Madsen, E.L., Jeon, C.O., 2015. High resolution depth
 893 distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and
 894 rhizosphere soils of a flooded rice paddy. *Front. microbiol.* 6, 639.

895 Lehmann, J., 2007. A handful of carbon. *Nature*. 447, 143–144.

896 Luton, P.E., Wayne, J.M., Sharp, R.J., Riley, P.W., 2002. The *mcrA* gene as an alternative to
 897 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. *Microbiol.*
 898 148, 3521–3530.

899 Mallareddy, M., Thirumalaikumar, R., Balasubramanian, P., Naseeruddin, R., Nithya, N.,
 900 Mariadoss, A., Eazhilkrishna, N., Choudhary, A.K., Deiveegan, M., Subramanian, E.,
 901 Padmaja, B., Vijayakumar, S., 2023. Maximizing water use efficiency in rice farming: A
 902 comprehensive review of innovative irrigation management technologies. *Water*. 15,
 903 1802.

904 Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing
 905 reads. *EMBnet. J.* 17, 10–12.

906 Minamikawa, K., Tokida, T., Sudo, S., Padre, A., Yagi, K., 2015. Guidelines for Measuring
 907 CH₄ and N₂O Emissions from Rice Paddies by a Manually Operated Closed Chamber
 908 Method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.

909 Mohamad Shahimin, M.F., Foght, J.M., Siddique, T., 2021. Methanogenic biodegradation of
 910 iso-alkanes by indigenous microbes from two different oil sands tailings ponds.
 911 *Microorganisms*. 9, 1569.

912 Moonmoon, S., Islam, M.T., 2017. Effect of drought stress at different growth stages on yield
 913 and yield components of six rice (*Oryza sativa* L.) genotypes. *Fundam. Appl. Agric.* 2,
 914 285–289.

915 Morales, J.A., de Graterol, L.S., Velasquez, H., de Nava, M.G., de Borrego, B.S., 1998.

916 Determination by ion chromatography of selected organic and inorganic acids in
917 rainwater at Maracaibo, Venezuela. *J. Chromatogr. A.* 804, 289–294.

918 Norton, G.J., Shafaei, M., Travis, A.J., Deacon, C.M., Danku, J., Pond, D., Cochrane, N.,
919 Lockhart, K., Salt, D., Zhang, H., Dodd, I.C., Hossain, M., Islam, M.R., Price, A.H.,
920 2017. Impact of alternate wetting and drying on rice physiology, grain production, and
921 grain quality. *Field Crops Res.* 205, 1–13.

922 Odega, C.A., Ayodele, O.O., O gutuga, S.O., Anguruwa, G.T., Adekunle, A.E., Fakorede, C.
923 O., 2023. Potential application and regeneration of bamboo biochar for wastewater
924 treatment: A review. *Adv. Bamboo Sci.* 2, 100012.

925 Oladele, S.O., Adeyemo, A.J., Awodun, M.A., 2019. Influence of rice husk biochar and
926 inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting
927 soils. *Geoderma.* 336, 1–11.

928 Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K., 2017. Environmental
929 application of biochar: Current status and perspectives. *Bioresour. Technol.* 246, 110–
930 122.

931 ONEP (Office of Natural Resources and Environmental Policy and Planning), 2022.
932 Thailand's Fourth Biennial Update Report. ONEP, Minister of Natural Resources and
933 Environment, Bangkok, Thailand.

934 Oo, A.Z., Sudo, S., Inubushi, K., Mano, M., Yamamoto, A., Ono, K., Osawa, T., Hayashida,
935 S., Patra, P.K., Terao, Y., Elayakumar, P., Vanitha, K., Umamageswari, C., Jothimani, P.,
936 Ravi, V., 2018. Methane and nitrous oxide emissions from conventional and modified
937 rice cultivation systems in South India. *Agric. Ecosyst. Environ.* 252, 148–158.

938 Pansu, M., Gautheyrou, J., 2006. *Handbook of Soil Analysis*. Springer Berlin, Heidelberg,
939 Germany.

940 Qiu, H., Yang, S., Jiang, Z., Xu, Y., Jiao, X., 2022. Effect of irrigation and fertilizer
 941 management on rice yield and nitrogen loss: a meta-analysis. *Plant.* 11, 1690.

942 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.
 943 O., 2013. The SILVA ribosomal RNA gene database project: improved data processing
 944 and web-based tools. *Nucleic Acids Res.* 41, D590–D596.

945 Reim, A., Hernández, M., Klose, M., Chidthaisong, A., Yuttitham, M., Conrad, R., 2017.
 946 Response of methanogenic microbial communities to desiccation stress in flooded and
 947 rain-fed paddy soil from Thailand. *Front. microbiol.* 8, 785.

948 Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural
 949 gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-
 950 oxidizing populations. *Appl. Environ. Microbiol.* 63, 4704–4712.

951 Sahoo, S.S., Vijay, V.K., Chandra, R., Kumar, H., 2021. Production and characterization of
 952 biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. *Clean. Eng.*
 953 *Technol.* 3, 100101.

954 Silalertruksa, T., Gheewala, S.H., Mungkung, R., Nilsalab, P., Lecksiwilai, N., Sawaengsak,
 955 W., 2017. Implications of water use and water scarcity footprint for sustainable rice
 956 cultivation. *Sustainability.* 9, 2283.

957 Siopongco, J.D.L.C., Wassmann, R., Sander, B.O., 2013. Alternate Wetting and Drying in
 958 Philippine Rice Production: Feasibility Study for a Clean Development Mechanism.
 959 International Rice Research Institute, Los Baños, Philippines.

960 Sriphrom, P., Chidthaisong, A., Towprayoon, S., 2019. Effect of alternate wetting and drying
 961 water management on rice cultivation with low emissions and low water used during
 962 wet and dry season. *J. Clean. Prod.* 223, 980–988.

963 Sriphrom, P., Chidthaisong, A., Yagi, K., Nobuntou, W., Luanmanee, S., Boonapatcharoen,
 964 N., Suksong, W., 2024a. Direct nitrous oxide emissions from a crop rotation of maize

965 and mung bean after different long-term fertilizer applications in Thailand. *Field Crops*
966 *Res.* 312, 109382.

967 Sriphiro, P., Rossopa, B., Boonapatcharoen, N., 2024b. Assessment of direct nitrous oxide
968 emissions and emission factors from sugarcane plantations using different rates of
969 chemical fertilizer application in western Thailand. *Clean Technol. Environ. Policy.* 1-
970 16.

971 Sriphiro, P., Chidthaisong, A., Yagi, K., Tripetchkul, S., Towprayoon, S., 2020. Evaluation
972 of biochar applications combined with alternate wetting and drying (AWD) water
973 management in rice field as a methane mitigation option for farmers' adoption. *Soil Sci.*
974 *Plant Nutr.* 66, 235–246.

975 Sriphiro, P., Towprayoon, S., Yagi, K., Rossopa, B., Chidthaisong, A., 2022. Changes in
976 methane production and oxidation in rice paddy soils induced by biochar addition. *Appl.*
977 *Soil Ecol.* 179, 104585.

978 Thakur, A.K., Rath, S., Patil, D.U., Kumar, A., 2011. Effects on rice plant morphology and
979 physiology of water and associated management practices of the system of rice
980 intensification and their implications for crop performance. *Paddy Water Environ.* 9,
981 13–24.

982 Thomas, D.H., Rey, M., Jackson, P.E., 2002. Determination of inorganic cations and
983 ammonium in environmental waters by ion chromatography with a high-capacity cation-
984 exchange column. *J. Chromatogr. A.* 956, 181–186.

985 Tsien, H.C., Bratina, B.J., Tsuji, K., Hanson, R.S., 1990. Use of oligodeoxynucleotide
986 signature probes for identification of physiological groups of methylotrophic bacteria.
987 *Appl. Environ. Microbiol.* 56, 2858–2865.

988 Uchida, Y., Moriizumi, M., Shimotsuma, M., 2019. Effects of rice husk biochar and soil
989 moisture on the accumulation of organic and inorganic nitrogen and nitrous oxide

990 emissions during the decomposition of hairy vetch (*Vicia villosa*) mulch. *Soil Sci. Plant*
991 *Nutr.* 65, 409–418.

992 USDA (United States Department of Agriculture), 2020. Thailand: The impact of drought on
993 agriculture in 2020. <https://fas.usda.gov/data/thailand-impact-drought-agriculture-2020>.
994 (Accessed 10 August 2024).

995 Wang, C., Shen, J., Liu, J., Qin, H., Yuan, Q., Fan, F., Hu, Y., Wang, J., Wei, W., Li, Y., Wu, J.,
996 2019. Microbial mechanisms in the reduction of CH₄ emission from double rice
997 cropping system amended by biochar: a four-year study. *Soil Biol. Biochem.* 135, 251–
998 263.

999 Watanabe, T., Kimura, M., Asakawa, S., 2007. Dynamics of methanogenic archaeal
1000 communities based on rRNA analysis and their relation to methanogenic activity in
1001 Japanese paddy field soils. *Soil Biol. Biochem.* 39, 2877–2887.

1002 Wu, Z., Song, Y., Shen, H., Jiang, X., Li, B., Xiong, Z., 2019. Biochar can mitigate methane
1003 emissions by improving methanotrophs for prolonged period in fertilized paddy soils.
1004 *Environ. Pollut.* 253, 1038–1046.

1005 Wu, L., Tang, S., Hu, R., Wang, J., Duan, P., Xu, C., Zhang, W., Xu, M., 2023. Increased N₂O
1006 emission due to paddy soil drainage is regulated by carbon and nitrogen availability.
1007 *Geoderma.* 432, 116422.

1008 Yang, X., Wang, B., Chen, L., Li, P., Cao, C., 2019. The different influences of drought stress
1009 at the flowering stage on rice physiological traits, grain yield, and quality. *Sci. Rep.* 9,
1010 3742.

1011 Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X.,
1012 Han, X., Yu, X., 2012. Effects of biochar amendment on soil quality, crop yield and
1013 greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice
1014 growing cycles. *Field Crops Res.* 127, 153–160.

1015 Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., Crowley, D., 2010.

1016 Effect of biochar amendment on yield and methane and nitrous oxide emissions from a
1017 rice paddy from Tai Lake plain, China. *Agric. Ecosyst. Environ.* 139, 469–475.

1018 Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., Kuzyakov, Y., Xiong, Z., 2020. Effects of
1019 six-year biochar amendment on soil aggregation, crop growth, and nitrogen and
1020 phosphorus use efficiencies in a rice-wheat rotation. *J. Clean. Prod.* 242, 118435.

1021 Zhang, X., Lv, Z., Sun, H., Bi, J., Zhang, J., Wang, C., Zhou, S., 2024. Crosstalk between
1022 methanogens and methanotrophs determines methane emissions in a rice paddy under
1023 different watering regimes. *Appl. Soil Ecol.* 195, 105229.

1024 Zhang, Y., Zhao, X., Liu, F., Zhu, L., Yu, H., 2023. Effect of different water stress on growth
1025 index and yield of semi-late rice. *Environ. Sci. Proc.* 25, 84.

1026 Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., Crowley, D., 2010.

1027 Effect of biochar amendment on yield and methane and nitrous oxide emissions from a
1028 rice paddy from Tai Lake plain, China. *Agric. Ecosyst. Environ.* 139, 469–475.

Table 1

Basic physical and chemical properties of the soil collected prior to the study and biochar.

Parameter (unit)	Soil	Biochar
Sand (%)	40.7 ± 0.5	—
Silt (%)	13.3 ± 0.1	—
Clay (%)	46.0 ± 0.5	—
pH [H ₂ O]	6.21 ± 0.06	8.64 ± 3.70
Electrical conductivity (dS m ⁻¹)	0.80 ± 0.06	—
Organic matter (%)	1.13 ± 0.66	—
Organic carbon (%)	0.66 ± 0.03	—
Total carbon (%)	1.65 ± 0.03	68.8 ± 2.0
Total nitrogen (%)	0.11 ± 0.01	0.65 ± 0.04
Ammonium (mg kg ⁻¹)	8.67 ± 0.49	—
Nitrate (mg kg ⁻¹)	86.5 ± 4.9	—
Available phosphorus (mg kg ⁻¹)	39.1 ± 1.9	8,467 ± 404
Exchangeable potassium (mg kg ⁻¹)	96.9 ± 5.2	9,367 ± 493
Cation exchange capacity (cmol kg ⁻¹)	10.8 ± 0.4	41.2 ± 2.5
Bulk density (g cm ⁻³)	1.43 ± 0.03	—
Moisture content (%)	19.5 ± 0.7	5.38 ± 0.06
Soil organic carbon sequestration (Mg ha ⁻¹)	18.8 ± 0.8	—
Ash content (%)	—	4.27 ± 0.37
Specific surface area (m ² g ⁻¹)	—	192 ± 9
Specific pore volume (cm ³ g ⁻¹)	—	0.19 ± 0.02

Table 2

Seasonal cumulative CH₄ and N₂O emissions and global warming potential (GWP) for the wet and dry seasons.

Treatment	Wet season			Dry season		
	CH ₄ emissions (kg CH ₄ ha ⁻¹)	N ₂ O emissions (g N ₂ O ha ⁻¹)	GWP (Mg CO ₂ eq. ha ⁻¹)	CH ₄ emissions (kg CH ₄ ha ⁻¹)	N ₂ O emissions (g N ₂ O ha ⁻¹)	GWP (Mg CO ₂ eq. ha ⁻¹)
CO	98.4 ± 9.5 a	257 ± 12 c	2.73 ± 0.25 a	92.2 ± 4.0 a	254 ± 8 d	2.56 ± 0.11 a
DT	77.2 ± 4.7 b	296 ± 17 bc	2.16 ± 0.13 b	58.9 ± 4.0 b	326 ± 17 bc	1.68 ± 0.11 b
DR	56.0 ± 2.7 cd	313 ± 11 b	1.60 ± 0.07 cd	48.0 ± 1.4 bc	342 ± 9 b	1.39 ± 0.04 bc
DTR	40.6 ± 1.5 de	366 ± 24 a	1.20 ± 0.04 de	32.3 ± 2.5 de	394 ± 8 a	0.98 ± 0.04 de
CO+BI	83.7 ± 8.7 ab	193 ± 8 d	2.31 ± 0.23 ab	81.6 ± 8.6 a	184 ± 1 e	2.25 ± 0.23 a
DT+BI	49.8 ± 9.9 bc	259 ± 29 c	1.90 ± 0.27 bc	51.3 ± 2.4 bc	246 ± 20 d	1.45 ± 0.06 bc
DR+BI	49.8 ± 5.3 cde	278 ± 12 bc	1.42 ± 0.15 cde	41.9 ± 3.7 cd	305 ± 10 c	1.21 ± 0.10 cd
DTR+BI	36.4 ± 3.0 e	320 ± 11 ab	1.07 ± 0.08 e	29.0 ± 1.2 e	346 ± 11 b	0.88 ± 0.03 e

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean ± standard error. Different letters indicate significant differences between treatments within each season.

Table 3

Physical and chemical properties of soil after the wet and dry cultivation seasons.

Treatment	pH	EC (dS m ⁻¹)	OM (%)	OC (%)	Total C (%)	Total N (%)	NH ₄ ⁺ (mg kg ⁻¹)	NO ₃ ⁻ (mg kg ⁻¹)	Avail. P (mg kg ⁻¹)	Exch. K (mg kg ⁻¹)	CEC (cmol kg ⁻¹)	Bulk density (g cm ⁻³)	Moisture content (%)	SOC stock (Mg ha ⁻¹)
After wet season harvest														
CO	6.17 ± 0.03 a	0.78 ± 0.04 b	1.15 ± 0.03 b	0.67 ± 0.02 b	1.56 ± 0.05 b	0.11 ± 0.01 a	7.20 ± 1.77 b	36.9 ± 6.5 ab	26.3 ± 5.6 a	49.7 ± 9.2 a	10.7 ± 0.4 a	1.49 ± 0.05 a	19.9 ± 1.5 a	20.0 ± 1.2 bc
DT	6.21 ± 0.04 a	0.80 ± 0.02 b	1.14 ± 0.06 b	0.66 ± 0.03 b	1.59 ± 0.05 b	0.11 ± 0.01 a	7.65 ± 1.72 b	32.4 ± 3.1 b	27.8 ± 6.5 a	52.8 ± 11.3 a	10.5 ± 0.3 a	1.50 ± 0.04 a	19.4 ± 0.9 a	19.8 ± 0.7 bc
DR	6.19 ± 0.06 a	0.79 ± 0.03 b	1.14 ± 0.03 b	0.66 ± 0.01 b	1.57 ± 0.04 b	0.10 ± 0.01 a	6.48 ± 0.95 b	29.6 ± 4.0 b	29.8 ± 5.8 a	51.4 ± 9.4 a	10.8 ± 0.4 a	1.49 ± 0.05 a	19.8 ± 1.3 a	19.8 ± 0.6 bc
DTR	6.20 ± 0.04 a	0.79 ± 0.03 b	1.13 ± 0.02 b	0.66 ± 0.01 b	1.58 ± 0.03 b	0.10 ± 0.01 a	7.47 ± 0.79 b	29.7 ± 7.7 b	28.8 ± 8.2 a	51.9 ± 9.0 a	10.5 ± 0.4 a	1.49 ± 0.05 a	19.5 ± 0.9 a	19.6 ± 0.8 c
CO+BI	6.24 ± 0.03 a	0.86 ± 0.04 ab	1.28 ± 0.06 a	0.74 ± 0.03 a	1.78 ± 0.03 a	0.12 ± 0.01 a	12.6 ± 2.1 a	55.3 ± 11.5 a	37.4 ± 6.9 a	62.9 ± 9.3 a	11.6 ± 0.5 a	1.48 ± 0.04 a	20.3 ± 1.0 a	22.0 ± 0.5 ab
DT+BI	6.26 ± 0.02 a	0.85 ± 0.02 ab	1.33 ± 0.05 a	0.77 ± 0.03 a	1.76 ± 0.06 a	0.12 ± 0.01 a	12.5 ± 1.0 a	45.2 ± 7.5 ab	37.8 ± 7.5 a	59.7 ± 10.5 a	11.7 ± 0.6 a	1.48 ± 0.04 a	20.1 ± 1.1 a	22.8 ± 0.4 a
DR+BI	6.24 ± 0.04 a	0.86 ± 0.02 ab	1.31 ± 0.06 a	0.76 ± 0.04 a	1.73 ± 0.05 a	0.12 ± 0.01 a	11.7 ± 1.0 a	40.2 ± 6.9 a	34.8 ± 8.1 ab	59.0 ± 12.7 a	11.4 ± 0.8 a	1.48 ± 0.03 a	20.2 ± 0.6 a	22.5 ± 1.0 a
DTR+BI	6.24 ± 0.03 a	0.88 ± 0.03 a	1.28 ± 0.05 a	0.74 ± 0.03 a	1.72 ± 0.02 a	0.12 ± 0.01 a	9.66 ± 0.96 ab	35.7 ± 6.1 ab	36.3 ± 7.3 a	57.3 ± 11.0 a	11.3 ± 0.5 a	1.47 ± 0.03 a	20.2 ± 1.4 a	21.8 ± 0.9 abc
After dry season harvest														
CO	6.16 ± 0.04 b	0.76 ± 0.03 b	1.16 ± 0.04 b	0.67 ± 0.02 b	1.52 ± 0.05 b	0.11 ± 0.01 a	8.53 ± 0.95 b	39.1 ± 5.1 b	25.9 ± 5.1 b	51.5 ± 3.4 a	10.8 ± 0.6 bc	1.48 ± 0.04 a	14.8 ± 1.3 a	19.9 ± 0.6 b
DT	6.20 ± 0.02 b	0.75 ± 0.01 b	1.15 ± 0.04 b	0.67 ± 0.02 b	1.54 ± 0.04 b	0.11 ± 0.01 a	9.50 ± 0.97 ab	39.9 ± 5.6 b	26.3 ± 0.8 b	52.8 ± 8.4 a	10.5 ± 0.4 c	1.49 ± 0.03 a	15.2 ± 1.0 a	19.9 ± 0.9 b
DR	6.18 ± 0.03 b	0.75 ± 0.03 b	1.16 ± 0.05 b	0.67 ± 0.03 b	1.53 ± 0.05 b	0.11 ± 0.01 a	9.30 ± 2.43 ab	40.0 ± 6.7 b	26.7 ± 6.5 b	50.5 ± 4.9 a	10.9 ± 0.4 bc	1.49 ± 0.03 a	15.9 ± 1.3 a	20.0 ± 1.0 b
DTR	6.16 ± 0.02 b	0.75 ± 0.01 b	1.13 ± 0.05 b	0.66 ± 0.03 b	1.52 ± 0.06 b	0.11 ± 0.01 a	9.16 ± 1.45 b	38.4 ± 3.3 b	26.0 ± 3.5 b	51.9 ± 3.3 a	10.4 ± 0.4 c	1.49 ± 0.03 a	15.3 ± 0.8 a	19.6 ± 1.2 b
CO+BI	6.28 ± 0.02 a	0.87 ± 0.03 a	1.39 ± 0.06 a	0.81 ± 0.03 a	1.81 ± 0.05 a	0.12 ± 0.01 a	13.2 ± 3.0 a	60.5 ± 11.2 ab	36.0 ± 2.7 a	62.8 ± 5.5 ab	11.9 ± 0.5 a	1.48 ± 0.02 ab	16.1 ± 0.8 a	23.9 ± 1.2 a
DT+BI	6.30 ± 0.02 a	0.91 ± 0.03 a	1.40 ± 0.07 a	0.81 ± 0.04 a	1.81 ± 0.06 a	0.12 ± 0.01 a	14.2 ± 1.7 a	62.0 ± 7.1 a	41.7 ± 1.1 a	60.2 ± 5.3 a	12.1 ± 0.3 a	1.49 ± 0.03 a	16.3 ± 0.5 a	24.2 ± 1.6 a
DR+BI	6.27 ± 0.02 ab	0.86 ± 0.02 a	1.37 ± 0.05 a	0.79 ± 0.03 a	1.80 ± 0.07 a	0.12 ± 0.01 a	13.2 ± 1.3 ab	56.4 ± 5.1 ab	36.8 ± 6.1 ab	63.4 ± 1.8 a	11.9 ± 0.5 ab	1.49 ± 0.03 a	15.8 ± 0.6 a	23.7 ± 1.2 a
DTR+BI	6.26 ± 0.03 ab	0.87 ± 0.04 a	1.36 ± 0.02 a	0.79 ± 0.01 a	1.82 ± 0.09 a	0.12 ± 0.01 a	11.7 ± 0.8 ab	55.2 ± 4.8 ab	34.9 ± 5.7 ab	55.0 ± 9.5 a	12.0 ± 0.6 ab	1.47 ± 0.04 a	16.0 ± 0.7 a	23.3 ± 0.5 a

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean ± standard error. Different letters indicate significant differences between treatments within each season. EC is electrical conductivity, OM is organic matter, OC is organic carbon, NH₄⁺ is ammonium, NO₃⁻ in nitrate, CEC is cation exchange capacity, and SOC is soil organic carbon.

Table 4

Components of crop yields and grain yield-scaled greenhouse gas (GHG) emissions in rice cultivation during wet and dry seasons.

Treatment	Panicle number (panicle m ⁻²)	1000-grain weight (g)	Grain number (grain panicle ⁻¹)		Aboveground biomass weight (Mg ha ⁻¹)	Grain yield (Mg ha ⁻¹)	GHG intensity (Mg CO ₂ eq Mg yield ⁻¹)
			Filled grain	Unfilled grain			
Wet season							
CO	586 ± 5 bcd	27.1 ± 0.5 a	116 ± 8 a	7.00 ± 1.00 c	13.3 ± 0.5 ab	4.37 ± 0.14 a	0.62 ± 0.05 a
DT	587 ± 7 bcd	27.1 ± 0.3 a	113 ± 6 a	9.67 ± 1.53 c	12.2 ± 0.2 c	4.42 ± 0.10 a	0.49 ± 0.04 bc
DR	573 ± 6 cd	25.9 ± 0.4 b	80.0 ± 5.6 b	20.7 ± 4.2 a	12.4 ± 0.3 bc	3.04 ± 0.08 bc	0.53 ± 0.02 ab
DTR	569 ± 7 d	25.7 ± 0.5 b	73.3 ± 3.2 b	22.3 ± 3.8 a	12.0 ± 0.3 c	2.44 ± 0.12 d	0.49 ± 0.03 bc
CO+BI	604 ± 8 ab	27.1 ± 0.5 a	119 ± 5 a	12.7 ± 8.1 bc	13.6 ± 0.3 a	4.49 ± 0.15 a	0.51 ± 0.04 b
DT+BI	610 ± 8 a	27.2 ± 0.3 a	116 ± 3 a	8.67 ± 1.15 c	12.4 ± 0.2 bc	4.45 ± 0.16 a	0.43 ± 0.05 bc
DR+BI	588 ± 6 bc	26.0 ± 0.3 b	81.3 ± 5.0 b	19.0 ± 4.4 ab	12.5 ± 0.3 bc	3.22 ± 0.06 b	0.44 ± 0.04 bc
DTR+BI	578 ± 6 cd	25.7 ± 0.3 b	74.7 ± 4.5 b	19.7 ± 3.2 ab	12.2 ± 0.6 c	2.72 ± 0.10 cd	0.39 ± 0.02 c
Dry season							
CO	594 ± 8 bc	27.1 ± 0.3 a	112 ± 6 a	7.33 ± 1.53 d	13.1 ± 0.3 ab	4.38 ± 0.09 a	0.58 ± 0.03 a
DT	588 ± 7 bcd	27.1 ± 0.2 a	109 ± 6 a	7.00 ± 1.00 d	12.0 ± 0.3 c	4.30 ± 0.08 a	0.39 ± 0.02 cde
DR	577 ± 5 cd	25.5 ± 0.1 b	80.0 ± 5.6 b	17.0 ± 2.0 bc	12.2 ± 0.3 c	3.06 ± 0.08 b	0.46 ± 0.02 bc
DTR	570 ± 6 d	25.3 ± 0.2 b	75.3 ± 3.1 b	23.0 ± 2.7 a	11.6 ± 0.4 c	2.34 ± 0.09 d	0.42 ± 0.02 cd
CO+BI	616 ± 7 a	27.1 ± 0.3 a	113 ± 4 a	6.00 ± 1.00 d	13.4 ± 0.3 a	4.48 ± 0.05 a	0.50 ± 0.05 b
DT+BI	605 ± 7 ab	27.1 ± 0.4 a	110 ± 3 a	8.67 ± 1.15 d	12.2 ± 0.3 c	4.47 ± 0.13 a	0.32 ± 0.02 e
DR+BI	577 ± 9 cd	25.7 ± 0.3 b	83.3 ± 3.1 b	15.3 ± 3.2 c	12.4 ± 0.3 bc	3.24 ± 0.09 b	0.37 ± 0.02 de
DTR+BI	580 ± 10 cd	25.4 ± 0.2 b	77.7 ± 4.9 b	21.3 ± 2.1 ab	11.7 ± 0.3 c	2.78 ± 0.05 c	0.32 ± 0.02 e

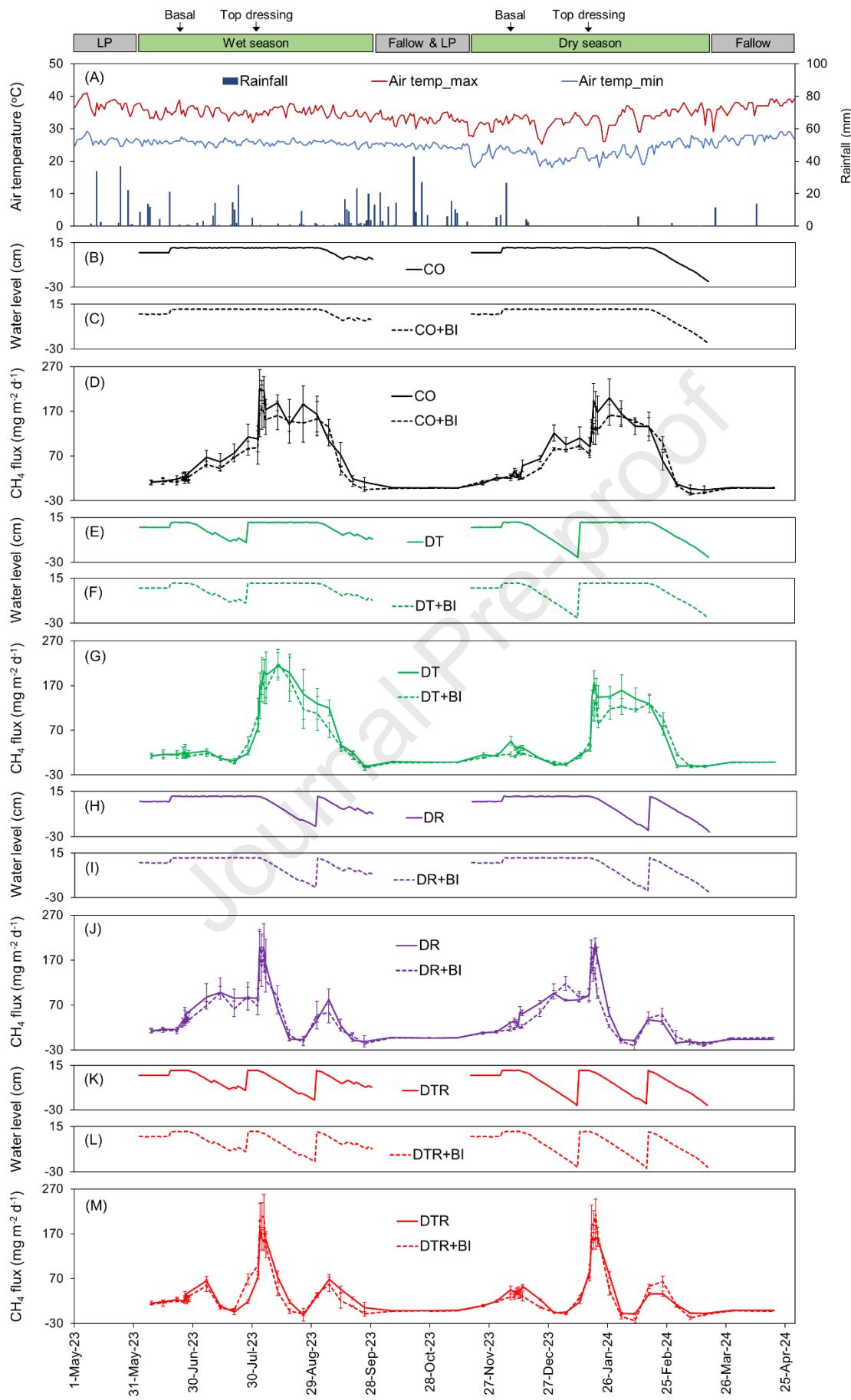
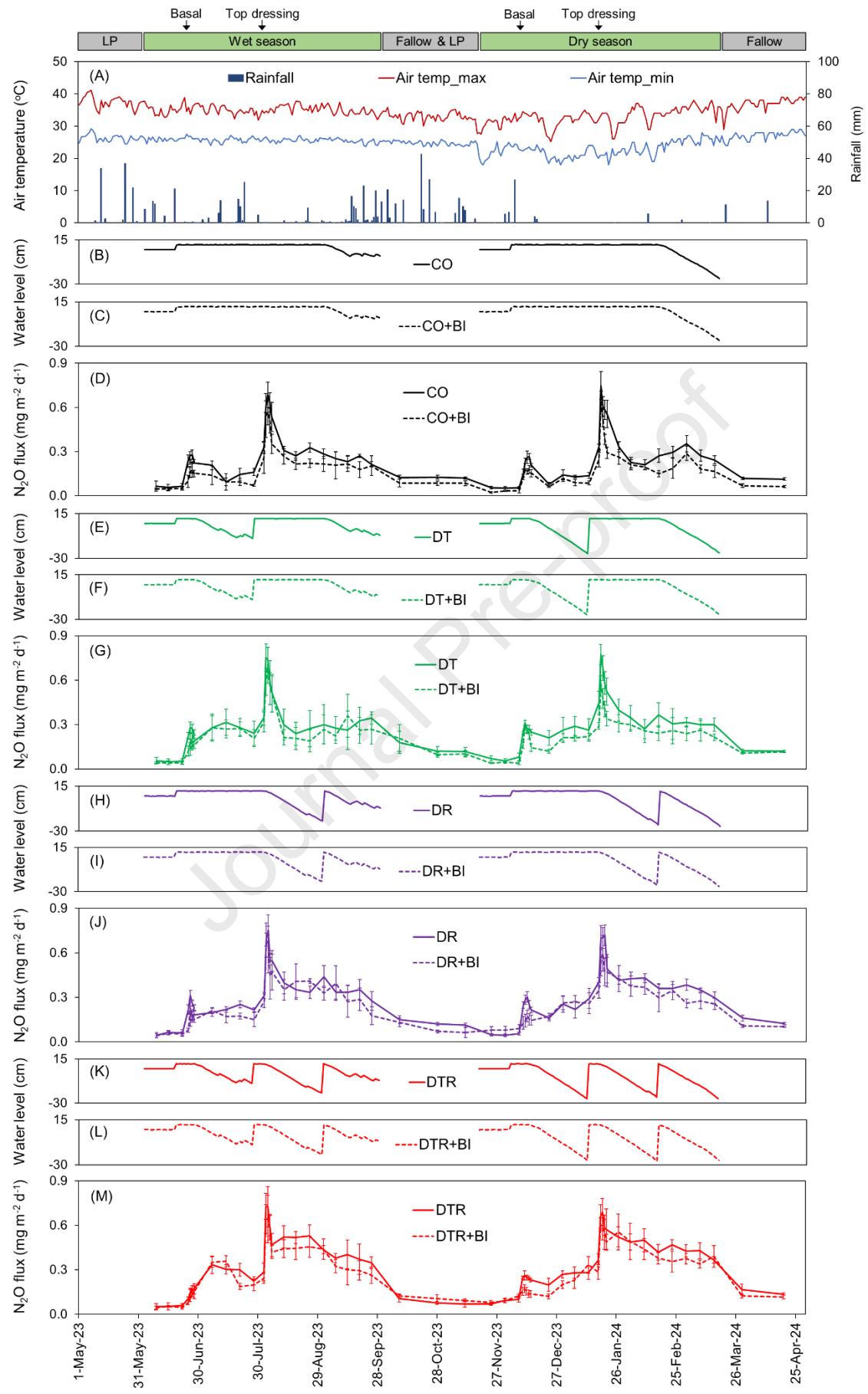
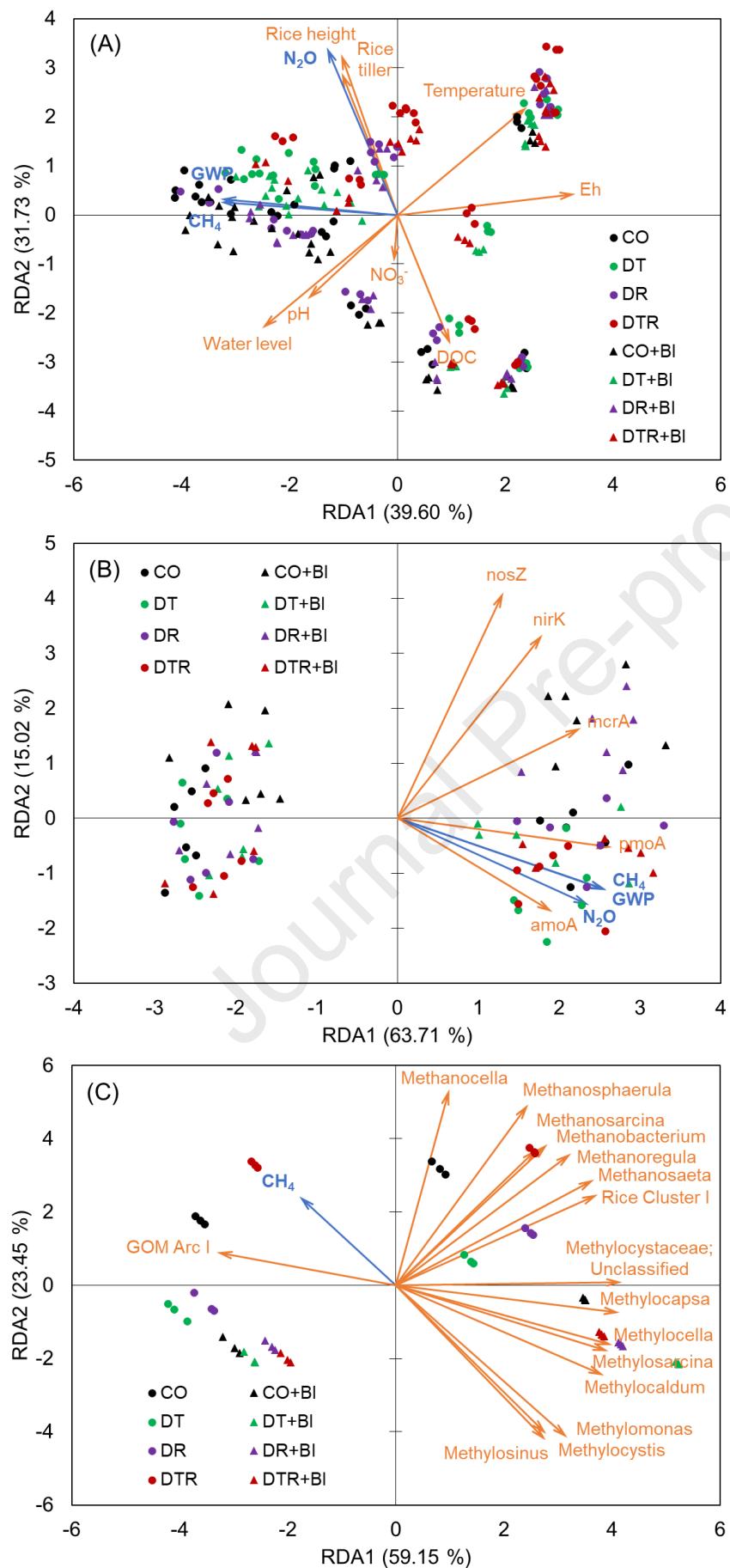

Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean ± standard error. Different letters indicate significant differences between treatments within each season.

Table 5


Water use, irrigation water productivity, and water scarcity footprint of rice cultivation in wet and dry seasons.

Treatment	Water use in rice cultivation		Irrigation water productivity (kg yield m ⁻³)	Water scarcity footprint (m ³ H ₂ Oeq ha ⁻¹)
	Irrigation (m ³ ha ⁻¹)	Rain (m ³ ha ⁻¹)		
Wet season				
CO	6,080 ± 51 a	3,280	0.72 ± 0.02 d	4,270 ± 37 a
DT	4,070 ± 14 b	3,480	1.09 ± 0.05 b	2,930 ± 5 b
DR	3,900 ± 59 cd	3,280	0.78 ± 0.02 cd	2,520 ± 39 c
DTR	1,990 ± 22 e	3,480	1.23 ± 0.05 ab	1,260 ± 16 d
CO+BI	5,980 ± 108 a	3,280	0.75 ± 0.02 cd	4,190 ± 74 a
DT+BI	4,040 ± 55 bc	3,480	1.10 ± 0.05 b	2,910 ± 40 b
DR+BI	3,850 ± 59 d	3,280	0.84 ± 0.02 c	2,490 ± 39 c
DTR+BI	1,960 ± 31 e	3,480	1.39 ± 0.04 a	1,240 ± 23 d
Dry season				
CO	7,230 ± 24 a	1,080	0.61 ± 0.02 c	5,320 ± 21 a
DT	5,740 ± 37 b	1,080	0.75 ± 0.02 a	4,170 ± 27 b
DR	5,490 ± 23 c	1,080	0.56 ± 0.05 c	3,590 ± 18 c
DTR	3,920 ± 73 d	1,080	0.60 ± 0.02 c	2,360 ± 63 d
CO+BI	7,170 ± 30 a	1,080	0.62 ± 0.02 c	5,270 ± 27 a
DT+BI	5,750 ± 22 b	1,080	0.78 ± 0.02 a	4,170 ± 22 b
DR+BI	5,430 ± 17 c	1,080	0.60 ± 0.02 c	3,540 ± 6 c
DTR+BI	3,920 ± 17 d	1,080	0.71 ± 0.02 b	2,360 ± 9 d


Note: CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean ± standard error. Different letters indicate significant differences between treatments within each season.

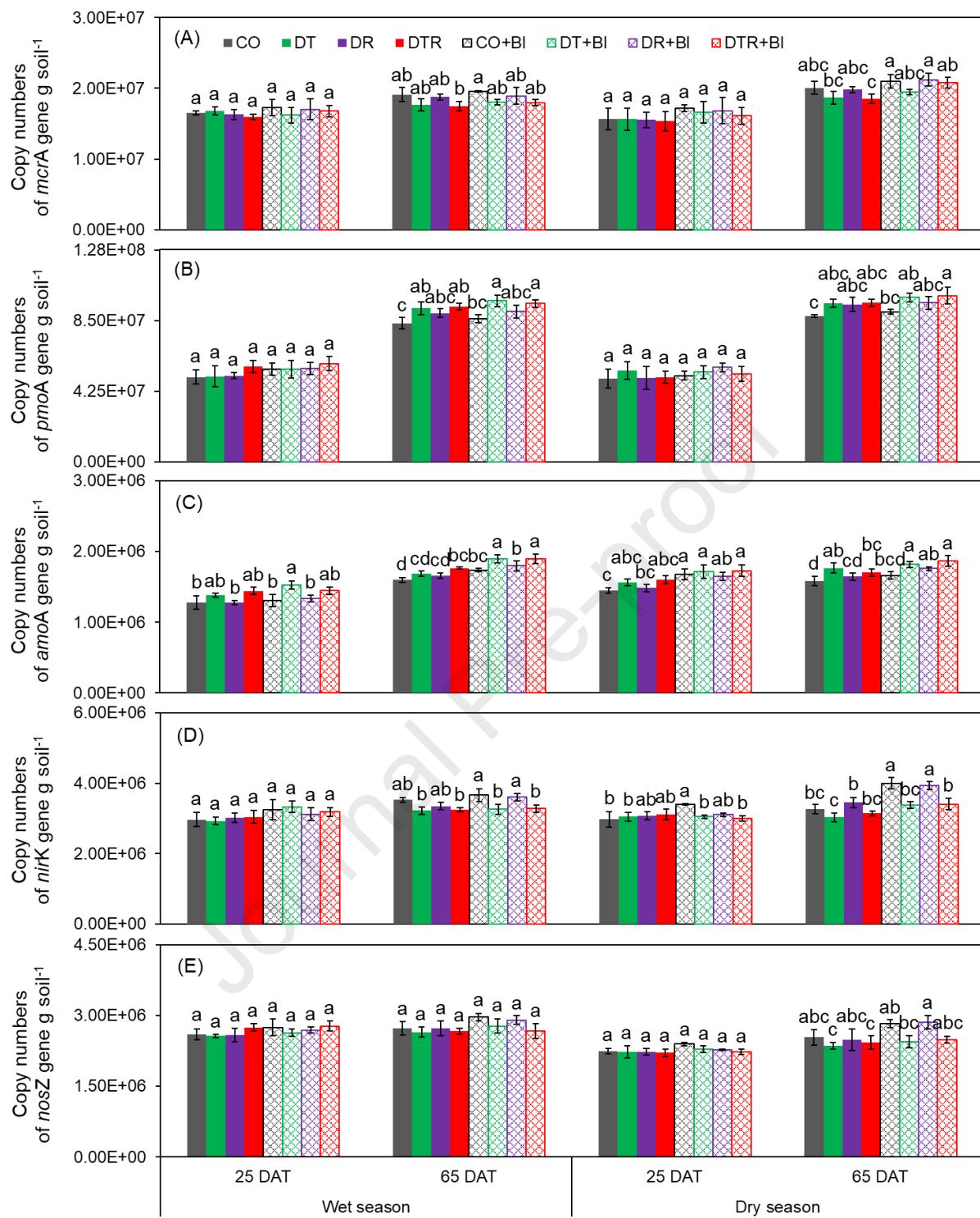

Fig. 1. (A) Air temperature and rainfall during the study period. Water level in the field using (B) continuous flooding according to conventional practice (CO), (C) biochar application (CO+BI), (E) water scarcity during tillering stage (DT), (F) DT combined with BI (DT+BI), (H) water scarcity during reproductive stage (DR), (I) DR combined with BI (DR+BI), (K) water scarcity during tillering and reproductive stages (DTR), and (L) DTR combined with BI (DTR+BI). Variation of CH₄ emissions throughout the study period of (D) CO and CO+BI, (G) DT and DT+BI, (J) DR and DR+BI, and (M) DTR and DTR+BI. LP signifies land preparation, basal is application of basal fertilizer, and top dressing is application of top-dressing fertilizer.

Fig. 2. (A) Air temperature and rainfall during the study period. Water level in the field using (B) continuous flooding according to conventional practice (CO), (C) biochar application (CO+BI), (E) water scarcity during tillering stage (DT), (F) DT combined with BI (DT+BI), (H) water scarcity during reproductive stage (DR), (I) DR combined with BI (DR+BI), (K) water scarcity during tillering and reproductive stages (DTR), and (L) DTR combined with BI (DTR+BI). Variation of N₂O emissions throughout the study period of (D) CO and CO+BI, (G) DT and DT+BI, (J) DR and DR+BI, and (M) DTR and DTR+BI. LP signifies land preparation, basal is application of basal fertilizer, and top dressing is application of top-dressing fertilizer.

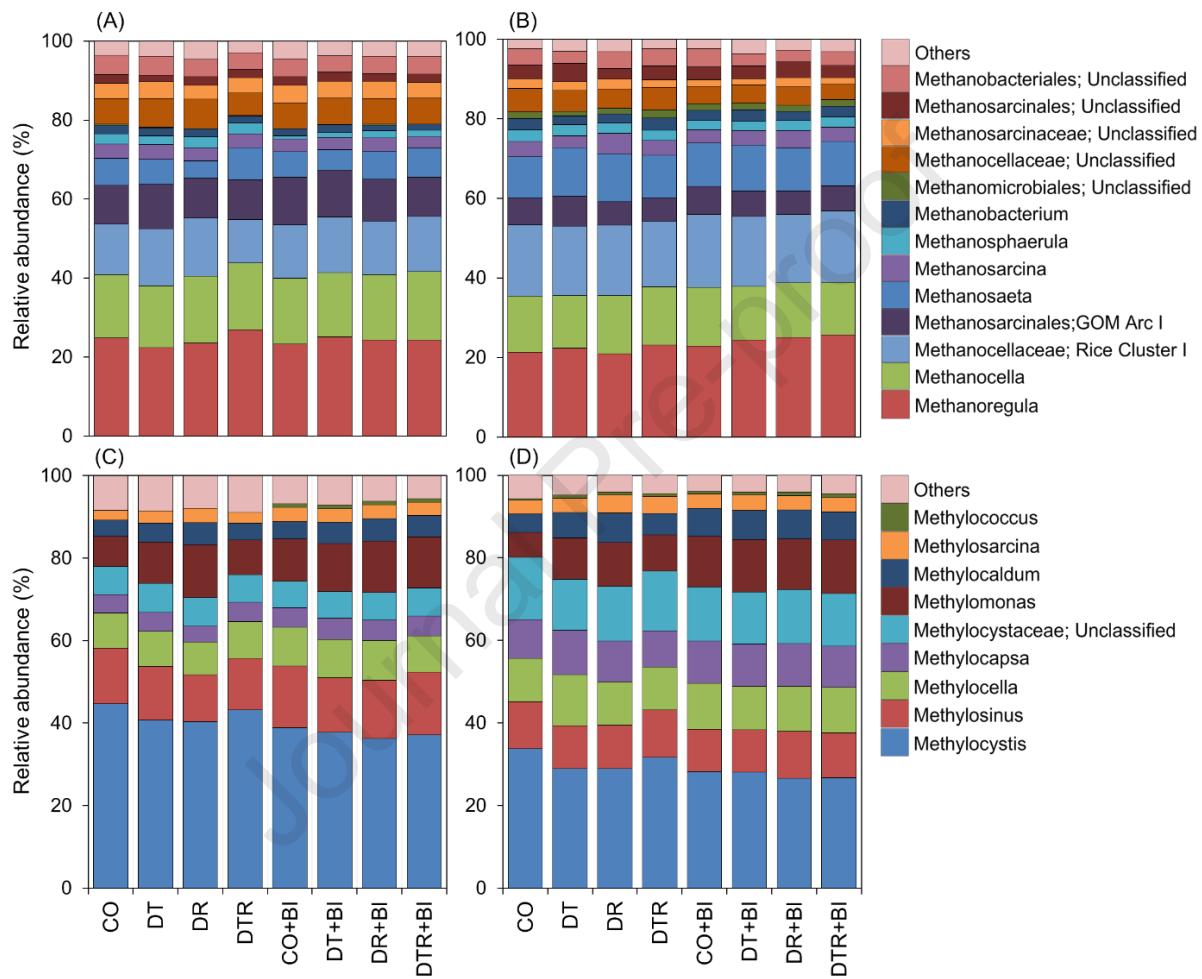


Fig. 3. Redundancy analysis (RDA) illustrating the relationships between (A) greenhouse gas (GHG) emissions (CH_4 , N_2O , and global warming potential (GWP)) and soil and plant conditions observed throughout the cultivation period; (B) GHG emissions (CH_4 , N_2O , and GWP) and the abundances of soil microbial communities at 25 and 65 d after transplanting (DAT); and (C) CH_4 emissions and the abundances of methanogenic archaea and methanotrophic bacteria at 65 DAT. CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. DOC is dissolved organic carbon, Eh is soil redox potential, and NO_3^- in nitrate. All associations are significant at $P < 0.05$.

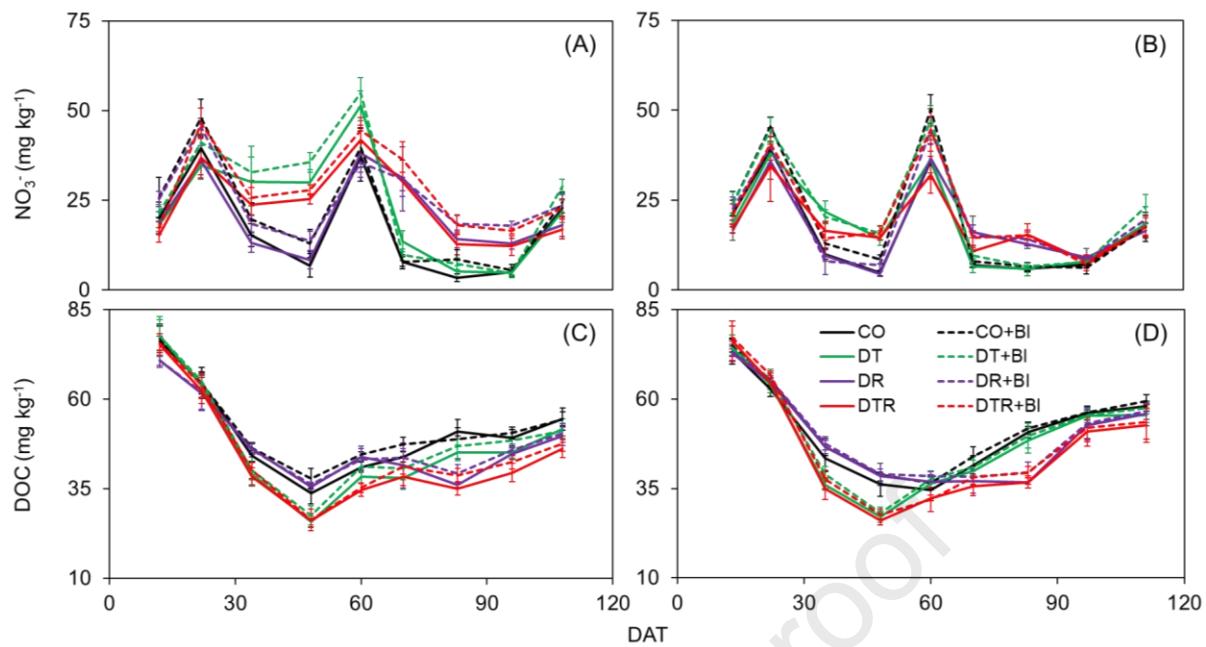


Fig. 4. Abundances of (A) methanogens (*mcrA* gene), (B) methanotrophs (*pmoA* gene), (C) nitrifying bacteria (*amoA* gene), (D) nitrite reductase (*nirK*), and (E) nitrous oxide reductase (*nosZ*) genes of denitrifying bacteria during the tillering (25 d after transplanting (DAT)) and reproductive (65 DAT) stages in both wet and dry seasons. CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive

stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean \pm standard error. Different letters indicate significant differences between treatments within each season.

Fig. 5. Taxonomic profiles (genus level) of methanogenic archaea at 65 d after transplanting (DAT) in (A) the wet and (B) dry seasons, and methanotrophs at 65 DAT in (C) the wet and (D) dry seasons. CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes.

Fig. 6. Soluble (A, B) nitrate (NO_3^-) and (C, D) dissolved organic carbon (DOC) in soil during the (A, C) wet and (B, D) dry cultivation seasons. CO refers to continuous flooding, DT to water scarcity during the tillering stage, DR to water scarcity during the reproductive stage, and DTR to water scarcity during both the tillering and reproductive stages. +BI indicates the addition of biochar to the same water regimes. Data are presented as mean \pm standard error.