Kracmarova-Farren et al. Environmental Microbiome (2024) 19:87 Environmental Microbiome
https://doi.org/10.1186/540793-024-00631-z

Check for
updates

Biochar-induced changes in soil microbial
communities: a comparison of two feedstocks
and pyrolysis temperatures

Martina Kracmarova-Farren', Eliska Alexova', Anezka Kodatova', Filip Mercl?, Jirina Szakova?, Pavel Tlustos?,
Katerina Demnerova'” and Hana Stiborova'”

Abstract

Background The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and
sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar’s production
conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning
from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol
soils at ratios of 2% and 5% (w/w).

Results Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one
year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and
roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application
dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated
at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a
substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes
known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably
affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments
had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic
community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm).
The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes
involved in the carbon cycle (3-glucosidase, B-xylosidase, and 3-N-acetylglucosaminidase).

Conclusions These results collectively suggest, that under appropriate production conditions, biochar can exert a
positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such
insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.
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Introduction

Biochars, valuable soil amendments produced through a
process called pyrolysis, hold great promise for improv-
ing soil quality and enhancing microbial activity in agri-
cultural soils. When applied, a biochar enriches soil
nutrient levels, adjusts pH, improves moisture retention,
enhances fertility, and mitigates soil contamination [23].
Their porous structure, high surface area, and capacity to
absorb soluble nutrients and organic matter provide an
ideal habitat for various microorganisms, including bac-
teria, ectomycorrhizal fungi, ericoid mycorrhizal fungi,
and arbuscular mycorrhizal fungi (AMF) [96]. These
pores serve as a protective shield for microbes against
natural predators such as mites and nematodes [56], fos-
tering an increase in total microbial biomass, microbial
activity, the abundance of actinomycetes, and ratios of
fungi/bacteria and G+/G- bacteria in treated soil [105].

However, a biochar can exhibit various chemical and
physical properties that are linked to its production con-
ditions, specifically feedstock type, pyrolysis temperature,
and retention time. For instance, different feedstocks
have various elemental and structural compositions,
resulting in the production of biochars with diverse char-
acteristics [94]. Typically, feedstock containing lignin or
cellulose, such as wood or crop biomass, have lower cat-
ion exchange capacity (CEC) but higher surface area and
carbon content than a biochar originating from animal
manure or solid waste sources [88]. A straw-derived bio-
char can exhibit a higher pH and potassium level than a
biochar produced from wood chips [92]. Pyrolyzed sew-
age sludge lacks P and K; hence, it has to be enriched
with these nutrients to ensure its effectiveness as a fer-
tilizer [15]. Along with the type of feedstock, pyrolysis
temperature and retention time determine various bio-
char characteristics, including volatile matter content,
ash content, specific surface area, pH, and pore volume
[88, 107]. Higher pyrolysis temperatures increase biochar
porosity, ash and carbon content, while reducing CEC
and the content of volatile matter [88].

As a consequence, the biochar’s impact on soil proper-
ties and soil microbial community can vary significantly.
For instance, a biochar with high lignin content benefits
the growth of gram-negative bacteria, while a biochar
made of organic waste mainly impacts the soil enzymatic
activity [44]. Smaller biochar particles (<1 mm) tend to
be more conducive for bacterial growth, whereas larger
particles (>2 mm) are preferred by fungi [58]. The nutri-
ent profile, its availability, and soil pH have been identi-
fied as key factors shaping the structure of both fungal
and bacterial communities in soil [60, 73, 110]. Addi-
tionally, pyrolysis temperature has been observed to
impact microbial carbon metabolism, using *C isotope
analysis and the incorporation of *C from biochars pre-
pared at the different temperatures into a specific group
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of bacteria [64]. The influence of pyrolysis temperature
and type of feedstock on soil microbial biomass was
also linked together by Li et al. [58], which analyzed 999
paired data points from 194 studies. These alterations in
the soil microbial community can affect plant-associated
niches, such as the plant endosphere [32, 48], potentially
leading to either positive or negative impacts on plant
development, stress tolerance, and crop yield [34, 66, 98].
Therefore, understanding how biochar production condi-
tions influence soil and plant-associated microbial com-
munities is essential, especially when introducing new
biowaste types into the pyrolysis process. This knowledge
will aid in harnessing the full potential of biochars as sus-
tainable soil amendments.

This study investigated the intricate relationship
between biochar production conditions, microbial
communities in soil and plant-associated niches, enzy-
matic activity, and plant growth. In the initial phase, we
explored the effects of different biochar production and
application procedures on prokaryotic communities
in bulk soil over one year. The primary objective was to
pinpoint the optimal pyrolysis temperature for biochar
production, focusing on its long-term benefits for soil
microbial communities. The feedstock materials under
scrutiny include beech woodchips (W) and waste from
mechanical meat separation (BM). Subsequently, the
second phase of our experiment assessed the influence
of these biochars on prokaryotic and fungal communi-
ties in the soil, rhizosphere, and root endosphere using
specialized rhizoboxes [97]. In tandem, we studied plant
growth and the chemical properties of treated soil to
obtain a comprehensive understanding of the biochar’s
impact on the soil ecosystem. The primary objective of
this study was to assess the long-term impact of biochars
produced from two distinct feedstocks (beech wood-
chips and bone-meat residues) and at different pyrolysis
temperatures (300 °C and 500 °C) on soil microbial com-
munities in cambisol and luvisol soils. We hypothesized
that biochar composition and pyrolysis temperature
would lead to significant differences in microbial diver-
sity and community structure. Accordingly, we expected
the biochar derived from beech woodchips to enhance
enzymatic activities related to carbon cycling, while the
bone-meat residue biochar, with its higher phosphorus
content, would increase phosphatase activity and induce
shifts in microbial communities. We also anticipated
that the magnitude of any observed changes in microbial
structure, diversity, or enzymatic activity would increase
with higher biochar application doses. Furthermore, we
hypothesized that these changes in microbial community
structure and/or diversity in bulk soil would be mirrored
in the rhizosphere and plant root microbiome, reflecting
the biochar’s influence on both soil and plant-associated
microbial environments.



Kracmarova-Farren et al. Environmental Microbiome (2024) 19:87

Materials and methods

Phase 1: One-year incubation experiment

In the first phase of the experiment, biochars were pro-
duced using two feedstock materials: beech woodchips
and bone-meat residues after mechanical deboning
from a poultry slaughterhouse. More information about
the composition of BM is included elsewhere [82].
The pyrolysis process was conducted in an electri-
cally heated quartz tube at two different temperatures,
300 °C and 500 °C, with a duration of 30 min in a nitro-
gen atmosphere. The detailed morphological and physi-
ological characteristics of the biochars, as well as the
pyrolysis conditions, have been described by Szakova et
al. [84]. Two soil types, cambisol and luvisol, were uti-
lized in this phase of the study. Cambisol was collected
in Humpolec (East Bohemia, Czech Republic, GPS
49°33’15”N, 15°21’02”E) and is characterized by a sandy
loam texture, CEC of 160 mmol,,/kg, oxidizable car-
bon (C,,) content of 1.24%, and pH 5.1. Luvisol was col-
lected from Hnévceves (East Bohemia, Czech Republic,
GPS 50°18'46"N, 15°43’3"E) and has a loam texture, CEC
of 180 mmol,)/kg, C,, content of 1.8%, and pH 6.5. Both
soil types were sieved through a 2-mm diameter mesh
and mixed together with the biochars at ratios of 2% and
5% (w/w). An illustrational diagram of the experimental
design is shown in Fig. 1.

The soil samples, each mixed with or without a biochar
(serving as the control treatment), were placed in sepa-
rate 100-ml pots. These pots were then incubated for up
to one year at room temperature with a gravimetrically
controlled water-holding capacity set at 60%. The effect
of biochar type and dose was monitored at several time
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points to track changes over time. Samples were collected
3 days, 2 weeks, 1 month, 6 months, and 1 year after the
initial biochar-soil mixing. To ensure the robustness of
our results, each treatment (soil type, biochar type, bio-
char dose and time point) was conducted in biological
triplicate. The exception was the control soil, for which
six biological replicates were set up for each time point.
A total of 270 pots were analysed in Phase 1 of the exper-
iment. At each time point, the soil from each individual
pot was thoroughly mixed, homogenised and a sample
was taken for microbial community analysis.

Phase 2: Rhizobox experiment

The same feedstock types, W and BM, were used for
biochar production in the second phase of the experi-
ment. The pyrolysis temperature was chosen based on
the results of the incubation experiment. The biochar
was mixed with the same soil types, cambisol and luvisol,
as in the previous experiment, at a rate of 5% (w/w). The
amended soil, along with soil without a biochar (control
treatment), was transferred into rhizoboxes (Figure SI-
2), a detailed description of their compartments is given
in the study by Wenzel et al. [97]. Triticum aestivum was
then planted and cultivated for a duration of 90 days.

To maintain consistency, soil moisture was adjusted to
60% of the maximum water holding capacity (MWHC)
using deionized water, and maintained at this level
throughout the experiment. Soil sterilization was not
performed to preserve the natural microbial community.
Specially designed rhizoboxes [97] were used which allow
the sampling of the soil rhizosphere’s vertical profile.
Spring wheat (Triticum aestivum L.) was cultivated in
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Fig. 1 Biochar Production and Experimental Setup. Description of various feedstock types (W and BM), pyrolysis temperature (300 °C and 500 °C), and
application doses (2%, 5%) used for mixing with cambisol and luvisol soil types
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the soil-plant compartment, with 10 plants per rhizobox
(Figure SI-2).

The experiment was carried out in a greenhouse under
controlled conditions at 23/18°C day/night. Each treat-
ment was performed in three biological replicates. At
the end of the experiment, the soil was sectioned with-
out freezing into root-parallel segments based on the
distance from the plant roots using a specially designed
slicing device [30]. Sections included 0-2 mm, 2—-4 mm,
and 3—6 mm, along with bulk soil sections, which were all
separated and homogenized. Additionally, root samples
were also collected. Soil pH in the individual sections and
bulk soil was determined in a 0.01 mol/L CaCl2 extract
(1:10 w/v).

Bulk soil and rhizosphere samples were divided into
two parts; one part was for immediate measurement
of enzymatic activity, and the other part was stored at
-20 °C until the DNA isolation for microbial analysis.
Roots were washed under running tap water and cleaned
of adhered soil particles. The root surface was then steril-
ized by submerging into 70% (v/v) ethanol for 30 s, 3%
(v/v) hypochlorite (NaOCI) for 6 min, and then washed
three times with sterilized nuclease-free water for 5 min
per wash cycle [10, 20, 52]. 100 pl of the last wash solu-
tion was spread on Luria-Bertrani (LB) agar plates and
incubated at 28 °C for one week to verify sterility. Sur-
face-sterilized roots were then stored at -80 °C prior to
grinding. Grinding was performed under liquid nitrogen
in a ceramic mortar and pestle under aseptic conditions.
For the negative control, four 2-ml samples of molecular
water (Sigma-Aldrich, St Louis, MO, USA) underwent
the same treatment as the surface-sterilized root sam-
ples. Hence, they were also subjected to the same sam-
ple manipulation, following the exact same procedures
of grinding, storage, and DNA isolation for microbiome
analysis. This approach enabled us to verify the absence
of contamination during these processes and identify any
potential sources of contamination.

Table 1 Fluorescent substrates used for enzyme assays

Substrate Enzyme Dissolvent
4-Methylumbelliferyl-3-D- B-glucosidase water
glucopyranoside
4-Methylumbelliferyl -N-acetyl- water
N-acetyl-3-D-glucosaminide hexosaminidase
Fluorescein diacetate Total microbial acetone
activity
4-Methylumbelliferyl phosphate Acid phosphatase water
4-Methylumbelliferyl sulfate potas- Sulphatase water
sium salt
4-Methylumbelliferyl-B-D- B-xylosidase water

xylopyranoside

Page 4 of 17

Enzymatic assays

The activity of p-glucosidase, [-xylosidase, [-N-
acetylglucosaminidase (NAG), sulphatase, acid phos-
phatase, and total microbial activity were measured
fluorometrically using fluorescent substrates (Table 1,
Sigma-Aldrich, USA). The procedure for measuring the
enzymatic activity was previously published [53]. In sum-
mary, 2 g of soil was mixed with 50 ml of acetate buffer
(50 mM, pH 5) and shaken in the dark for 2 h at 28 °C
(180 rpm). After the incubation, 200 pl of soil-buffer
slurry were transferred into a microtiter plate and mixed
with one of the following: (i) 50 pl of substrate of 1,500
UM (to measure fluorescence in the sample), (ii) 50 pl of
substrate of 10 pM (to determine the quenching coef-
ficient), (iii) 50 pl of sterile distilled water (as a negative
control of the sample). Additionally, acetate buffer mixed
with 50 pl of the substrate of 1,500 pM was also used as a
negative control of the buffer.

The measurement of enzymatic activity in all bulk soil
and rhizosphere samples was performed in three techni-
cal replicates. The microtiter plate was then shaken hori-
zontally for another 2 h. After incubation, 10 pl of NaOH
(1 M) was added to stop the reaction, and the mixture
was incubated for 20 min. Fluorescence was determined
using Fluoroskan Ascent (Thermo Fisher Scientific, USA)
with 360 nm excitation and 450 nm emission filters. The
procedure was the same for all fluorescent substrates,
except for the FDA substrate, where phosphate buffer
(100 mM, pH 5.8) was used instead of the acetate buf-
fer, and 485 nm excitation and 510 nm emission filters
were used. Enzymatic activity (nmol/h-g) was calculated
according to the equation [22], in which the weight of
dried soil was used to enable meaningful comparisons
of enzymatic activity across different soil treatments. For
that purpose, 2 g of soil was oven-dried at 105 °C for 24 h.

DNA Isolation and purification

Metagenomic DNA was isolated from 500 mg of bulk
soil and rhizosphere samples using a FastDNA Spin Kit
for Soil (MP Biomedicals, USA). For root samples, the
same procedure was employed, except for a prolonged
homogenization period during DNA isolation, lasting
15 min to enhance DNA yield. Isolated DNA was then
purified with a Genomic DNA Clean and Concentrator
kit (ZYMO Research, USA) according to the manufac-
turer’s protocol, and DNA concentration was measured
in a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, USA). DNA concentration was normalized
to 10 ng/ul per sample prior to the amplicon generation.

16S rRNA gene and ITS2 region amplicon generation and
sequencing

To assess the prokaryotic and fungal community structure
and diversity, amplicons of the 16S rRNA gene and ITS2
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region were generated from the samples of bulk soil, rhi-
zosphere, and roots. The V4-V5 hypervariable region of
the 16S rRNA gene was amplified using the 515 forward
(5"-GTGYCAGCMGCNGCGG-3/, Sigma-Aldrich, USA)
and 926 reverse (5'-CCGYCAATTYMTTTRAGTTT-3/,
Sigma-Aldrich, USA) primers [53]. The ITS2 region was
amplified using 5.8 S Fun forward (5-AACTTTYR-
RCAAYGGATCWCT-3’, Sigma-Aldrich, USA) and ITS4
Fun reverse (5'-AGCCTCCGCTTATTGATATGCTTA-
ART-3’, Sigma-Aldrich, USA) primers [86].

The amplicons generated from bulk soil and rhizo-
sphere samples were amplified using a two-step PCR
process. In the first PCR, each 15 pl reaction contained:
0.02 U/ul KAPA HiFi HotStart ReadyMix (Kapa Bio-
systems, USA), 0.3 uM of each primer (Sigma-Aldrich,
USA), template DNA (~ 10 ng/ul), and PCR-grade water
(Sigma-Aldrich, USA). The temperature cycling condi-
tions were as follows: an initial DNA denaturation for
5 min at 95 °C, followed by 25-28 cycles of 20 s at 98 °C,
15 s at 56 °C (16S rRNA gene) or 50 °C (ITS2 region), 15 s
at 72 °C, and final extension for 5 min at 72 °C. In the sec-
ond, 0.5 pl of the first PCR product was used as a tem-
plate DNA with the same primers modified with internal
barcodes and sequencing adapters [33]. The 25 pl reac-
tion contained: 0.02 U/ul KAPA HiFi HotStart ReadyMix
(Kapa Biosystems, USA), 1 uM of each primer (Sigma-
Aldrich, USA), template DNA, and water for molecular
biology (Sigma-Aldrich, USA). The temperature cycling
conditions were the same as for the first PCR, with the
annealing temperature set at 50 °C for both types of
amplicons (16S rRNA and ITS2 region), and the number
of cycles was reduced to 8-10.

While ITS2 amplicons from root samples were pre-
pared according to the same procedure as the soil sam-
ples, 16S rRNA amplicons were generated using a 3-step
PCR process. During the amplifications, the DNA from
plant organelles was blocked with anti-mitochondrial
and anti-plastid peptide-nucleic acids (PNAs) from
PNABio, USA. The first 15 pl reaction contained: 1 uM
of each peptide nucleic acid probe: mPNAs (5'-GGCA
AGTGTTCTTCGGA-3’) and pPNAs (5-GGCTCAA
CCCTGGACAG-3') (PNA Bio, Thousand Oaks, CA),
0.02 U/ul of KAPA HiFi HotStart ReadyMix (Kapa Bio-
systems, USA), 1 uM of the 515 forward primer, 1 uM of
1068 reverse primer (5'-CTGRCGRCRRCCATGCA-3’,
Sigma-Aldrich, USA), template DNA (~10 ng/pl), and
PCR-grade water (Sigma-Aldrich, USA) [62]. Initial DNA
denaturation at 95 °C for 5 min was followed by 30-35
cycles of 20 s at 98 °C, 15 s at 75 °C (annealing of the
PNAs), 15 s at 50 °C, 15 s at 72 °C, and final extension at
72 °C for 5 min. All reactions were performed in 6 copies
that were pooled together after the first PCR and sepa-
rated by electrophoresis on 1.5% agarose gel. The buffer
used for the electrophoresis was gamma sterilized to
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reduce the contaminating DNA. The band at 553 bp was
excised from the gel and purified using a Zymoclean Gel
DNA Recovery Kit (ZYMORESEARCH, USA). 0.5 pl of
the purified product was used in the second PCR as a
template DNA. The 25 pl reaction contained: 0.02 U/pl
KAPA HiFi HotStart ReadyMix (Kapa Biosystems, USA),
1 uM of mPNAs and pPNAs, 1 uM of the 515 forward
primer, 1 uM of 926 reverse primer, template DNA, and
PCR-grade water (Sigma-Aldrich, USA). The temperature
cycling conditions were the same as for the first PCR, but
the number of cycles was reduced to 10-15. 0.5 pl of the
second PCR product was used as a template DNA in the
final third PCR with 515 forward and 926 reverse prim-
ers with internal barcodes and sequencing adapters [33].
The reaction and temperature cycling conditions were
the same as for the final PCR use in generation amplicons
from soil.

The amplicons generated from bulk soil, rhizosphere,
and roots samples were then sent on ice packs to the
Core Facility for Nucleic Acid Analysis at the University
of Alaska Fairbanks for sequencing. There, the amplicons
were purified with SPRIselect magnetic beads (Beckman
Coulter, USA) and the DNA concentration was normal-
ized to 1-2 ng/ul using a SequalPrep Kit (Thermo Fisher
Scientific, USA) prior to the sequencing. The sequencing
was performed using paired-end reads of 300 bp on an
[lumina MiSeq platform.

Data processing

Raw Illumina sequences were processed using the
DADA2 package following the DADA2 1.16 tutorial
pipeline [17] in the R environment (v.4.1.0) [75]. High-
quality sequences were filtered, chimeric sequences were
identified and removed according to the “consensus”
method, and primer sequences were trimmed off. After
dereplication, amplicon sequence variants (ASVs) were
derived from initial unique sequences by sequencing
error removal. Additionally, sequences differing in one
base were merged, and the most abundant one was taken
as the valid sequence. Taxonomy was assigned to ASVs
using the silva_nr_v132_train_set.fa.gz database [16] and
the UNITE database [67] for the 16S rRNA gene and ITS
region, respectively. The sequence dataset was deposited
into the NCBI Short Read Archive under the accession
number PRJNA769602.

Multivariate statistical analysis

Further analyses of microbial datasets and enzymatic
actives were processed in R using the phyloseq [65],
vegan [68], and DESeq2 [63] packages. Graphical out-
puts were generated using the ggplot2 package [99]. All
sequences assigned to organelle DNA (24,784 reads,
accounting for 8.9% of all ASVs) were removed from
the dataset. Alpha-diversity was determined using the
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Shannon diversity index [18]. The normal distribution
of the dataset was assessed using the Shapiro-Wilk test.
For samples from Phase 1, where the data exhibited a
normal distribution, statistical differences in microbial
diversity between treatments were tested using analysis
of variance (ANOVA), followed by Tukey’s HSD test for
multiple pairwise comparisons. For Phase 2, in which the
data did not exhibit a normal distribution, the Kruskal-
Wallis test was used to determine significant differences
in microbial diversity between treatments. The results
were visualized with boxplots, with significant differences
between treatments indicated by letters. The remaining
ASVs in the datasets were transformed into composi-
tional counts.

To assess the significance of the influence of soil type,
biochar, or distance from the rhizosphere on micro-
bial community structure, we employed permutational
multivariate analysis of variance (PERMANOVA) based
on Bray-Curtis distances [6, 7]. Additionally, pairwise
PERMANOVA was conducted to compare the micro-
bial community structures between treatments. The
false discovery rate (FDR) was used to correct p-values
[11] in multiple testing analyses. PCoA was conducted
to visualize the variation in microbial community struc-
ture. Bray-Curtis distance matrices were calculated from
the transformed data to quantify dissimilarities between
samples. The resulting PCoA plots illustrated the com-
munity structure across various treatments and time
points. For Phase 1 data, the plots were further divided
into facets based on sampling times (3 days, 2 weeks, 1
month, 6 months, and 1 year) to present the data clearly
and facilitate interpretation.

To analyze microbial succession in soil following the
application of a biochar over the course of one year, we
employed the Principal Response Curve (PRC) method
for treatments with repeated observations [89]. PRC is

Table 2 Permutational Multivariate Analysis of Variance: pairwise
PERMANOVA comparison between individual biochar variants
versus control soils

Cambisol Luvisol

R Padj R’ Padj
W 300 °C 2% 0014 0.73368 0017 1
W 300 °C 5% 0.024 0.00036 0.020 1
W 500 °C 2% 0.036 0.00036 0.025 0.0054
W 500 °C 5% 0.074 0.00036 0.035 0.42804
BM 300 °C 2% 0.084 0.00036 0.093 0.00036
BM 300 °C 5% 0.233 0.00036 0.177 0.00036
BM 500 °C 2% 0.146 0.00036 0.034 0.00036
BM 500 °C 5% 0.137 0.00036 0.047 0.00036

Tested biochar variants (pyrolysis temperature (300 °C and 500 °C), feedstocks
(W - beech woodchips, BM - bone-meat residues after mechanical deboning
from a poultry slaughterhouse) and application doses (2% and 5%) in luvisol
and cambisol soils on prokaryotic community structure were compared to the
control soil (not treated with biochar). Values corresponding to treatments that
significantly differed from the control (p,; < 0.05) are underlined and in bold
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a special case of Redundancy Analysis (RDA) for experi-
ments with a repeated observation design [90]. This mul-
tivariate method shows how the microbial community
structure responds to treatments over time by comparing
the community in treatments with an external reference
(control soil). PRC also identifies taxa with the strongest
response to these treatments.

The enzymatic activity values were first standardized
within a range, and the significance of enzymatic activ-
ity changes across different treatments was analyzed with
a non-parametric Kruskal-Wallis test and pairwise Wil-
coxon rank sum test. False discovery rate (FDR) correc-
tion was applied to the obtained p-values.

Results and Discussion
Phase 1: Impact of biochar’s feedstock and pyrolysis
temperature on soil prokaryotic communities
In this part, an incubation experiment was conducted
to analyze the impact of biochar production conditions
and application parameters on the soil prokaryotic com-
munity. Samples were collected and monitored over
the course of a year, enabling us to closely examine the
dynamic changes in microbial diversity and community
structure in response to varying biochar treatments. In
total, 12,186,287 reads were obtained, with a minimum of
372 reads and a maximum of 238,002 reads per sample.
The influence of biochar production conditions (pyrol-
ysis temperature and feedstock type) and application
dose on the prokaryotic community structure in both
soil types, cambisol and luvisol, was found to be signifi-
cant (p,; < 0.05, PERMANOVA). The explanatory power
of these factors varied, as indicated by R* values, with
feedstock type having the greatest impact (9.2% in cam-
bisol and 4.6% in luvisol), followed by temperature (4%
for both soil types) and application dose (1% for both
soil types). All variations of the BM biochar resulted in
significant shifts in prokaryotic community structure
compared to the control soil for both cambisol and luvi-
sol (p,4 < 0.001, pairwise PERMANOVA) (Table 2). Of
all the W biochar variants, only W 500 °C 2% caused
significant shifts in prokaryotic community structure in
both soil types (Table 2). These results suggest that the
W biochar significantly alters the prokaryotic commu-
nities when produced at higher pyrolysis temperatures
(500 °C), whereas the BM biochar can influence the com-
munities even when produced at 300 °C. Differences in
prokaryotic community structure are visualized in the
PCoA (Figure SI-3). The primary distinction in commu-
nity structure is driven by soil type, reflected along Axis
1, which explains 51.1% of the variation. Along Axis 2,
the most notable difference in community structure is
observed between the control soil and BM 300 °C treat-
ments across all time points.
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The observed changes in prokaryotic community struc-
ture are likely associated with the distinct physical and
chemical properties of the biochar, which are determined
by feedstock type and pyrolysis temperature. For a ligno-
cellulosic feedstock type, such as the W biochar, lower
pyrolysis temperatures (300 °C) may not effectively con-
vert lignin into polycyclic aromatic hydrocarbons (PAH),
resulting in a biochar with a hydrophobic character [36].
In contrast, higher pyrolysis temperatures can lead to a
higher decomposition of organic matter, resulting in
higher micropore volume and surface area [88, 108].

For the biochar variants used in this study, the higher
pyrolysis temperature (500 °C) transformed the macro-
porous (>0.08 mm) character of W 300 °C biochar into
a microporous (<2 nm) structure, while the BM biochar
changed from non-porous to mesoporous in character
(2-50 nm) [84]. The absence of significant changes in
prokaryotic community structure between control soil
and the W 300 °C biochar suggests that the macroporous
nature of this biochar may not strongly influence the liv-
ing conditions of soil prokaryotes, especially in luvisol
soil. Therefore, to induce significant changes in microbial

3 days
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community structure, (W) may need to be subjected to
higher pyrolysis temperatures to acquire a microporous
character. A biochar’s micropores typically enhance
soil water retention [14] and promote microbial activity
through the sorption of organic matter, which is crucial
for sustaining not only a healthy soil microbiome, but
also high crop yields [69].

Compared to W biochar variants, the BM biochar
caused significant alterations to the prokaryotic com-
munity in both cambisol and luvisol soil types, whether
it was pyrolyzed at 300-500 °C (Table 2). Furthermore,
microbial diversity, described with Shannon’s diversity
index, significantly dropped in BM 300 °C 2% and BM
300 °C 5% treatments 3 days after the biochar application
(Fig. 2A, Tukey HSD). This reduced diversity persisted
even after one year, although the difference compared to
the control soil decreased over time (Figure SI-1).

It is well-established that particularly fast-growing
(copiotrophic) microorganisms respond rapidly to
changes in the ecosystem, due to their shorter genera-
tion time compared to oligotrophic bacteria (Nimonkar
et al, 2022). The swift response of microorganisms to
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environmental changes is also evident in the study by [2],
in which litter addition led to a decrease in richness and
Shannon diversity by over 50%, primarily due to the pro-
liferation of fast-growing copiotrophs. In line with this
pattern, the abrupt decline in diversity in BM 300 °C 2%
and BM 300 °C 5% treatments (Fig. 2B) can be attributed
to the increase by almost 50% compared to the control
soil of Pseudomonadota, a copiotrophic phylum [29]. The
high fat content in BM after mechanical deboning and the
apparent oily viscous residues in BM biochar produced at
300 °C [84] probably induced the copiotrophic conditions
with access to available carbon sources in soils with treat-
ments BM 300 °C 2% and BM 300 °C 5%. Concurrently,
the relative abundance of other phyla, for example oligo-
trophic Acidobacteriota, either decreased or remained at
similar levels. However, in the case of BM 500 °C biochar
variants, the higher pyrolysis temperature likely resulted
in reduced availability of labile organic compounds and
a more inert material structure [84], limiting the rapid
proliferation of copiotrophic bacteria such as Pseudomo-
nadota. The mesoporous nature of BM 500 °C [84] may
also have created fewer immediate carbon and nutrient
hotspots, slowing the microbial response compared to
the non-porous BM 300 °C biochar. Such findings dem-
onstrate that the BM biochar pyrolyzed at low tempera-
ture promoted the growth of Pseudomonadota, known
for their copiotrophic tendencies [103], which is likely to
be the major factor influencing their relative increase.

In general, the other factor influencing microbial diver-
sity is the composition of the biochar. Unlike the W bio-
char, BM is rich in P, which could attracts P-solubilizing
bacteria [84, 85]. Many of these bacteria belong to Pseu-
domonadota, including genera such as Azobacter, Rhi-
zobium, Pseudomonas, and Enterobacter [51]. These
bacteria are known for facilitateting P release from
hydroxyapatite, an inorganic component of bone tis-
sue, by producing organic acids or hydrolytic enzymes,
thereby increasing the availability of P for plants [112].
Even though a related study [84] also documented a
higher availability of P in BM-treated soil, and showed
that P continued to be solubilized from the BM biochar
throughout the entire year, further analysis would be
required to directly confirm that the genera responsible
for P-solubilization in our case study belong to the phy-
lum Pseudomonadota.

This underscores the long-term impact of the BM bio-
char on soil nutrient dynamics, and its effectiveness on
P availability can be further enhanced. For example, this
improvement can be achieved by: (i) combination with
AMF inoculation [112]; (ii) sulfur bone char modifica-
tion [45]; or (iii) ensuring that the pyrolysis of bone char
occurs between 300 °C and 500 °C, which was also done
in our study. At higher pyrolysis temperatures, the crys-
tallinity of hydroxyapatite increases, limiting its plant
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availability [37]. This reduced plant availability likely
also influenced microbial dynamics, as the more crys-
talline structure of hydroxyapatite in BM 500 °C could
have slowed down the release of key nutrients like phos-
phorus. With fewer nutrients immediately available for
microbial use, particularly for fast-growing copiotrophs
such as Pseudomonadota, BM 500 °C did not trigger
the rapid shifts in microbial diversity seen with the BM
300 °C variant [84].

However, it is essential to consider that microbial
diversity is generally recognized as a fundamental deter-
minant of soil stability, dynamics, and overall function-
ality [40, 43]. Higher diversity is often associated with
improved soil quality and disease suppression due to a
broader spectrum of potential metabolic pathways being
employed [50]. Therefore, the low microbial diversity
observed in the BM 300 °C 2% and BM 300 °C 5% treat-
ments, despite the potential increase in plant-available P,
raises concerns about soil health. The significant drop in
microbial diversity, which was further intensified with a
higher application dose of BM 300 °C (Fig. 2A), may be
associated with the nonporous structure of BM 300 °C
biochar variants and the oily viscous residue originat-
ing from fats in the feedstock material [84]. Therefore, it
is advisable to subject BM to higher pyrolysis tempera-
tures to avoid a drop in microbial diversity, and thereby
enhance potential soil health and quality.

In contrast to the drop in soil microbial diversity caused
by BM 300 °C amendments, W-derived biochar did not
significantly stimulate diversity at earlier time points but
did show a notable increase in both luvisol and cambisol
soils one year after the biochar application, particularly
in the case of W 500 °C 2% (Figure SI-1). This increase,
however, was observed one year after the biochar appli-
cation on soil, specifically for W 500 °C 2%. Furthermore,
BM 500 °C treatments only increased the diversity in
cambisol 6 months after the biochar application, and this
significant difference dissipated over time. While these
changes in microbial diversity were particularly notice-
able over extended periods or in specific soil types, they
remain crucial findings. Soil microbial diversity serves
as a vital indicator of the overall environmental health of
the soil ecosystem [78]. It reflects how external factors,
such as biochar amendments, can profoundly influence
the intricate web of microorganisms that play pivotal
roles in nutrient cycling, soil structure maintenance, and
plant health [49, 72]. A high level of microbial diversity
enhances the soil food web, creating a favorable environ-
ment for symbiotic microbe populations to thrive. This,
in turn, contributes to the enrichment of the soil with
essential nutrients crucial for optimal plant growth and
productivity [93]. Therefore, even the delayed or soil-
specific effects observed in this study underscore the
significance of the BM 500 °C and W 500 °C biochars’
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impact on soil microbial diversity, highlighting their rel-
evance for sustainable soil management and agricultural
practices.

As previously demonstrated, the impact of biochar
variants on soil microbial community structure can
become evident as early as 3 days after application. The
Principle Response Curve (PRC) diagram (Fig. 3) pro-
vides additional insights into the effects of biochar
variants on microbial community structure in both cam-
bisol (Fig. 3A) and luvisol (Fig. 3B) soils at multiple time
points: 3 days, 14 days, 1 month, 6 months, and 1 year
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after application. PRC is an extension of redundancy
analysis (RDA), and is particularly useful for visualizing
changes in species composition over time due to biochar
treatments compared to a control.

In the PRC plots (left panels of Fig. 3), the y-axis,
labeled “Effect,” represents the deviation of the microbial
community structure of each treatment from the control
soil (baseline set at zero). A higher effect value indicates a
greater alteration to the community structure relative to
the control. The curves for each treatment show how the
community response evolves over time.
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The right panels display the species weights, which
reflect the contributions of individual taxa to the
observed changes. Positive species weights indicate taxa
that are more abundant in treatments that deviate posi-
tively from the control, while negative weights repre-
sent taxa that are more abundant in the control or less
affected treatments. Notably, the range of the y-axis
differs between the treatment effect plots and the spe-
cies weights plots, because the former shows the overall
impact on community composition, while the latter high-
lights the relative importance of individual taxa.

The PRC analysis reveals that approximately 35% (cam-
bisol) and 36% (luvisol) of the variation in genera compo-
sition is attributed to within-year variation, while another
50% (cambisol) and 44% (luvisol) can be attributed to
variation between treatments (including the interaction
with time). This underscores the dynamic and persistent
nature of the microbial community responses to biochar
treatments.

The largest shifts in prokaryotic community structure
were observed in BM 300 °C 2% and BM 300 °C 5% treat-
ments, as shown by the high effect values consistently
maintained throughout the time series in both cambi-
sol and luvisol soils. These treatments, indicated by the
cyan and purple dashed lines respectively, show the most
significant and persistent deviation from the control
soil, suggesting that the BM biochar produced at 300 °C
results in a prolonged impact on microbial communities.
This effect was then intensified with increasing applica-
tion dose. In contrast, the separation of curves represent-
ing the W-treated soils gradually became less distinct
over time. The prokaryotic community structures in the
W-treated soils (except for W 500 °C 5% in cambisol)
tended to resemble that of the control soil one year after
biochar application. Therefore, it can be argued that the
W biochar only caused temporary shifts in the prokary-
otic community structure.

As observed in Fig. 3, the abundance of genera with a
positive species weight is expected to increase (Fig. 3) rel-
ative to the control soil in treatments with curves above
the control soil (baseline). Conversely, genera with a neg-
ative value are expected to decrease in such treatments.
The greater the separation of a biochar variant’s curve
from the control soil, the more significant the observed
changes in the abundance of the shown genera. Specifi-
cally, Noviherbaspirillum, Nocardia, and Massilia exhib-
ited positive species weights in both cambisol and luvisol
soils, indicating their increased relative abundance with
BM 300 °C 2% and BM 300 °C 5% treatments. In contrast,
Sphingomonas and Gaiella exhibited negative species
weights, suggesting a reduction in their relative abun-
dance with these treatments compared to the control soil.

Notably, Noviherbaspirillum (Pseudomonadota)
had the highest species weight in both soil types. This

Page 10 of 17

denitrifying bacterium utilizes simple organic acids as
a carbon source [42], and its stimulated growth after
the addition of pyrogenic organic matter was previ-
ously observed in various soil types [101]. Genera such
as Nocardia, Actinomadura (both Actinomyceota), Mas-
silia, Burkholderia/Caballeronia/Paraburkholderia,
Azospirillum, Aquabacterium, Variovorax, Cupriavidus,
and Duganella (all Pseudomonadota) exhibited positive
species weight in at least in one of the soil types treated
with BM 300 °C 2% and BM 300 °C 5%. These genera
have previously been associated with phosphate-solubi-
lizing activity [12, 71, 76, 87, 111], which aligns with the
observed higher phosphate availability in these treat-
ments [84]. Similarly, Azeem et al. [8] found that bone-
derived biochar improved the phosphorus availability in
contaminated soils, further supporting the role of bone
biochar in nutrient mobilization. Additionally, the pres-
ence of genera belonging to the Pseudomonadota phylum
corresponds to its higher relative abundance, as pre-
sented in Fig. 2B.

In summary of phase one, our study highlights the
importance of pyrolysis temperature in biochar produc-
tion, with distinct effects observed for different feed-
stock types. For bone-meat residues, pyrolysis at 300 °C
significantly influenced the community structure and
promoted the growth of phosphate-solubilizing bacteria,
making it a potential alternative to chemical P fertiliz-
ers. However, this treatment also resulted in a significant
drop in soil prokaryotic diversity. In contrast, pyrolysis at
500 °C for the BM biochar maintained higher prokary-
otic diversity while still enhancing phosphate mobility
[84]. For beech woodchips (higher pyrolysis temperatures
(500 °C) were necessary to induce substantial changes in
the soil microbial community microbial structure, likely
due to the shift from macroporous to microporous bio-
char characteristics [84]. Therefore, for phase two of our
study, a pyrolysis temperature of 500 °C was selected for
both feedstock types, aiming to strike an optimal balance
between microbial community enrichment and diversity
preservation.

Phase 2: Impact of biochar variants on enzymatic

activity and prokaryotic and fungal communities in soil,
rhizosphere and roots

In this phase of the study, we conducted a rhizobox
experiment (Figure SI-2) in which the rhizoboxes were
filled with cambisol or luvisol and enriched with W bio-
char or BM biochar, both of which were pyrolyzed at
500 °C (5% w/w). Triticum aestivum L. was planted in the
soil-plant compartment for 90 days. The prokaryotic and
fungal communities were analyzed in plant roots and in
the rhizosphere at distances of 2, 4, and 6 mm from the
root system. This analysis was followed by an assessment
of enzymatic activity in the bulk soil. A total of 2,525,117
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Table 3 Influence of biochar application (W, BM, or control soil) and distance (various sections from the root system (0-2, 2-4,
4-6 mm) of T agestivum L) on the structure of prokaryotic and fungal communities in soil (PERMANOVA)

Prokaryotes Fungi

Cambisol Luvisol Cambisol Luvisol

R? P R? P R? P R? P
Biochar treatment 23% 0.0009 14% 0.0400 11% 0.1 12% 0.03
Distance 7% 0.0070 5% 0.2000 7% 04 6% 0.50
Biochar x Distance 12% 0.0200 10% 0.5000 13% 0.5 12% 0.74
Significant (p<0.05) p-values are underlined and shown in bold
16S rRNA ASVs were obtained, with read counts rang- Cameol eci
ing from a minimum of 2,561 to a maximum of 58,852 b 3 4 b i A

per sample. For ITS ASVs, there were 2,734,826 reads in
total, with a minimum of 135 reads and a maximum of
81,548 reads per sample.

The diversity of prokaryotes, both in the rhizosphere
and roots, was not significantly influenced by soil type,
biochar treatment, or the distance from the root system
(p>0.1, Kruskal-Wallis test). Conversely, the fungal diver-
sity significantly differed between the soil types (p<0.05).
Specifically, luvisol exhibited higher fungal diversity than
cambisol (Figure SI-4). Neither the application of biochar
nor the distance from the root system exerted a signifi-
cant influence on fungal diversity (p>0.1). These findings
align with the general trends observed in the phase one
experiment, where, for the most part, we did not detect
significant alterations in soil prokaryotic diversity less
than a year after the application of either the W biochar
pyrolyzed at 500 °C (5% w/w) or the BM biochar pyro-
lyzed at 500 °C (5% w/w). The response of microbial
diversity in rhizosphere to biochar treatment was previ-
ously linked to the nutrient richness of such treatments
[55], where nutrient-rich biochar maintained bacte-
rial species richness, while low-nutrient biochar led to
reduced diversity. This suggests that the biochar treat-
ments in our study provided the necessary nutrients to
sustain diversity compared to the control soil.

While significant changes were not observed in micro-
bial diversity, the microbial community structure exhib-
ited noticeable changes due to the biochar application.
The biochars had a significant influence on the commu-
nity structure of prokaryotes in both soil types, whereas
fungi were only significantly affected in luvisol (Table 3).
In cambisol, a significant difference in the prokaryotic
community structure was found between all the biochar
treatments (W, BM, and control), distance from the root
system and their combination (pairwise PERMANOVA,
Paaj < 0.05). In contrast, in luvisol, the prokaryotic com-
munity differed only between the control soil and BM,
while the fungal community differed between the con-
trol soil and both BM and W treatments (pairwise PER-
MANOVA, p,;;< 0.05).

The main driver of such changes could be a significant
alteration of soil pH caused by biochar treatment in both

—
=

pH

T T

W control BM W
treatment

control BM

Fig. 4 Soil pH in control soil, W (beech woodchips) and BM (bone-meat
residues after mechanical deboning from a poultry slaughterhouse) treat-
ments. The control soil was not treated with a biochar. Different letters
indicate significant differences between treatments (pgd/ <0.05), and were
assigned according to conducted pairwise Wilcoxon tests

cambisol and luvisol soils (Fig. 4). Both the W and BM
treatments led to a significant increase in soil pH levels;
notably BM caused a considerably larger increase com-
pared to W. The difference in soil pH between biochar
treatments was even larger in cambisol, which is typically
more acidic than luvisol. This might also be the reason
why biochar treatment explained more variability of pro-
karyotic community structure in cambisol than in luvisol
(Table 3) since biochar has a larger effect on prokary-
otic communities, mainly in acidic soils [106]. Microor-
ganisms, especially prokaryotes, are known to be highly
responsive to pH fluctuations. Therefore, a shift in soil
pH can have a substantial influence on the structure of
the microbial community [21].

Differential abundance analysis using DESeq2 revealed
that, compared to the control soil in both cambisol and
luvisol, the relative abundance of 18 genera was signifi-
cantly higher in BM-treated soils, while the relative abun-
dance of 10 prokaryotic genera was significantly higher
in W-treated soil (Table 4). Of these genera, the relative
abundance of Sphingopyxis stood out, having the highest
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relative abundance in both treatment groups. Sphingopy-
xis is known for its remarkable metabolic versatility and
adaptability to a wide range of environmental conditions
[80], suggesting that the microbial communities in BM-
and W-treated soils may be better equipped to respond
to environmental changes.

The relative abundance of certain fungal genera was
also significantly higher in soils with the BM and W bio-
char (Table 4). Specifically, Selinia and Leohumicola were
found to have significantly higher relative abundance
with both W and BM treatments compared to control
soils of cambisol and luvisol. Notably all genera, whether
prokaryotic or fungal, that had significantly higher rela-
tive abundance in W-treated soils compared to the con-
trol soils were also among those significantly enriched
in BM-treated soils compared to the control soils. This
outcome suggests that there were no genera with a sig-
nificantly different relative abundance that was specific to
the W treatment.

In contrast, BM treatment alone produced significantly
higher relative abundance, compared to the cambisol
and luvisol control soil, of genera such as Lacibacter,
Desulfocapsa, Geobacter, Herbaspirillum, Nitrosospira,
Flavisolibacter, Noviherbaspirillum, Oxalicibacterium,
Methylorosula, Candidatus Alysiosphaera, and Nitro-
spira. Several of these genera are known for their involve-
ment in essential soil processes, including sulfate
reduction (Desulfocapsa) [59], Fe(Ill) reduction (Geo-
bacter) [57], phosphate solubilization (Herbaspirillum)
[27], or their roles in the nitrogen cycle (Herbaspirillum,
Noviherbaspirillum, Nitrosospira, and Nitrospira) [19,
24, 81, 102]. These activities exert a profound and last-
ing influence on the soil environment, suggesting that the
BM biochar has the potential to enhance soil quality.

Biochar amendments also had a significant impact on
the community of prokaryotic endophytes within the
roots of Triticum aestivum L., particularly when planted
in cambisol soil (Table 5). In this specific case, the bio-
char treatments accounted for 53% of the variability in
the prokaryotic community structure. Conversely, nei-
ther the community of prokaryotic endophytes in luvisol
nor the fungal endophytes in either soil type showed a
significant influence due to the biochar treatments.

The observed changes in the community structure of
prokaryotes in the root endosphere are likely linked to
alterations in the prokaryotic community structure in
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Table 4 Results of Differential abundance analysis (DeSeq)
showing prokaryotic or fungal genera with significantly (p,g
< 0.05) higher abundance in biochar-treated soil compared to
control groups of both soil types (cambisol and luvisol)

Total

BM 18 prokaryotes

Genera

Sphingopyxis, WCHB1-32 (Bacte-
roidetes), Lacibacter, Desulfocapsa,
Flaviaesturariibacter, Geobacter, OM27
clade (Proteobacteria), Herbaspirillum,
Nitrosospira, Ramlibacter, Flavisoli-
bacter, Xylophilus, Noviherbaspirillum,
Oxalicibacterium, Methylorosula,
Candidatus Alysiosphaera, Nitrospira,
Unclassified (from Bacteroidetes)

Treatment

Selinia, Leohumicola

Sphingopyxis, Flaviaesturariibacter,
OM27 clade (Proteobacteria), Xylophi-
lus, Ramlibacter, Unclassified (from
Bacteroidetes, Acidobacteria, and 3x
Proteobacteria)

2 fungi Selinia, Leohumicola

The biochar treatments were BM (bone-meat residues after mechanical
deboning from a poultry slaughterhouse) and W (beech woodchips). The
control group was soil without any biochar treatment

2 fungi
W 10 prokaryotes

the rhizosphere in cambisol (Table 3). Endophytes can be
horizontally acquired from the rhizosphere, where they
are selected through interactions with root exudates [32].
Root exudates play a pivotal role in plant-microbe inter-
actions, and shape the selection of potential endophytes
based on their composition [9]. Given that changes in the
prokaryotic community structure were observed across
different rhizosphere zones (2, 4, and 6 mm), it is plau-
sible to argue that the microorganisms in these zones
experienced selection pressures, which subsequently led
to changes in the endophytic community structure.

The only prokaryotic genus that exhibited a signifi-
cantly different relative abundance between biochar-
treated plants and the control groups (as determined by
DeSeq, p,4; < 0.05) was Duganella. A significantly higher
relative abundance of it was observed in both W and BM
treatments when compared to the control. Interestingly,
Duganella’s relative abundance did not show a significant
increase in W 500 °C or BM 500 °C treated soils (Table 4),
suggesting that biochar treatments directly influenced its
presence within the endosphere rather than in the treated
soil.

The presence of Duganella in the roots could be indica-
tive of its beneficial role in enhancing soil health and

Table 5 Influence of biochar application (W, BM, or control soil) on the structure of endophytic prokaryotic and fungal communities

in the root system of T. gestivum L. (PERMANOVA)

Endophytic prokaryotes Endophytic fungi

Cambisol Luvisol Cambisol Luvisol

R? P R? R? P R? P
Biochar treatment 53% 0.007 29% 0.144 23% 0525 30% 0.088

Significant (p<0.05) p-values are underlined and shown in bold
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plant growth. This genus is known for its diverse meta-
bolic capabilities, including activities such as phosphate
solubilization [104] and nitrogen fixation [28], which can
contribute to improved nutrient availability for plants.
Moreover, Duganella has been indentified as a member
of the core endophytic microbiome of T. aestivum [54]
and has been associated with enhancing plant tolerance
to cold [74], along with its known anti-fungal activities
[39]. These findings underscore the potentially beneficial
role of Duganella in bolstering plant health and resil-
ience, emphasizing the significance of biochar amend-
ment in the context of sustainable agriculture and soil
management practices.

The activity of several key enzymes, including
B-glucosidase, PB-xylosidase, B-N-acetylglucosaminidase
(NAG), sulphatase, acid phosphatase, and total micro-
bial activity (fluorescein diacetate method), was assessed
in soil samples collected from both bulk and rhizosphere
compartments of the rhizoboxes (2, 4 and, 6 mm). The
enzymatic activity was found to be significantly asso-
ciated with soil type and biochar application (PER-
MANOVA, p,;; < 0.001), but not with the distance from
the root system (p,; = 0.588). Additionally, the interac-
tion between soil type and biochar application also had
a significant impact on enzymatic activity (p,4 < 0.001),
leading to further statistical analysis being conducted
separately for each soil type.

B-glucosidase, B-xylosidase, and NAG exhibited a sig-
nificant increase in activity relative to the control soil
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after the application of the W biochar in at least one of
the soil types (Fig. 5). p-glucosidase and B-xylosidase play
vital roles in the carbon cycle, catalyzing the breakdown
of polysaccharide bonds into simple sugars [3, 13]. NAG
is involved in the cycle of both carbon and nitrogen by
facilitating the hydrolysis of chitin into amino sugars [25].
Of particular note B-glucosidase, known for its sensitivity
as an indicator of soil quality [83], suggests an enhance-
ment in the quality of both cambisol and luvisol soils
with the addition of the W biochar.

The observed increase in B-glucosidase, p-xylosidase,
and NAG activity following the application of the W
biochar to agronomical soil aligns with findings from
other studies [4, 5, 95]. This increase in enzymatic activ-
ity was correlated with the higher carbon content of the
biochar [31], which was 83.1% for the W biochar, in con-
trast to the 22.8% carbon content of the BM biochar [84].
The biochar effectively enriches the soil’'s organic mat-
ter content, thereby increasing the availability of carbon
for microbial utilization [109]. It is also the microporous
nature of the W biochar that creates favorable conditions
for microbial growth by absorbing essential nutrients and
moisture from the soil environment [70]. Simultaneously,
it acts as a protective shield for microbes against their
predators [56]. The biochar also absorbs extracellular
enzymes and/or their substrates, leading to stabilization
of their catalytic reactions [26], which inherently contrib-
utes to the observed increase in enzymatic activity. This
multifaceted effect underscores the numerous advantages
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Fig. 5 Enzymatic activity in cambisol and luvisol soil types mixed (5% w/w) with W (beech woodchips) or BM (bone-meat residues after mechanical
deboning from a poultry slaughterhouse) biochar prepared at 500 °C. The control soil was not treated with a biochar. Different letters indicate significant
differences between treatments (p,4; < 0.05), and were assigned according to conducted pairwise Wilcoxon tests
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of applying the W biochar to agricultural soils, ranging
from carbon enrichment to the creation of a more con-
ducive environment for soil microbes, ultimately leading
to an enhancement of soil quality.

Additionally, we observed significantly higher total
microbial activity in W-treated luvisol (Fig. 5), which is
consistent with previous research [61]. Total microbial
activity is measured by the hydrolysis of FDA, a substrate
that can be acted upon by various enzymes, including
lipases, esterases, and proteases [46]. Many decompos-
ers possess these enzymes, making FDA hydrolysis and
its response to external factors a reliable indicator of total
microbial activity in the soil [1]. Interestingly, the activ-
ity of proteases, one of the enzymes responsible for FDA
hydrolysis, has been linked to the activity of NAG, which
was also elevated in W-treated luvisol. Both proteases
and NAG are inducible by microbial-derived sources
such as chitin and proteins [35]. In this context, it may
be hypothesized that it is not only biochar amendments
that contribute to increased enzymatic activity, but the
stimulated turnover of microbial communities over an
extended period could drive this activity surge.

In contrast to the W biochar, the BM biochar led to a
significant decrease in the activity of B-xylosidase, NAG,
and sulfatase in both soil types, as well as B-glucosidase
in luvisol (Fig. 5). This decline in B-xylosidase, NAG, and
B-glucosidase activity can be attributed to the feedstock
origin and composition of the resulting BM biochar [84].
Furthermore, the mesoporous structure of the BM bio-
char may not offer as protective an environment for soil
microbes and extracellular enzymes as the W biochar
can. Additionally, there is a decreased activity of sulfa-
tase; sulfatase is responsible for the hydrolysis of organo-
sulfur compounds, releasing sulfate forms that are made
available for plant uptake [100]. It has been reported that
the activity of sulfatase is suppressed in the presence of
sulfate [77], which was significantly increased in BM-
treated soils [84].

In contrast to the trends observed with these enzymes,
a different pattern emerged for acid phosphatase. Acid
phosphatase was the sole enzyme whose activity sig-
nificantly increased in BM-treated soils, while no such
increase was noted with the W biochar (Fig. 5). This
increase in activity aligns with the findings of other incu-
bation experiments focused on the biochar’s impact on P
availability [38]. The addition of the BM biochar enhances
the bioavailability of P in treated soils, likely by promot-
ing the growth of phosphate-solubilizing bacteria [8, 41].
Such bacteria play a pivotal role in converting insoluble
forms of phosphorus into soluble ones, accomplished
through producing organic acids or phosphatases [79]. In
this particular case, BM 500 °C treatment resulted in an
approximately 19-fold increase in the mobile phosphorus
content in the unplanted cambisol, and a roughly 14-fold
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increase in the luvisol [84]. As phosphorus is an essential
and often limiting nutrient for plant growth, the potential
increase in its bioavailable form in agronomical soil holds
significant value.

Unlike chemical fertilizers, which elevate the risk of
phosphorus leaching and are a primary contributor to
water eutrophication, a biochar derived from animal
waste, such as a BM biochar, elevates phosphorus lev-
els without imposing such ecological burdens [47, 91].
Hence, a BM biochar can be considered an environmen-
tally friendly phosphorus fertilizer alternative.

Conclusion

Incorporating new organic wastes into biochar produc-
tion demands a thorough assessment of their impact on
agricultural soil. This study underlines the critical influ-
ence of feedstock type, pyrolysis temperature, applica-
tion dosage, and even soil type on soil and endophytic
microbial communities. Remarkably, the utilization of
both feedstock types — BM (bone-meat residues after
mechanical deboning from a poultry slaughterhouse) and
W (beech woodchips) — both processed at 300 °C, either
led to a substantial decrease in soil microbial diversity, as
observed with the BM treatment, or failed to elicit sig-
nificant alterations in microbial community structure or
microbial diversity, as seen with the W treatment. In con-
trast, the application of a biochar produced at a higher
pyrolysis temperature of 500 °C, using both organic waste
sources, was found to induce changes in the soil micro-
bial community that correlated with improved soil qual-
ity. These biochar treatments led to substantial shifts in
the community structures of prokaryotes and fungi. The
BM biochar exhibited a tendency to support the growth
of Pseudomonadota relative to the other phyla, while the
W biochar significantly stimulated carbon cycling pro-
cesses. These changes were particularly pronounced in
cambisol, a soil type typically characterized by higher
acidity compared to the tested luvisol soil. Enzymatic
activity in soil was also impacted, with the BM biochar
increasing the activity of acid phosphatase while decreas-
ing the activity of B-glucosidase, B-xylosidase, NAG, and
sulfatase. In contrast, the W biochar enhanced the activ-
ity of enzymes involved in the carbon cycle, including
B-glucosidase, B-xylosidase, and NAG. Importantly, the
distinct composition of the two biochar variants was
the main driver behind the observed shifts in microbial
community structure within the soil, rhizosphere, and
root endosphere, as well as the significant changes in soil
enzymatic activity. The next study should include a field
experiment with biochar pyrolysed at the higher tem-
perature to assess the complexity of all biotic and abiotic
interactions.
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